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Energy Efficiency Optimization: A New Trade-off
Between Fairness and Total System Performance

Christos N. Efrem, and Athanasios D. Panagopoulos, Senior Member, IEEE

Abstract—The total energy efficiency (TEE), defined as the ra-
tio between the total data rate and the total power consumption,
is considered the most meaningful performance metric in terms
of energy efficiency (EE). Nevertheless, it does not depend directly
on the EE of each link and its maximization leads to unfairness
between the links. On the other hand, the maximization of the
minimum EE (MEE), i.e., the minimum of the EEs of all links,
guarantees the fairest power allocation, but it does not contain
any explicit information about the total system performance. The
main trend in current research is to maximize TEE and MEE
separately. Unlike previous contributions, this letter presents a
general multi-objective approach for EE optimization that takes
into account both TEE and MEE at the same time, and thus
achieves various trade-off points in the MEE-TEE plane. Due
to the nonconvex form of the resulting problem, we propose
a low-complexity algorithm leveraging the theory of sequential
convex optimization (SCO). Last but not least, we provide a novel
theoretical result for the complexity of SCO algorithms.

Index Terms—Energy efficiency, multi-objective optimization,
resource allocation, sequential convex optimization complexity.

I. INTRODUCTION

ENERGY efficiency expresses the amount of information
that can be reliably transmitted per Joule of consumed

energy (measured in bit/Joule), and is recently characterized
as a key performance indicator for 5G networks. Zappone et al.
[1] propose a unified framework for the design of both central-
ized and distributed energy-efficient power control algorithms.
Furthermore, power allocation strategies for maximizing the
proportional, max-min, and harmonic fair EE in spectrum-
sharing networks are given in [2]. The optimization of various
EE performance metrics is also investigated in [3] and [4] for
MIMO (multiple-input multiple-output) and OFDMA (orthog-
onal frequency division multiple access) systems, respectively.
Finally, the recent study [5] presents a systematic approach to
weighted-sum EE maximization in wireless networks.

In summary, the existing approaches maximize the
total/global, sum, product and minimum EE individually. The
TEE, albeit the most important EE metric, does not depend
directly on the links’ EEs and its maximization results in low
fairness. On the other hand, the last three EE metrics explicitly
depend on the links’ EEs, but none of them contains specific
information about the total system performance (i.e., TEE).
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Moreover, the fairest resource allocation is achieved by max-
imizing the MEE. Consequently, in this letter, we introduce
a new multi-objective approach that takes into consideration
the two extremes (TEE and MEE) at the same time, and thus
providing a set of MEE-TEE operating points which are not
achievable with existing approaches.

The remainder of this letter is organized as follows. Section
II introduces the system model and formulates the general
EE optimization problem. Subsequently, an EE optimization
algorithm is developed and analyzed in Section III. Finally,
numerical results are provided in Section IV, while concluding
remarks are given in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a wireless network with N transmitters/users,
M receivers and K mutually orthogonal resource blocks of
bandwidth BRB . In addition, we assume that each transmitter
is associated to exactly one receiver (its intended receiver), and
therefore it holds that N > M 1. The Signal-to-Interference-
plus-Noise-Ratio (SINR) experienced by user i (1 6 i 6 N )
at its intended receiver on resource block k (1 6 k 6 K) is
given by the following formula2:

γ
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where p(k)
j is the transmit power of user j, N (k)

i is the noise
power at the ith user’s intended receiver, and ω

(k)
j,i is the

channel gain between jth transmitter and ith user’s intended
receiver, all on resource block k. For convenience, we denote
the vector of transmit powers by p =

[
pT1 ,p

T
2 , . . . ,p

T
N

]T
,

where pi =
[
p

(1)
i , p

(2)
i , . . . , p

(K)
i

]T
with 1 6 i 6 N .

The ith user’s and total achievable data rate (in bit/s) are
given respectively by: Ri(p) = BRB

∑K
k=1 log2

(
1 + γ

(k)
i

)
and Rtot(p) =

∑N
i=1Ri(p). Next, assuming that the transmit

power amplifiers operate in the linear region and the hardware
dissipated power is fixed, the ith user’s and total power con-
sumption can be modeled respectively as follows: Pc,i(pi) =

µi
∑K
k=1 p

(k)
i + Pst,i and Pc,tot(p) =

∑N
i=1 Pc,i(pi), where

µi = 1/ξi, with ξi ∈ (0, 1] the efficiency of the power
amplifier of transmitter i, and Pst,i is the static dissipated
power in all other circuit blocks of the ith transmitter and

1Without loss of generality, we make this assumption to reduce the amount
of notation needed to express the SINR in (1). Similar formula can be obtained
when each transmitter is associated to more than one receiver.

2The proposed methodology can be straightforwardly modified to include
a self-interference term in the denominator of (1), as in [1] and [5].
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its intended receiver (e.g., cooling, filtering, signal up and
down conversion, digital-to-analog and analog-to-digital con-
version). Furthermore, the ith user’s and total EE (in bit/Joule)
are defined respectively as the following ratios: EEi(p) =
Ri(p)/Pc,i(pi) and EEtot(p) = Rtot(p)/Pc,tot(p).

Now, we introduce the following nonconvex maximization
problem, based on the multi-objective optimization theory:

max
p∈Sp

G(p) = F

(
EEtot(p), min

16i6N
EEi(p)

)
(2)

with feasible set Sp = {p ∈ RNK+ :
∑K
k=1 p

(k)
i 6 Pmax

i ,
and Ri(p) > Rthi for 1 6 i 6 N}, where Pmax

i and Rthi
are the ith user’s maximum transmit power and minimum
required data rate, respectively. Moreover, we assume that: 1)
the objective F (x, y) is an increasing function of x and y, 2)
F (2u, 2v) > 0, ∀(u, v) ∈ R2, and 3) f(u, v) = log2F (2u, 2v)
is a differentiable concave function.

In the sequel, we transform the original nonconvex problem
(2) into an equivalent problem in a more tractable form.
Due to the fact that F (x, y) is an increasing function and
EEtot(p), min

16i6N
EEi(p) > 0, ∀p ∈ RNK+ , problem (2) can

be equivalently written as follows:

max
(p,ηthtot,η

th
min)∈T

F
(
ηthtot, η

th
min

)
(3)

with feasible set T = {(p, ηthtot, ηthmin) ∈ RNK+2
+ : p ∈ Sp,

EEtot(p) > ηthtot, and EEi(p) > ηthmin for 1 6 i 6 N},
where ηthtot and ηthmin are auxiliary variables. Notice that the
set of constraints EEi(p) > ηthmin (1 6 i 6 N ) is equivalent
to min

16i6N
EEi(p) > ηthmin, and the maximum objective value is

obtained when EEtot(p) = ηthtot and min
16i6N

EEi(p) = ηthmin.

Subsequently, by applying the variable transformation
p = 2q (p(k)

i = 2q
(k)
i , 1 6 i 6 N and 1 6 k 6 K), ηthtot = 2u,

ηthmin = 2v , and after a few mathematical operations, we get
the following nonconvex problem (note that the maximization
of F is equivalent to the maximization of log2F ):

max
(q,u,v)∈Z

f(u, v) = log2F (2u, 2v) (4)

with feasible set Z = {(q, u, v) ∈ RNK+2 :
∑K
k=1 2q

(k)
i 6

Pmax
i , R′i(q) > Rthi , ψi(q, v) > 0 for 1 6

i 6 N, and g(q, u) > 0}, where R′i(q) = Ri(2
q),

R′tot(q) = Rtot(2
q), ψi(q, v) = R′i(q) − µi

∑K
k=1 2q

(k)
i +v −

Pst,i2
v , and g(q, u) = R′tot(q) −

∑N
i=1 µi

∑K
k=1 2q

(k)
i +u −(∑N

i=1 Pst,i

)
2u.

III. EE OPTIMIZATION ALGORITHM

In this section, we leverage the theory of SCO (see Ap-
pendix) so as to achieve a Karush-Kuhn-Tucker (KKT) solu-
tion for the equivalent problem (4).

A. Algorithm Design and Complexity

In order to satisfy the properties of Theorem 1 in the
Appendix, we use the following inequality with logarithms

Algorithm 1. Energy Efficiency Optimization
1: Choose a tolerance ε > 0, and an initial point p ∈ Sp

2: Set l = 0, u = log2 (EEtot(p)), v = log2

(
min

16i6N
EEi(p)

)
,

and f0 = f(u, v)
3: repeat
4: Compute the SINR vector γ according to (1), and then the

parameter vectors a, b according to (5) with γ′ = γ
5: Solve the convex optimization problem (6) with parameters a, b

in order to obtain a globally optimal solution (q∗, u∗, v∗)
6: Set l = l + 1, q = q∗, u = u∗, v = v∗, p = 2q and fl = f(u, v)
7: until |fl − fl−1|/|fl−1| < ε

[5] (log20 = −∞ and 0 · log20 = 0): A(γ) = log2(1 + γ) >
a · log2γ + b = B(γ, γ′), ∀γ, γ′ > 0, where a, b are given by:

a = γ′/(1 + γ′), b = log2(1 + γ′)− a · log2γ
′ (5)

Observe that a > 0, A(γ)|γ=γ′ = B(γ, γ′)|γ=γ′ ,

and dA(γ)
dγ

∣∣∣
γ=γ′

= ∂B(γ,γ′)
∂γ

∣∣∣
γ=γ′

. Consequently,

we can construct the following lower bounds:
R′i(q) > BRB

∑K
k=1

[
b
(k)
i + a

(k)
i log2

(
ω

(k)
i,i

)
+ a

(k)
i q

(k)
i

]
−

BRB
∑K
k=1

[
a

(k)
i log2

(∑
j 6=i ω

(k)
j,i 2q

(k)
j +N (k)

i

)]
= R̃′i(q),

R′tot(q) >
∑N
i=1 R̃

′
i(q) = R̃′tot(q), ψi(q, v) >

R̃′i(q) − µi
∑K
k=1 2q

(k)
i +v − Pst,i2

v = ψ̃i(q, v),
and g(q, u) > R̃′tot(q) −

∑N
i=1 µi

∑K
k=1 2q

(k)
i +u −(∑N

i=1 Pst,i

)
2u = g̃(q, u), where a

(k)
i and b

(k)
i are

given by (5) with γ′ = γ′
(k)
i . Notice that R̃′i(q), R̃′tot(q),

ψ̃i(q, v), and g̃(q, u) are all concave functions (the log-sum-
exp, 2x+y , and 2x are convex functions [6]). Based on the
previous analysis, we can formulate the following convex
problem which depends on the parameters a(k)

i and b(k)
i :

max
(q,u,v)∈Ω

f(u, v) = log2F (2u, 2v) (6)

with feasible set Ω = {(q, u, v) ∈ RNK+2 :
∑K
k=1 2q

(k)
i 6

Pmax
i , R̃′i(q) > Rthi , ψ̃i(q, v) > 0 for 1 6 i 6

N, and g̃(q, u) > 0}.
Algorithm 1 provides an iterative SCO procedure using

the following notation: σ =
[
σT1 ,σ

T
2 , . . . ,σ

T
N

]T
for σ ∈

{p,q,γ,γ′,a, b}, where σi =
[
σ

(1)
i , σ

(2)
i , . . . , σ

(K)
i

]T
with

1 6 i 6 N . Based on Theorem 1 in the Appendix, Algorithm 1
monotonically increases the objective f(u, v) in each iteration
and, under suitable constraint qualifications, converges to a
point that satisfies the KKT conditions of problem (4).

Finally, the complexity of Algorithm 1 depends on the
number of iterations until convergence as well as on the
complexity of each iteration (which is mainly restricted by
the optimization of a convex problem). According to Theorem
2 in the Appendix, the overall complexity of Algorithm 1
is O ((1/ε)φ(N,K)), where φ(N,K) is the complexity of
problem (6). If this convex problem is solved by an interior-
point method, then φ(N,K) is polynomial in the number of
variables and constraints (which are NK + 2 and 3N + 1,
respectively), and thus polynomial in N and K. Ultimately,
Algorithm 1 has polynomial complexity in N , K, and (1/ε).
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Fig. 1. TEE and JFI versus D2D link distance for different priority weights.

B. Applications

Afterwards, we examine two special applications of
Algorithm 1, namely, the weighted product (WP) and
the weighted minimum (WM) of TEE and MEE, which
are respectively defined as: FWP (x, y) = xwy1−w

and FWM (x, y) = min (x/w, y/(1− w)), with
x = EEtot(p) and y = min

16i6N
EEi(p).

Note that w and 1 − w are the priority weights of
TEE and MEE, respectively (0 6 w 6 1). Specifically,
w = 1 corresponds to TEE maximization, while
w = 0 corresponds to MEE maximization. Moreover,
we have that: fWP (u, v) = w u + (1 − w) v, and
fWM (u, v) = min (u− log2w, v − log2(1− w)) since
min(2r, 2s) = 2min(r,s). Observe that fWP (u, v) and
fWM (u, v) are both concave functions (the minimum of
concave functions is also a concave function [6]).

Concerning the WM maximization, we cannot consider the
KKT conditions of problem (4) directly, since the objective
fWM (u, v) is not differentiable. However, Algorithm 1 con-
verges to a point that satisfies the KKT conditions of the
following problem (equivalent epigraph form of problem (4)):

max
(q,u,v,t)∈Γ

t with feasible set Γ = {(q, u, v, t) ∈ RNK+3 :

(q, u, v) ∈ Z, u − log2w > t, and v − log2(1 − w) > t}.
This statement can be easily proved if we write problem (6)
in its equivalent epigraph form: max

(q,u,v,t)∈Θ
t with feasible set

Θ = {(q, u, v, t) ∈ RNK+3 : (q, u, v) ∈ Ω, u − log2w > t,
and v − log2(1− w) > t}, and observe that the properties of
Theorem 1 in the Appendix are satisfied.

IV. NUMERICAL RESULTS

Consider the uplink of a cellular network with a single
micro-cell, where K = 5 resource blocks allocated to one
cellular UE (User Equipment) are reused by 4 D2D (Device-
to-Device) transmitter/receiver-pairs (N = 5). The cellular UE
is associated to the BS (Base Station) and each D2D transmit-
ter is associated to its intended D2D receiver (M = N ). In
addition, the D2D link distance, namely, the distance between
the transmitter and receiver of one D2D pair, is considered
the same for all D2D pairs and is denoted by dD2D. As
concerns the simulation parameters, the cellular UE as well

Fig. 2. Pareto operating points in the MEE-TEE plane for a specific simulation
scenario with dD2D = 10 m.

as the D2D pairs are uniformly distributed in [30,100] m
from the BS. Moreover, we assume a carrier frequency of 5
GHz, ε = 10−3, BRB = 500 KHz, N (k)

i = FN0BRB (with
receiver noise figure F = 3 dB, and power spectral density
of the thermal noise N0 = −174 dBm/Hz), µi = µ = 1,
Pst,i = Pst = 10 dBm, Pmax

i = Pmax = 23 dBm, and
Rthi = Rth = 0 for 1 6 i 6 N (in the sequel we study
the fairness, so it is preferable not to consider the data rate
constraints). Unless otherwise stated, the initial feasible point
is selected as p = (Pmax/K) 1NK×1, where 1NK×1 is the
NK × 1 vector of ones. Furthermore, all the results (except
for Fig. 2) are obtained by averaging over 103 independent
simulations, and the following analysis refers to Algorithm 1
specialized to maximize the WP of TEE and MEE.

For the evaluation of fairness, we make use of Jain’s fairness

index (JFI) as a function of users’ EEs: J =
(
∑N

i=1 EEi)
2

N
∑N

i=1 EE
2
i

with 0 6 J 6 1. In general, the closer JFI is to 1, the fairer
the power allocation is in terms of EE. In the special case
where w = 0 (MEE maximization) all the EEs are equal at
the maximum point [7], and therefore J = 1 and TEE=MEE.

First of all, Fig. 1 shows the TEE and JFI versus the
D2D link distance for different weights. For fixed dD2D, it
is clear that TEE increases while JFI decreases as the weight
w increases, since higher priority is given to TEE and lower
to MEE. According to the left figure, TEE decreases with the
D2D link distance for all w. In addition, as shown in the right
figure, JFI decreases with the D2D link distance for w 6= 0,
whereas it remains equal to 1 for w = 0 as already mentioned.

Afterwards, Fig. 2 illustrates the Pareto operating points in
the MEE-TEE plane achieved by: a) the proposed approach for
200 equally-spaced values of the weight w in [0, 1], b) product-
EE maximization [4] with PEE(p) =

∏N
i=1EEi(p), and c)

sum-EE maximization [5] with SEE(p) =
∑N
i=1EEi(p).

As can be seen, the proposed approach for 0 < w < 1
achieves several trade-off points which are not attainable by
maximizing TEE, SEE, PEE and MEE individually. More-
over, we can observe that all the Pareto points lie on or
above the line TEE=MEE, since it can be easily proved that
EEtot(p) ≥ min

16i6N
EEi(p), ∀p ∈ RNK+ .

Finally, we examine the convergence of Algorithm 1 for
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Fig. 3. Convergence of Algorithm 1 (WP maximization) for different priority
weights and initial point p = ζ (Pmax/K)1NK×1 with dD2D = 20 m.

different priority weights and initial points. According to Fig.
3, Algorithm 1 exhibits fast convergence and insensitivity
to initial points for all simulation scenarios, and requires a
quite small number of iterations to converge. In particular,
given the tolerance ε = 10−3 (ε = 10−4), it converges
within approximately 4, 5 and 9 (5, 6 and 10) iterations for
w = 0, 0.7 and 1, respectively.

V. CONCLUSION

In this letter, we have developed a unified methodology
for EE optimization that incorporates a new trade-off between
fairness and total system performance. Furthermore, an effi-
cient SCO algorithm has been proposed which can be applied
to practical scenarios of wireless networks. Finally, we have
presented a general complexity analysis for SCO algorithms.

APPENDIX
SEQUENTIAL CONVEX OPTIMIZATION

Let F be a nonconvex maximization problem with objective
f0(x), and nonempty, compact feasible set S = {x ∈ Rn :
fi(x) > 0, 1 6 i 6 I}. Also, let {Hj}j>1 be a sequence of
convex maximization problems with objective h0,j(x,x

∗
j−1),

compact feasible set Sj = {x ∈ Rn : hi,j(x,x
∗
j−1) > 0, 1 6

i 6 I}, and global maximum x∗j . Let x∗0 be any feasible point
of problem F , that is, x∗0 ∈ S. Moreover, assume that fi(x)
and hi,j(x,x

∗
j−1), 0 6 i 6 I and j > 1, are differentiable

functions. The next theorem follows directly from [8].

Theorem 1 (Convergence). Suppose that the functions
hi,j(x,x

∗
j−1), 0 6 i 6 I and j > 1, satisfy the following three

properties (note that ∇ = [∂/∂x1, ∂/∂x2, . . . , ∂/∂xn]T ):
(a) hi,j(x,x

∗
j−1) 6 fi(x), ∀x ∈ Sj

(b) hi,j(x,x
∗
j−1)

∣∣
x=x∗j−1

= fi(x
∗
j−1)

(c) ∇hi,j(x,x∗j−1)
∣∣
x=x∗j−1

= ∇fi(x∗j−1)

Then, the sequence
{
f0(x∗j )

}
j>0

is monotonically increasing
(f0(x∗j ) > f0(x∗j−1), j > 1) and converges to a finite
value L ( lim

j→∞
f0(x∗j ) = L < ∞). In addition, every ac-

cumulation/limit point x̄ of the sequence
{
x∗j
}
j>0

achieves
the objective value L (f0(x̄) = L) and, assuming suitable

constraint qualifications, satisfies the KKT conditions of the
initial problem F .

A rigorous mathematical analysis for the complexity of SCO
is very challenging since the convergence rate depends on the
particular structure of the problem, and no theoretical results
are available so far. Nevertheless, we provide the following
general theorem exploiting the monotonicity of SCO.

Theorem 2 (Complexity). Assume that: 1) the proper-
ties of Theorem 1 are satisfied, 2) SCO terminates when∣∣f0(x∗j )− f0(x∗j−1)

∣∣/∣∣f0(x∗j−1)
∣∣ < ε, where ε > 0 is a

predefined tolerance, and 3) f0(x∗0) > 0. Then, the number
of iterations until convergence is O (1/ε), and the overall
complexity of SCO is O ((1/ε)ϕ(n, I)), where ϕ(n, I) is the
complexity of the method used to solve each convex problem
with n variables and I constraints.

Proof: By virtue of Theorem 1, we have that
f0(x∗j ) > f0(x∗j−1) > f0(x∗0) > 0, j > 1. Next, let k > 1 be
the number of iterations until convergence, that is, the smallest
integer for which

(
f0(x∗k)− f0(x∗k−1)

)/
f0(x∗k−1) < ε.

Hence, before the termination of the algorithm, it
holds that ε 6

(
f0(x∗j )− f0(x∗j−1)

)/
f0(x∗j−1) 6(

f0(x∗j )− f0(x∗j−1)
)/
f0(x∗0), and thus εf0(x∗0) 6

f0(x∗j ) − f0(x∗j−1) for 1 6 j 6 k − 1 (if k = 1, there
is no such j). Now, by taking the sum from j = 1 to k − 1,
we get

∑k−1
j=1 εf0(x∗0) 6

∑k−1
j=1 f0(x∗j ) −

∑k−1
j=1 f0(x∗j−1)

⇒ (k − 1)εf0(x∗0) 6
∑k−1
j=1 f0(x∗j ) −

∑k−2
j=0 f0(x∗j ) =

f0(x∗k−1) − f0(x∗0). Due to Property (a) of Theorem
1, every feasible point of problem Hj is also feasible
for problem F (Sj ⊆ S, j > 1), and therefore
f0(x∗j ) 6 f0(x∗) for j > 0 (x∗ is a global maximum
of problem F). This implies that f0(x∗k−1) 6 f0(x∗),
and thus (k − 1)εf0(x∗0) 6 f0(x∗) − f0(x∗0) ⇒
k 6 1+(λ− 1)/ε = O (1/ε), where λ = f0(x∗)/f0(x∗0) > 1.
Since the number of iterations until convergence is O (1/ε),
and in each iteration a convex problem is solved with
complexity ϕ(n, I), the thesis follows immediately. �

In general, a global optimum of a convex problem can be
obtained in polynomial time, using standard convex optimiza-
tion techniques such as interior-point methods [6] (i.e., ϕ(n, I)
is a polynomial function of n and I). Note that the best upper-
complexity-bound for a generic convex problem, known so far,
is O(n4) and is yielded by interior-point methods [9]. Hence,
the overall complexity of SCO is polynomial in n, I , and (1/ε).
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