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Throughput Optimized Non-Contiguous Wideband Spectrum Sensing via
Online Learning and Sub-Nyquist Sampling

Himani Joshi, Sumit J Darak, A Anil Kumar and Rohit Kumar

Abstract—In this paper, we consider non-contiguous wideband
spectrum sensing (WSS) for spectrum characterization and allo-
cation in next generation heterogeneous networks. The proposed
WSS consists of sub-Nyquist sampling and digital reconstruction
to sense multiple non-contiguous frequency bands. Since the
throughput (i.e. the number of vacant bands) increases while the
probability of successful reconstruction decreases with increase in
the number of sensed bands, we develop an online learning algo-
rithm to characterize and select frequency bands based on their
spectrum statistics. We guarantee that the proposed algorithm
allows sensing of maximum possible number of frequency bands
and hence, it is referred to as throughput optimized WSS. We
also provide a lower bound on the number of time slots required
to characterize spectrum statistics. Simulation and experimental
results in the real radio environment show that the performance
of the proposed approach converges to that of Myopic approach
which has prior knowledge of spectrum statistics.

Keywords—Online Learning, Sub-Nyquist Sampling.

I. INTRODUCTION
Next generation wireless networks are envisioned on a

revolutionary path of spectrum sharing to support a wide range
of deployments and services from enhanced mobile broadband
to ultra-reliable low-latency communications. The 3GPP new
radio (NR) is expected to operate not only in the licensed
spectrum but also in the shared (2.3 GHz Europe / 3.5 GHz
USA) as well as unlicensed spectrum (2.4 GHz / 5-7 GHz
/ 57-71 GHz global). Hence, base stations or geolocation
database need wideband spectrum sensing (WSS) to sense a
spectrum of few tens of Gigahertz and dynamically allocate
the desired spectrum to NRs [1]. Recently, various sub-Nyquist
sampling (SNS) and digital reconstruction based contiguous
WSS methods have been proposed and they employ low
rate analog-to-digital converters (ADCs) based on spectrum
sparsity [2]. In the wideband spectrum, some frequency bands
are reserved for applications such as WiFi, military and radar
systems while some are crowded or may not be useful. Hence,
non-contiguous WSS needs to be explored as it offers com-
plete control over the number and location of bands thereby
significantly increases the sensing bandwidth.

To the best of our knowledge, [3] is the only work which
has explored the non-contiguous WSS approach. However,
[3] assumes the complete knowledge of spectrum statistics
which makes the frequency band selection trivial. Since the
throughput (i.e. the number of vacant bands) increases while
the probability of successful reconstruction decreases with an
increase in the number of selected bands, we develop an online
learning algorithm which based on the spectrum statistics
characterizes and determines frequency bands for sensing. We
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also provide theoretical guarantees, extensive simulation and
experimental results in the real radio environment to validate
the superiority of the proposed approach. We begin with the
signal model in the next section.

II. SIGNAL MODEL
We consider a wideband signal x(t) of bandwidth fmax . It is

divided into N frequency bands which evolve as independent
two states (vacant and busy) Markovian chain and is given as

x(t) =
I∑

i∈1
ai(t)e j2π fi t (1)

where ai(t) is a narrowband signal transmitted at a carrier
frequency fi where I ≤ N . Similar to [3], [4], assumptions
made for the wideband signal, x(t) are:

1) The divided N frequency bands are static for a time slot,
ts and have the uniform bandwidth, B = fmax

N .
2) The bandwidth of all ai(t) can not exceed B and they are

orthogonal to each other, i.e. {Ai( f )∩Aj( f )} = ∅∀i , j,
where Ai( f ) is the Fourier transform of ai(t).

Consider a binary support vector, s = [sn(ts)]Nn=1 where
sn(ts) = 0 (or 1) implies that the nth frequency band is vacant
(or busy) at time slot ts . The status of nth band evolves with a
transition probability, pnuv = P(sn(ts) = v |sn(ts −1) = u) where
u, v ∈ {0, 1} and P(.) is a probability operator.

III. PROPOSED WORK

The proposed WSS approach consists of three blocks:
1) SNS block, 2) Reconstruction and sensing (RS) block,
3) Learning and decision making (LDM) block. As shown
in Fig. 1, the SNS block performs digitization on a set of fre-
quency bands, AN selected by the LDM block. The RS block
performs reconstruction of selected frequency bands from sub-
Nyquist samples, z[n] obtained from the SNS block followed
by spectrum sensing to identify their vacant or busy status,
sAN ∈ s. Based on sAN , the LDM block learns the frequency
band statistics, Ω(ts) via online learning algorithm and deter-
mines a set of frequency bands, AN for digitization in the
subsequent time slot, ts . Ideally, for a fixed number of ADC
branches, K , as shown in Fig. 2, the LDM block should select
as many most likely vacant bands as possible to maximize
the throughput. However, due to increase in the number of
sensed bands, |AN |, the number of occupied bands in the
sensed spectrum may increases which may lead to a decrease
in the probability of successful reconstruction. Such a trade-off
poses a real challenge in the design and integration of LDM
block for spectrum sensing.

^

Fig. 1. Block diagram of the proposed WSS approach
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A. SNS Block

The SNS block digitizes the non-contiguous frequency
bands selected by the LDM block. Consider indexes of these
bands are stored in a vector AN and cardinality |AN | indicates
the number of selected bands. The SNS block, shown in Fig. 2,
is based on the finite rate of innovation (FRI) technique [5]
and consists of K fixed parallel branches where the wideband
signal, x(t) is passed through a branch dependent analog
mixing function pk(t) given by

pk(t) =
∑

n∈AN

αk,n e−j2π fn t (2)

where αk,n is a unique scaling coefficient for nth band in AN

having center frequency fn. The resultant signal is then ban-
dlimited by a low pass filter of bandwidth B followed by dig-
itization via ADCs of rate ≥ B Hz. The discrete time Fourier
transform of samples generated at k th ADC is given by

Zk(e j2π f /B) =
∑

n∈AN

αk,nXn( f + (n − 1)B) ∀ f ∈ [0, B] (3)

where Xn( f ) is the Fourier transform of the nth frequency
band of AN . The sub-Nyquist samples of all K ADCs can be
collectively represented as

Z(e j2π f /B) = AXAN ( f ) (4)
where XAN ( f ) represents |AN | × 1 vector which contains
Fourier transform of AN frequency bands and A is a K × |AN |
matrix containing αk,n as its (k, n)th entry.

B. RS Block
The RS block reconstructs AN frequency bands from the

sub-Nyquist samples, Z and then determines their status,
sAN via sensing technique. For an error-free reconstruction
of XAN ( f ) with a fixed value of K , Eq. 4 should satisfy the
following two criteria

1) Kruskal rank of A, i.e. krank(A) ≥ K . To achieve
this, we assume A to be an independent and identically
distributed Gaussian matrix.

2) For |AN | > K , the number of busy frequency bands in
AN [2], i.e. | |sAN | |0, must be less than or equal to

⌊
K
2

⌋
A Bayesian approach based reconstruction algorithms offer

better reconstruction accuracy and lower complexity as com-
pared to greedy and convex optimization based reconstruction
algorithms [6], respectively. Hence, we employ fast Bayesian
matching pursuit (FBMP) reconstruction algorithm [7] which
reconstructs XAN by applying maximum a posteriori estimate
to determine the best possible value of sAN for a given Z.
However, FBMP requires the prior knowledge of vacancy
statistics of selected bands. In the proposed WSS approach, the
LDM block aims to learn these statistics for frequency band
selection and hence, they are readily available which makes

Fig. 2. Finite rate of innovation based SNS for multiband signal [5].

FBMP a good fit for the proposed approach. For sensing,
we employ a simple energy detector to determine the status,
sAN of AN bands based on their energy levels. However, the
proposed approach can be extended to other detectors such as
cyclostationary or Eigen value based detectors [8] which offer
better performance but have higher computation complexity.

C. LDM Block
Based on the status, sAN obtained from the RS block, the

proposed LDM block performs three tasks: 1) Characterization
of frequency bands to estimate their statistics, 2) Calculation of
|AN | and 3) Selection of frequency bands, AN for digitization
by the SNS block. Consider a vector Ω(ts) that is updated at
every time slot and is defined as

Ω(ts) = [ω1(ts), ω2(ts), ....., ωN (ts)] (5)
where ωn(ts) = P[sn(ts) = 0] is an immediate probability of
vacancy of nth band estimated at the time slot ts . Now, based
on the status, sAN , the LDM block determines whether the
reconstruction of AN bands is successful (ξAN = 0) or not
(ξAN = 1). Depending on the reconstruction success, the value
of Ω(ts) is updated for the next time slot ts + 1 as

ωn(ts + 1) =


p̂n10, if n ∈ AN, sn(ts) = 1, ξAN = 0
p̂n00, if n ∈ AN, sn(ts) = 0, ξAN = 0
φn(ts + 1), if n < AN or ξAN = 1

(6)
where φn(ts + 1) = (1 − ωn(ts))p̂n10 + ωn(ts)p̂n00 and p̂nuv is the
estimated transition probability.

We consider two scenarios for |AN |: 1) |AN | = K , and
2) |AN | > K . When |AN | = K , i.e. the number of ADCs, the
matrix A in Eq. 4 becomes a full rank matrix which means
that the system defined by Eq. 4 exhibits a unique solution
and hence, reconstruction is always successful (ξAN = 0).
However, when |AN | > K and if AN does not meet the second
requirement discussed in Section III-B, then reconstruction
fails. Mathematically,

ξAN =

{
0 if | |sAN | |0 ≤ Γ
1 otherwise

(7)

where Γ =

{
|AN | if |AN | ≤ K⌊
K
2

⌋
if K < |AN | ≤ N

Since the transition probabilities are unknown, we propose
LDM algorithm to estimate them and select K most likely
vacant bands out of N bands in each time slot, i.e. |AN | = K .
Later, we discuss the optimized LDM algorithm which can
select |AN | ≥ K bands in each time slot.

1) LDM Using Online Learning: The proposed LDM al-
gorithm consists of two phases: 1) Exploration phase to learn
spectrum statistics of all N bands and 2) Exploitation phase
to exploit K best bands. The entire time horizon, T is divided
into ϑ number of blocks each of duration 2dN/Ke time slots.
Depending on the value of exploration coefficient, L, the
algorithm explores frequency bands with the probability ε and
exploits with the probability (1 − ε) as shown in Algorithm 1
(line 6). Higher the value of L, higher is the number of times
each band is explored. The value of L depends on µ, i.e. the
minimum separation between spectrum statistics of frequency
bands and is determined empirically.
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Algorithm 1 LDM algorithm
1: Input: N,K,T
2: Parameter: L, A = All possible sets of AN

3: Initialization: Set ts = 0, ϑ = d T
2 dN/K e e, Ω(0) = [0.5]N×1

Cn
uv = 1, p̂nuv = 0.5 ∀ u, v ∈ {0, 1} and n ∈ {1, 2, .., N}

4: for b = 1 . . . ϑ do
5: ε = min{1, Lb }
6: if (rand < ε) then #Explore
7: for l = 1, 2, ..., d NK e do
8: AN = {(l − 1)K + 1, ...,min(lK, N)}
9: for q = 1, 2 do

10: Perform SNS and RS to determine sAN

11: RAN (ts) = | |sAN | |0(1 − ξAN )
12: end for
13: end for
14: else #Exploit
15: for l = 1, 2, ..., 2d NK e do
16: AN = arg maxA′N ∈A P(ξA′N = 0)∑n∈A′N ωn(ts)
17: Perform SNS and RS to find sAN

18: RAN
(ts) = | |sAN

| |0(1 − ξAN
)

19: end for
20: end if
21: Update Cn

uv, p̂nuv and Ω(ts). Increment ts
22: end for

In the exploration phase (line 6-13), the LDM algorithm
learns the transition probability, puv by sequentially selecting
K bands for two consecutive time slots. In each time slot, SNS
and RS blocks digitize and sense AN bands. Since, |AN | = K ,
ξAN becomes 0 due to which throughput, RAN (i.e. a number
of vacant bands in AN ) is calculated as | |sAN | |0 (line 11). Let
Cn
uv denotes the observed number of state transitions from u

to v state for the nth band. Then, p̂nuv and Ω(ts) are calculated
using Eq. 8 and Eq. 6, respectively.

p̂nuv =
Cn
uv

Cn
uv + Cn

uu
(8)

In the exploitation phase (line 15-20), the LDM algorithm se-
lects K best quality frequency bands by maximizing the
expected immediate throughput as shown in line 16 where
probability of successful reconstruction, P(ξAN = 0) = 1.
Similar to the exploration phase, SNS and RS blocks digitize
and sense the selected bands followed by the calculation of
RAN (line 18) and Ω(ts) (Eq. 6), respectively.

2) Optimized LDM Using Online Learning: The LDM
algorithm assumes |AN | = K . However, by exploiting the
spectrum sparsity, more than K number of bands can be
sensed which may offer higher throughput. The optimum
value of |AN | can be determined by maximizing the average
throughput as

|AN | = arg max
|A′N | ≥K

P(ξA′N = 0)
∑

n∈A′N

p̂n0 (9)

where p̂n0 =
p̂n

10
(p̂n

10+p̂
n
01)

is an estimated vacancy probability of nth

band in AN and P(ξAN = 0) is the probability of successful
reconstruction for a given AN and is given by

P(ξAN = 0) =


1 if |AN | ≤ K∑⌊
K
2

⌋
i=1 P(| |sAN | |0 = i) if K < |AN | < N

(10)

With |AN | = K , LDM has P(ξAN = 0) = 1 but it does not
guarantee optimum throughput. By balancing the trade-off
between the probability of successful reconstruction and |AN |,
the optimised LDM (OLDM) algorithm dynamically tunes
|AN | to the maximum possible value by exploiting the learned
sparsity of the wideband spectrum.

Similar to LDM, OLDM algorithm works in two phases:
1) Exploration and 2) Exploitation. Exploration phase is
identical to that of LDM algorithm where |AN | = K . In the
exploitation phase, if the frequency band statistics are esti-
mated precisely, then the optimum value of |AN | is calculated
using Eq. 9. However, since the frequency band statistics are
unknown and estimated over the time, we use Theorem 1 to
determine the minimum number of time slots, W required
by the exploration phase to guarantee µ−correct estimation
(i.e. | p̂n0 − pn0 | < µ/2 ∀ n ∈ {1, 2, .., N}) of frequency band
statistics with a probability at least 1 − δ. When the number
of exploration time slots exceeds W , then |AN | is calculated
using Eq. 9. Thereafter, the OLDM selects frequency bands
by maximizing the expected immediate throughput as shown
in line 16 of Algorithm 1.
Theorem 1: If the minimum gap between pm0 and pn0 is
µ, ∀m, n ∈ {1, .., N} and m , n, then the exploration time
slots, W should be at least 4

µ2

⌈
N
K

⌉
ln

(
2N
δ

)
to achieve µ−correct

estimation with the probability of 1 − δ.
Proof: For an event, J denoting that each band has been ob-
served minimum Q times, we can upper bound the probability
of no µ−correct estimation is achieved given J as

P (No µ − correct estimation|J) < δ (11)
Mathematically, it can be represented as

P
(
∃ n ∈ {1 · · · N} s.t . | p̂n0 − pn0 | >

µ

2
| J

)
≤

N∑
n=1
P

(
| p̂n0 − pn0 | >

µ

2
| J

)
(By Union Bound)

=

N∑
n=1

∞∑
q=Q

P
(
| p̂n0 − pn0 | >

µ

2

)
P (q observations|q ≥ Q) (12)

Then by applying Hoeffding’s inequality and further simplifi-
cations,

P
(
∃ n ∈ {1 · · · N} s.t . | p̂n0 − pn0 | >

µ

2
| J

)
≤

N∑
n=1

2 exp
(
−Qµ2

2

) ∞∑
q=Q

P (q observations|q ≥ Q) (13)

≤ 2N exp
(
−Qµ2

2

)
(14)

From Eq. 11, the above equation can be written as

2N exp
(
−Qµ2

2

)
< δ =⇒ Q >

2
µ2 ln

(
2N
δ

)
(15)

Since P(No µ−correct estimation|J) < δ implies P(µ−correct
estimation|J) ≥ 1 − δ, therefore Q should be greater than
2
µ2 ln

(
2N
δ

)
for µ−correct estimation. As in every 2

⌈
N
K

⌉
time

slots, only one observation of each frequency band is obtained.
Thus the number of time slots required to obtain Q observa-
tions of all bands (i.e. µ−correct estimation) is given by

W ≥ 4
µ2

⌈
N
K

⌉
ln

(
2N
δ

)
(16)
�
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IV. PERFORMANCE ANALYSIS

In this section, we evaluate the performance of the proposed
WSS approach on the synthetic data generated in MATLAB as
well as on the NI USRP hardware testbed. Performance of the
proposed algorithm is compared with an ideal myopic policy
(IMP) which has prior knowledge of spectrum statistics as well
as optimum value of |AN | [3]. The performance metrics used
for the comparison are total average throughput and regret
where regret is the difference between the average throughput
of IMP and that of the proposed algorithms. We consider the
signal bandwidth of 2 GHz and N = 8 bands with two cases
depicting different spectrum statistics. The optimum value of
|AN | is 7 and 5 for Case 1 and 2, respectively. The respective
stationary probabilities are
Case 1: p0 = [0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95]
Case 2: p0 = [0.45 0.50 0.55 0.60 0.65 0.70 0.80 0.90]

1) Simulation Results: The average throughput and regret
comparison of three algorithms, IMP, LDM and OLDM for
Case 1 and K = 4 are shown in Fig. 3(a). It can be observed
that the OLDM algorithm offers better performance than LDM
algorithm due to the estimation of optimum |AN |. Further-
more, the average regret of OLDM saturates after 3,000 time
slots which implies that OLDM achieves a µ-correct estima-
tion of p0 and hence, its instantaneous throughput converges
to that of IMP which has prior knowledge of these spectrum
statistics. The average regret observed at a signal to noise ratio
(SNR) of 20 dB for two different spectrum statistics is shown
in Fig. 3(b). Since the optimum value of |AN | is 7, and 5
for Case 1, and Case 2, respectively, the average throughput
achieved by IMP is higher for Case 1 and hence, the average
regret during the exploration time is higher for Case 1.

The regret comparison of OLDM and LDM algorithms for
different values of K and N is shown in Fig. 3(c). It can be ob-
served that due to the requirement of lesser exploration time
for larger K , the regret decreases with an increase in K . Fur-
thermore, the regret increases with N due to the requirement of
higher exploration time for the larger value of N . Same results
can be verified from Theorem 1. The average throughput for
a wide range of SNRs with N = 8, K = 4, T = 10, 000
and spectrum statistics of Case 1 is shown in Fig. 3(d). As
expected, due to the improved performance of the RS block,
the average throughput increases with an increase in SNR and
OLDM offers consistently better performance than LDM.

2) Experimental Results: In the proposed testbed, USRP-
2922 with VERT900 antennas are used for the wireless trans-
mission and reception of the multiband signal. The baseband
signal processing is done in the LabVIEW environment. Pa-
rameters used for the transmitter and receiver model are IQ
sampling rate = 500 ksps, carrier frequency = 935 MHz and
RF receive/transmit gain of 6 dB. Fig. 4 compares the average
throughput and regret for Case 1 and Case 2. Similar to the
simulation results, due to the higher optimum value of |AN |
for Case 1, the total average throughput for Case 1 is higher
than that of Case 2. It can also be observed that regret of the
proposed approach is constant after 3, 000 time slots which
implies that OLDM achieves a µ-correct estimation of p0 and
hence, optimum |AN | in real radio environment as well.

(a) (b)

(c) (d)
Fig. 3. Simulation results for (a) Average throughput and regret of LDM and
OLDM w.r.t IMP (b) Average throughput for three different sets of spectrum
statistics (c) Average regret for different values of K and N (d) Comparison of
average throughput for LDM, OLDM and IMP for different values of SNRs
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Fig. 4. Experimental results for (a) Average throughput for Case 1 and Case
2 (b) Average regret for Case 1 and Case 2

V. CONCLUSIONS

In this brief, we proposed a non-contiguous WSS approach
using sub-Nyquist sampling and novel online learning al-
gorithm to characterize and select frequency bands based
on their spectrum statistics. Theoretical guarantees, extensive
simulation and experimental results in the real radio environ-
ment validate the superiority of the proposed approach. Future
works include an extension of the proposed approach for WSS
in the spatial domain.
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