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Optimal Hybrid Beamforming for Multiuser Massive MIMO

Systems With Individual SINR Constraints

Guangda Zang, Ying Cui, Hei Victor Cheng, Feng Yang, Lianghui Ding, and Hui Liu

Abstract—In this letter, we consider optimal hybrid beam-
forming design to minimize the transmission power under indi-
vidual signal-to-interference-plus-noise ratio (SINR) constraints
in a multiuser massive multiple-input-multiple-output (MIMO)
system. This results in a challenging non-convex optimization
problem. We consider two cases. In the case where the number
of users is smaller than or equal to that of radio frequency (RF)
chains, we propose a low-complexity method to obtain a globally
optimal solution and show that it achieves the same transmission
power as an optimal fully-digital beamformer. In the case where
the number of users is larger than that of RF chains, we propose
a low-complexity globally convergent alternating algorithm to
obtain a stationary point.

Index Terms—Multiuser massive MIMO, hybrid beamforming,
power minimization, penalty method.

I. INTRODUCTION

W ITH a large number of antennas deployed in mas-

sive multiple-input-multiple-output (MIMO) systems,

power consumption and cost of devices increase significantly

and may not be affordable for practical implementation. To

address these issues, hybrid analog/digital structure with a

reduced number of radio frequency (RF) chains has been

regarded as a promising solution. Analog beamforming refers

to the analog operations applied to a signal before being

transmitted through antennas, and digital beamforming refers

to the baseband signal processing applied to a signal before

being sent to RF chains.

Hybrid beamforming technologies have been widely studied

in both point-to-point and multiuser massive MIMO sys-

tems [1]–[3]. It is desirable to consider individual signal-to-

interference-plus-noise ratio (SINR) constraints to guarantee
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quality of service (QoS) requirements for different users in

multiuser massive MIMO systems. However, most previous

works on multiuser hybrid beamforming design fail to consider

individual SINR constraints. In [4], the authors consider a

non-convex multiuser hybrid beamforming design problem

with individual SINR constraints and propose a semidefinite

relaxation-based alternating (SDR-Alt) algorithm to obtain a

feasible solution. In particular, in each iteration, a digital

beamforming design problem is solved by computing a semi-

closed form solution, and an analog beamforming design prob-

lem is solved with complexity O(M4.5N4.5) using standard

techniques for semidefinite programming (SDP), where M

denotes the number of antennas and N denotes the number of

RF chains. Moreover, most of previous works (e.g., [4]) focus

on the case where the number of users is no greater than that

of RF chains, and hence cannot provide meaningful solutions

for the emerging massive connectivity applications. To our

knowledge, hybrid beamformer optimizations with individual

SINR constraints in multiuser massive MIMO systems have

not been successfully solved.

In this letter, we consider a multiuser massive MIMO system

with K users and N RF chains and assume perfect channel

state information (CSI). We study optimal hybrid beamforming

design to minimize the transmission power subject to individ-

ual SINR constraints. The resulting challenging non-convex

problem is solved in two cases. In the case of K ≤ N , we

propose a low-complexity method to obtain a globally optimal

solution and show that it achieves the same transmission

power as an optimal fully-digital beamformer with a reduced

number of RF chains, by connecting the original optimization

problem to a fully-digital beamforming design problem. In

the case of K > N , we propose a low-complexity globally

convergent alternating algorithm to obtain a stationary point,

based on problem transformation and a penalty method. To

the best of our knowledge, the proposed solutions are so

far the most promising ones in the two cases in terms of

computational complexity and theoretical guarantee. Finally,

numerical results show that the proposed solutions have much

lower computational complexity than the SDR-Alt algorithm.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a downlink multiuser massive MIMO system with

one multi-antenna base station (BS) and K single-antenna

users, denoted by K , {1, · · · ,K}. The BS has M (≥ K)
antennas and N RF chains. To reduce hardware cost and power

consumption, we consider hybrid beamforming with a reduced

number of RF chains (i.e., N < M ). As illustrated in Fig. 1,

we adopt the widely used fully-connected structure, where

http://arxiv.org/abs/1811.10133v1
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each RF chain is connected to all M antennas. Thus, the output

signal of each antenna can be seen as a linear combination of

all RF signals. Let W , [w1, · · · ,wK ] ∈ CN×K denote the

digital beamformer, where wk ∈ CN×1 denotes the digital

beamforming vector for user k. Let V ∈ CM×N denote

the analog beamformer. As in [5], [6], we do not impose

modulus constraints on the analog beamformer. Note that

an analog beamformer without modulus constraints can be

implemented using vector modulators [5] or double phase

shifter structure [6].1

We consider a narrowband system and assume a block

fading channel model. Let gH
k ∈ C1×M denote the channel

of user k ∈ K, and let G , [g1, · · · ,gK ]H ∈ CK×M denote

the channels of the K users, where the superscript H denotes

the Hermitian transpose of a matrix. In this letter, we assume

perfect CSI at the BS. The received signal of user k is given

by yk = gH
k Vwksk +

∑

i∈K,i6=k

gH
k Vwisi + nk, where sk and

nk ∼ CN (0, σ2
k) denote the transmitted information symbol

and the additive Gaussian noise of user k, respectively. We

assume that sk, k ∈ K are independent and with zero mean

and unit variance. Thus, the transmission power is given by

‖VW‖2F , where ‖·‖F denotes the Frobenius norm. To capture

the QoS requirement for user k ∈ K, we require that the

instantaneous SINR of user k is above a threshold ηk, i.e.,
∣

∣gH
k Vwk

∣

∣

2

∑

i∈K,i6=k

∣

∣gH
k Vwi

∣

∣

2
+ σ2

k

≥ ηk, k ∈ K. (1)

Our goal is to optimize the digital beamformer W and the

analog beamformer V to minimize the transmission power

‖VW‖2F under the individual SINR constraints in (1). Thus,

we have the following hybrid beamforming design problem
POri : min

V,W
‖VW‖2F s.t. (1).

Problem POri is a challenging non-convex problem. In Sec-

tion III and Section IV, we shall solve Problem POri for two

cases, i.e., K ≤ N and K > N , respectively.

III. SOLUTION FOR THE CASE OF K ≤ N

In this section, we study the case of K ≤ N , and obtain a

globally optimal solution of the non-convex Problem POri, by

connecting it to a fully-digital beamforming design problem.

First, letting WD = VW ∈ CM×K , Problem POri can be

transformed to the following fully-digital beamforming (with

M RF chains) design problem

PFD : min
WD

‖WD‖2F

s.t.

∣

∣[gH
k WD]k

∣

∣

2

∑

i∈K,i6=k

∣

∣[gH
k WD]i

∣

∣

2
+ σ2

k

≥ ηk, k ∈ K, (2)

where WD can be viewed as the digital beamformer and

[ · ]i denotes the i-th element of the argument. Although

Problem PFD is non-convex, it can be solved optimally using

several methods, such as the method proposed in [7] which

is based on a semi-closed form solution obtained from KKT

conditions and has low computational complexity compared

1Note that our proposed methods can be extended to the case with modulus
constraints by first relaxing the modulus constraints and then projecting the
obtained solutions onto the set with modulus constraints.

RF device

RF device

RF
chain 1

W V

RF device

RF device

RF
chain N

RF deviceAntenna

vector
modulator

double phase shifter

Fig. 1. Hybrid beamformer structure.

Algorithm 1 Globally Optimal Design for the Case of K ≤ N

1: Find W
⋆

D by solving Problem PFD using the method in [7];
2: Construct W⋆

∈ C
N×K with linearly independent columns;

3: Calculate V
⋆ = W

⋆

D

(

(W⋆)HW
⋆
)

−1
(W⋆)H ∈ C

M×N .

to other methods. Let W⋆
D denote a globally optimal solution

of Problem PFD.

Next, we construct a globally optimal solution of Prob-

lem POri based on W⋆
D. Specifically, we randomly gener-

ate an N × K matrix with linearly independent columns,

denoted by W⋆ ∈ CN×K , and calculate V⋆ =

W⋆
D

(

(W⋆)HW⋆
)−1

(W⋆)H ∈ CM×N .

Lemma 1: When K ≤ N , (V⋆,W⋆) is a globally optimal

solution of Problem POri, and ‖V⋆W⋆‖2F = ‖W⋆
D‖2F .

Proof: It is clear that V⋆W⋆ = W⋆
D and (V⋆,W⋆)

satisfies (1). Thus, (V⋆,W⋆) is a feasible solution of Prob-

lem POri and achieves the same transmission power as W⋆
D.

Note that the optimal value of Problem PFD is no greater than

that of Problem POri. Thus, (V⋆,W⋆) is a globally optimal

solution of Problem POri.

The key steps are summarized in Algorithm 1. To the

best of our knowledge, this is the first work providing a

globally optimal solution of Problem POri and showing that

the optimal hybrid beamformer (with at least K RF chains)

can achieve the same transmission power as the optimal fully-

digital beamformer (with M (> N ) RF chains) in the case of

K ≤ N . As Algorithm 1 requires only computing a semi-

closed form solution and some simple matrix operations, it

has much lower computational complexity than the SDR-Alt

algorithm [4].

IV. SOLUTION FOR THE CASE OF K > N

In this section, we consider the case of K > N and propose

a globally convergent alternating algorithm based on a penalty

method to obtain a stationary solution of Problem POri.

A. Equivalent Problem

First, consider the following problem.

PEq : min
X

‖SvXSw‖2F

s.t.

∥

∥

∥

∥

[

(gH
k SvXSw)

H

σk

]
∥

∥

∥

∥

2

≤
√

1+ηk

ηk
gH
k SvXdk, k ∈ K, (3)

gH
k SvXdk ≥ 0, k ∈ K, (4)

X � 0, (5)

rank(X) ≤ N, (6)

where Sv , [IM×M ,0M×K ] ∈ CM×(M+K), Sw ,

[0K×M , IK×K ]T ∈ C(M+K)×K and dk ∈ C(M+K)×1 de-

notes the vector with the (M + k)-th element being 1 and the
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rest being 0.2 Any feasible solution X of Problem PEq can be

decomposed as X = UUH (as X satisfies the constraints

in (5) and (6)). We can rewrite U as U = [VH ,W]H ,

where V ∈ CM×N and W ∈ CN×K , i.e., V = SvU and

W = UHSw. The following result shows the relationship

between Problem POri and Problem PEq.

Theorem 1: If X is a globally optimal solution of Prob-

lem PEq, (V,W) is a globally optimal solution of Prob-

lem POri. Furthermore, if X is a stationary point of Prob-

lem PEq, (V,W) is a stationary point of Problem POri.

Proof: See Appendix A.

B. Penalty Method

Based on Theorem 1, we can solve Problem PEq instead of

Problem POri. The rank-N constraint in (6) is non-convex and

non-smooth, and hence is hard to deal with. To address this

challenge, instead of (6), we consider the following constraint

trace(X) −∑N

i=1 λi(X) ≤ 0, (7)

where λi(·) denotes the i-th largest eigenvalue of the argument.

As trace(X) ≥ ∑N

i=1 λi(X) holds for any X � 0, (7) implies

trace(X) =
∑N

i=1 λi(X), which means that X has at most N

nonzero eigenvalues, i.e., (6) holds. Then we incorporate (7)

as a penalty for violation and obtain

PPen : minX

(

‖SvXSw‖2F+µ(trace(X)−∑N

i=1 λi(X))
)

s.t. (3), (4), (5).

Using similar arguments in [8], we have the following result.

Theorem 2: There exists µ0 ∈ (0,+∞) such that for all

µ > µ0, trace(X) − ∑N

i=1 λi(X) = 0 and (V,W) is a

stationary point of Problem POri, where X is a stationary point

of Problem PPen.

Based on Theorem 2, we first solve Problem PPen for any

given µ. Let ΦM+K,N , {P ∈ SM+K , 0�P�I, trace(P) =
M+K−N} denote the convex hull of the rank-(M+K−N)
projection matrices. As

trace(X) −
N
∑

i=1

λi(X) = min
P∈ΦM+K,N

trace(PTX) (8)

holds [9], Problem PPen can be rewritten as

PAlt : min
X

min
P∈ΦM+K,N

(

‖SvXSw‖2F + µ trace(PTX)
)

s.t. (3), (4), (5),

which can be solved alternatively. Specifically, let X(i) denote

the estimate of X at the i-th iteration. Then, the estimates of

P and X at the (i+ 1)-th iteration are updated as

P(i+1)=arg min
P∈ΦM+K,N

trace(PTX(i)) (9)

X(i+1)=argmin
X

(

‖SvXSw‖2F+µ trace((P(i+1))TX)
)

(10)

s.t. (3), (4), (5).

An optimal solution of the convex problem in (9) is given by

P(i+1)=QQH , where Q ∈ C(M+K)×(M+K−N) is composed

of the M+K−N eigenvectors corresponding to the smallest

M+K−N eigenvalues of X(i) [9] and can be obtained by

standard matrix decomposition methods such as singular value

decomposition. The convex SDP problem in (10) can be solved

with complexity O((M+K)4.5) using the standard interior-

point toolboxes such as SeDuMi. Thus, it is clear that the

2We denote the identity matrix and zero matrix of appropriate size by I

and 0, respectively.

Algorithm 2 Solution for the Case of K > N

1: while trace(X) >
∑

N

i=1 λi(X) do

2: construct X(0) with random values and set i := 0
3: repeat
4: Obtain P

(i+1) by solving the problem in (9);

5: Obtain X
(i+1) by solving the problem in (10);

6: i← i+ 1;
7: until convergence criterion is met;
8: µ := 2µ;

9: end while

iterative alternating procedure for given µ has much lower

computational complexity than the SDR-Alt algorithm [4].

Since ‖SvX
(i)Sw‖2F +µ trace(PTX(i)) is nonnegative and is

monotonically non-increasing with i, the iterative alternating

procedure for given µ converges to a limit point. As the

constraint sets of the two problems are disjoint, the limit

point is a stationary point of Problem PAlt [10]. A suffi-

ciently large µ (> µ0) can be found by increasing µ until

trace(X)−∑N

i=1 λi(X)=0.

The details are summarized in Algorithm 2. By Theorem 2

and by the equivalence between Problem PAlt and Prob-

lem PPen, we know that a stationary point of Problem POri can

be obtained by Algorithm 2. As far as we know, this is the first

work providing a convergent stationary point of Problem POri

in the case of K > N .

V. NUMERICAL RESULTS

In this section, we provide numerical results to illustrate

the performance of Algorithm 1 and Algorithm 2. In the

simulations, the one-ring channel model is used by setting

the angular spread as ∆ = 15◦ and assuming the azimuth

angle of arrival for user k as θk = −180◦ + ∆ + (k −
1)360

◦

K
. We choose ηk =

√
2 − 1 and σ2

k = 1. We con-

sider four baselines for comparison. The first baseline is the

hybrid beamformer obtained using the SDR-Alt algorithm

in [4] for solving Problem POri. The other three baselines

are three typical fully-digital beamformers (N = M ), i.e.,

the optimal solution W⋆
D of Problem PFD (optimal fully-

digital beamformer), fully-digital beamformer based on zero-

forcing (ZF) and fully-digital beamformer based on maximum-

ratio-transmission (MRT), which satisfy the SINR constraints

in (2). In evaluating the two proposed algorithms and the SDR-

Alt algorithm in [4], we use the same convergence criterion;

we generate 30 random channels (same for all schemes), and

show the mean and standard deviation (cf. vertical bar at each

point) of the performance. We compare the normalized average

power consumption which is unit-less.

Fig. 2 illustrates the average power versus the number

of users K . We can observe that, in the case of K≤N ,

Algorithm 1 achieves the same average power as the optimal

fully-digital beamformer. In the case of K>N , Algorithm 2

outperforms the fully-digital beamformers based on ZF and

MRT, and achieves similar average power compared to the

optimal fully-digital beamformer. These indicate that hybrid

beamforming can achieve most of beamforming performance

with reduced hardware cost. In Fig. 2, we do not provide

results for the SDR-Alt algorithm, as its computational com-

plexity at N=36 and M=96 is not acceptable. In Fig. 3, we
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Fig. 3. Average power and simulation time.

compare the average power and simulation time (reflecting

computational complexity) of the proposed algorithms and

the SDR-Alt algorithm at small N and M . The proposed

algorithms achieve the same average power as the SDR-Alt

algorithm with much lower computational complexity. In addi-

tion, the computational complexity of the proposed algorithms

almost does not change with M , while the computational

complexity of the SDR-Alt algorithm increases dramatically

with M . Thus, Fig. 2 and Fig. 3 demonstrate the advantages

of the proposed algorithms over the SDR-Alt algorithm.

VI. CONCLUSION

In this letter, we considered the optimal hybrid beamforming

design in a multiuser massive MIMO system to minimize the

total transmission power under individual SINR constraints.

By exploring structural properties of the problem, we pro-

posed two low-complexity algorithmic solutions to solve the

challenging non-convex problem in two cases depending on

the number of users and the number of RF chains. The compu-

tational complexity of the proposed algorithms is dramatically

reduced compared to the existing SDR-Alt algorithm.

APPENDIX A. PROOF OF THEOREM 1

First, it can be verified that multiplying a feasible point

VW of Problem POri on the right by a diagonal phase scaling

diag(ejφi ), where φi, i = 1, . . . ,K are arbitrary phase values

and diag(xi) denotes a diagonal matrix with xi being the

i-th diagonal element, the feasibility and objective value of

Problem POri do not change. If V⋆W⋆ is an optimal solution,

then V⋆W⋆ diag(ejφi ) is also an optimal solution. Thus, we

can restrict the k-th diagonal element of GVW, i.e., gH
k Vwk,

to the non-negative real domain and impose

gH
k Vwk ≥ 0, k ∈ K. (11)

By (1), we have
∑

i∈K,i6=k

∣

∣gH
k Vwi

∣

∣

2
+σ2

k ≤ 1
ηk

∣

∣gH
k Vwk

∣

∣

2
, k ∈ K,

⇒ ∑

i∈K

∣

∣gH
k Vwi

∣

∣

2
+σ2

k ≤ (1+ 1
ηk
)
∣

∣gH
k Vwk

∣

∣

2
, k ∈ K,

⇒
∥

∥

∥

∥

[

(gH
k VW)H

σk

]
∥

∥

∥

∥

2

2

≤ (1+ 1
ηk
)
∣

∣gH
k Vwk

∣

∣

2
, k ∈ K.

Taking square root on both sides of the above inequality and

by (11), we have
∥

∥

∥

∥

[

(gH
k VW)H

σk

]∥

∥

∥

∥

2

≤
√

1+ηk

ηk
gH
k Vwk, k ∈ K, (12)

Next, letting U , [VH ,W]H ∈ C(M+K)×N , we have V =
SvU, W = UHSw and wk = UHdk. Thus, (11) and (12)

can be rewritten as

gH
k SvUUHdk ≥ 0, k ∈ K. (13)

∥

∥

∥

∥

[

(gH
k SvUUHSw)

H

σk

]
∥

∥

∥

∥

2

≤
√

1+ηk

ηk
gH
k SvUUHdk, k∈K. (14)

Then Problem POri can be equivalently transformed to

PRe : min
U

‖SvUUHSw‖2F
s.t. (13), (14).

Note that X can be rewritten as X = UUH ∈
C(M+K)×(M+K) for some U if and only if X satisfies con-

straints (5) and (6). Thus, if X is a globally optimal solution

of Problem PEq, (V,W) is a globally optimal solution of

Problem POri. Furthermore, it can be verified that if X satisfies

the KKT system of Problem PEq, U also satisfies the KKT

system of Problem PRe. Thus, if X is a stationary point of

Problem PEq, U is a stationary point of Problem PRe. Besides,

by similar calculations provided in [7, Proposition 3], if U

satisfies the KKT system of Problem PRe, (V,W) satisfies the

KKT system of Problem POri. Thus, if U is a stationary point

of Problem PRe, (V,W) is a stationary point of Problem POri.

Therefore, if X is a stationary point of Problem PEq, (V,W)
is a stationary point of Problem POri.
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