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Coverage Probability Analysis Under Clustered
Ambient Backscatter Nodes

Dong Han and Hlaing Minn

Abstract—In this paper, we consider a new large-scale commu-
nication scheme where randomly distributed AmBC nodes are
involved as secondary users to primary transmitter (PT) and pri-
mary receiver (PR) pairs. The secondary communication between
a backscatter transmitter (BT) and a backscatter receiver (BR)
is conducted by the BT’s reflecting its corresponding PT’s signal
with different antenna impedances, which introduces additional
double fading channels and potential inter-symbol-interference
to the primary communications. Thus, at a typical PR, the
backscatter signals are regarded as either decodable signals or
interference. Assuming the locations of PTs form a Poisson point
process and the locations of BTs form a Poisson cluster process,
we derive the SINR and SIR based coverage probabilities for
two network configuration scenarios. Numerical results on the
coverage probabilities indicate the possibility to involve a large
amount of AmBC nodes in existing wireless networks.

Index Terms—Ambient backscatter communications, stochas-
tic geometry, coverage probability, double fading, IoT.

I. INTRODUCTION

A. Background and Motivation

The backscatter mechanism enables backscatter transmitters
(BTs) to have a simple structure consisting of no active
radio frequency (RF) component, which is strongly favored
by the Internet-of-things (IoT) application scenarios where
many power-limited devices need to be connected. There are
three configurations of backscatter communication systems,
namely, monostatic backscatter (where the carrier emitter and
receiver are co-located), bistatic backscatter (where the carrier
emitter and receiver are geographically separated) and ambient
backscatter (where ambient RF signals are used as carriers)
[1]. For conventional monostatic backscatter techniques such
as radio frequency identification (RFID), the transmitter can
only passively transmit to the reader when being inquired
[2], which limits the application scenarios of this technology.
Recently, the developments in wireless power transfer (WPT)
[3] and signal detection techniques, such as successive interfer-
ence cancellation (SIC) [4]–[6], reignite the backscatter com-
munication. Consequently, two research thrusts of backscatter
communications are beginning to be eagerly investigated, i.e.,
the Wireless Powered Backscatter Communication (WPBC)
[7], [8] and the Ambient Backscatter Communication (AmBC)
[9], [10].

The WPBC system has a bistatic configuration, where one
or more carrier emitters transmit sinusoidal continuous waves
(CWs) for the BT to 1) operate with the harvested energy from
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Fig. 1: Ambient backscatter scheme

a portion of the CWs and 2) modulate its information bits with
the other portion of the CWs by backscattering the CWs with
different antenna impedances. Then, the backscatter receiver
(BR) receives the backscattered (modulated) signals from the
BT and detect the ‘0’ or ‘1’ information based on the average
symbol energy level.

AmBC was proposed to enable devices to communicate by
backscattering ambient RF signals [9]. As shown in Fig. 1,
the BT harvests energy from the ambient signal and quickly
transmits its own information bits to the corresponding BR by
changing the impedance of its antenna in the presence of the
ambient signal. For instance, the BT transmits ’0’ by setting
a high antenna impedance and transmits ’1’ by adjusting to
a low antenna impedance so that the BR can distinguish the
different backscattered signal energy levels from the BT.

Recent studies about AmBC mainly focus on the signal
detection perspective and most of them consider a single
BT-BR pair and a PT (which emits the ambient RF signal)
although multiple antennas are involved [10]–[12]. Concerning
the rapid growth of IoT devices, we believe investigating the
scalability of AmBC is also a crucial issue. Thus, this paper
considers to include the AmBC nodes in conventional large-
scale wireless communication networks where the locations of
primary transmitters (PTs) such as users and devices form a
Poisson point process (PPP) and the BTs cluster around each
PT and backscatter the corresponding PT’s signal for their own
data transmission.

B. Related Works and Our Contributions

Stochastic geometry based approaches have been realized
to be efficient and tractable for analyzing complex hetero-
geneous networks (HetNet) [13]. With some assumptions to
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the distribution (such as PPP) of the node locations, the
system performance of a HetNet can be expressed by quickly
computable integrals with a small number of parameters [14].
Recent studies have found that simply using a PPP based
geometric model is not rich enough to analyze the increasingly
complex HetNet, yet the Poisson cluster process (PCP) based
analysis is more capable [15]. Some quantitative properties
of PCP and PCP based device-to-device (D2D) network can
be found in [15]–[18]. Specifically, the coverage probabilities
of several HetNet configurations based on the 3rd generation
partnership project (3GPP) model were studied in [15]. The
nearest neighbor and contact distance distributions for Matérn
and Thomas cluster processes were investigated in [16] and
[17], respectively. The authors in [18] derived the approxi-
mate coverage probability of a PCP-based D2D network with
Nakagami-m fading channel.

Considering multiple randomly distributed carrier emitters
(power beacons) and clustered passive devices, the authors in
[8] proposed a large-scale WPBC network and derived the
network coverage probability and capacity. The achievable
rate region for a single-tag backscatter multiplicative multiple-
access channel, where the receiver detects both the transmitter
and the tag’s signals, was derived in [19]. A hybrid trans-
mission scheme that integrates AmBC and wireless powered
communications was proposed in [20] to trade off the hardware
implementation complexity and the data transmission perfor-
mance.

However, to the best of our knowledge, none of the existing
studies have considered to apply a PCP model to an AmBC
system, of which the analysis is different from those proposed
in the references. Specifically, in an existing large-scale wire-
less network, newly deployed AmBC nodes will change the
effective channel response between a primary transmitter (PT)
and a primary receiver (PR). In this scenario, the backscat-
tered signals can be regarded as either decodable signals or
interference at a typical PR, which will affect the coverage
probability of a typical PT. Therefore, we derive an analysis of
the signal-to-interference-plus-noise ratio (SINR) and signal-
to-interference ratio (SIR) based coverage probability at a
typical PR. The contributions of this paper are summarized
below.
• We construct a new large-scale communication scenario

where randomly distributed ambient backscatter nodes are
involved as secondary users to primary transmitter (PT)
and primary receiver (PR) pairs. The backscatter signals
are regarded as either decodable signals or interference.
We denote β as the fraction of decodable backscattered
signal power and propose an approach to estimate β.

• Considering the double-fading effect, we derive the SINR
and SIR based coverage probabilities for two network
configuration scenarios (i.e., all PTs are surrounded by
active BTs in scenario-1 and only a typical PT is sur-
rounded by active BTs in scenario-2) with two ranges of
β values.

• Extensive numerical results are provided to evaluate the
coverage probabilities in different scenarios with various
key system parameters. Comparing with the benchmark
scenario where no BT exists, the numerical results in-
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BT-to-BR channel
BT-to-PR channel

PT Typical 
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ρ
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BR gxY0,rx

R gY0

r0

Fig. 2: Topology of the considered system (scenario-1)

dicate the possibility and advantages to involve a large
amount of AmBC nodes in existing wireless networks.

This paper is organized as follows. The system model and
signal representations are described in Section II. Then, we
derive the coverage probabilities in Section III. Numerical
simulation results and conclusions are provided in Section IV
and Section V, respectively.

Notations: B(c, r) represents a disk centered at c with
radius r and bold number 0 refers to the origin. EX(·) denotes
the expectation operator over X .

II. SYSTEM MODEL

A. Spatial Distribution Models

The system we consider consists of two tiers (layers), where
the first tier includes all the PTs and PRs, and the second
tier includes all the BTs and BRs. Under such system, we
study two BT deployment scenarios. For scenario-1, each PT
is surrounded by a cluster of BTs, shown in Fig. 2. For
scenario-2, only the typical PT is surrounded by a cluster
of BTs. Since the SINR and SIR based coverage probability
derivations of both scenarios are similar, we mainly focus
on the SINR-based derivation of scenario-1 in the following.
Without loss of generality, we set a typical PR at the origin
and its corresponding PT (i.e., the closest PT to the typical PR)
at coordinate Y0 = (r0, 0)1. The locations of other PTs which
cause interference to the typical PR form a PPP ΦP = {Yj},
where Yj ∈ R2, j = 1, 2, . . . ,M , represents the coordinate
of the jth PT, with a constant density λP in the ring-shape
region B(0, R) − B(0, r0). The locations of the BTs2 form
a Matérn cluster process [16] represented by

⋂M
j=1 ΦB(Yj)

in scenario-1 (where ΦB(Yj) = {XYj
}, with XYj

∈ R2

representing the coordinate of a BT in the disk B(Yj , ρ)), and
a PPP represented by ΦB(Y0) in scenario-2. For a compact
expression, the distance between a PT at Y and the typical
PR at the origin is denoted by rY. Similarly, we use rXY,tx

(rXY,rx) to represent the distance between the PT at Y (the
typical PR at the origin) and the offspring BT at XY.

1For a homogeneous PPP with density λ, the distance between an arbitrary
(typical) point and its closest point is Rayleigh distributed with the scale pa-
rameter 1/

√
2πλ [14]. Thus, coverage probabilities based on a fixed distance

r0 can be extended to a general coverage probability by de-conditioning them
with the distribution of r0.

2The distribution of BRs is not considered since it does not affect the
coverage probability.
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In addition, we assume that the density of PTs is much
smaller than the BTs’ density, i.e., λP � λB , such that the
distances between BTs and their non-parent PTs are relatively
large in average sense, resulting in much severer path losses
than those between BTs and their parent PTs. Thus, we further
assume that the information signals sent from the parent PT is
the only RF power source of its offspring BTs and leave the
analysis of multiple power sources for future study.

B. Signal Communication Model

We denote the transmit symbol of the PT located at Y at
time t by

√
PtxsY(t), where Ptx is the constant transmit power

and sY (t) ∼ CN (0, 1) is the normalized complex Gaussian
distributed symbol. The backscatter symbol of the BT located
at XY at time t is denoted by bXY

(t). Since a BT only reflects
the ambient signal using two impedance levels, we assume that
the BTs’ symbols are independent and Bernoulli-distributed
with equal probability, i.e., bXY

(t) ∼ Bernoulli
(

1
2

)
, ∀XY.

As shown in Fig. 1, the reflection coefficient is η ∈ [0, 1],
which means ηPrx of the received power Prx is backscattered
by the BT and (1 − η)Prx of the power is harvested by the
BT for modulation and control purpose. Besides, we simply
assume backlogged transmissions for both tiers so that the BTs
and BRs can always be active based on the harvested energy.
The AmBC throughput maximization problem regarding to
mode switching policy has been investigated in [21].

Furthermore, we assume independent and identically dis-
tributed (i.i.d.) Rayleigh fading with average power gain of
1/µ and path loss with exponent α over all channels. In
particular, suppose the Rayleigh fading channel power gains
between the PT at Y and the typical PR at the origin, the PT
at Y and the BT at XY, and the BT at XY and the typical PR
are gY, gXY,tx and gXY,rx, respectively, each with exponential
distribution with parameter µ, denoted by exp(µ). Then, the
channel response can be written as hY =

√
gYe

jθY , hXY,tx =√
gXY,txe

jθXY,tx and hXY,rx =
√
gXY,rxe

jθXY,rx , respectively,
each with zero-mean-complex-Gaussian distribution, where
θY, θXY,tx and θXY,rx represent the zero-mean uniformly
distributed channel phases. To avoid the singularity at the
origin, the path loss is expressed as L(r) = (1 + rα)−1 for a
distance r. Thus, we denote the received signal at the typical
PR as the summation of several signals:

y(t) = sPT(t) + sBT(t) + IPT(tx) + IBT(t) + n(t) (1)

where n(t) ∼ CN (0, σ2) is the complex Gaussian noise at
PR, sPT(t), sBT(t), IPT(t), and IBT(t) represent the signals
from the typical PT at Y0, from the offspring BTs of the typical
PT, from the atypical PTs, and from the offspring BTs of the
atypical PTs, respectively. Particularly, we have

sPT(t) = hY0

√
L(r0)PtxsY0

(t− τY0
), (2)

sBT(t) =
∑

XY0
∈ΦB(Y0)

zXY0

√
ηPtxsY0(t− τXY0

)bXY0
(3)

IPT(t) =
∑
Y ∈ΦP

hY

√
L(rY)PtxsY (t− τY), (4)

IBT(t) =
∑
Y ∈ΦP

∑
XY∈ΦB(Y )

zXY

√
ηPtxsY(t− τXY

)bXY (5)

where zXY
, hXY,txhXY,rx

√
L(rXY,tx)L(rXY,rx), τY and

τXY are the time delays of the PT to PR path (direct path)
and the PT-BT-PR path (backscatter path), respectively, and
the subscripts Y and XY indicate the locations of the PT
and BT. We note that since the backscatter symbol bXY

(t)
has a much larger symbol duration than the primary symbol
sY(t) (i.e., bXY(t) is constant in many successive symbols of
sY(t)) [9], the time index of and the time delay encountered
by bXY

(t) are neglected.

III. ANALYSIS OF COVERAGE PROBABILITY

A. Signal and Interference Power

For a compact expression, we use vectors zY =
[. . . , zXY

, . . .]T and bY = [. . . , bXY
, . . .]T to represent the

zXY
’s and the bXY

’s in the cluster centered at Y , respectively.
Next, we can write the power of IBT(t) conditioned on
the interference channels, path losses and the backscattered
symbols as

ĨBT = EsY
[
|IBT(t)|2

]
= ηPtx

∑
Y ∈ΦP

∣∣zT
YbY

∣∣2 . (6)

However, the cross multiplication terms in (6) make it difficult
for further analysis, motivating us to decondition ĨBT on the
channel phases3 and backscattered symbols as

IBT =
∑

Y ∈ΦP

E
bY,θ

[
ĨBT

]
= ηPtx

∑
Y ∈ΦP

E
bY

[
bT

YE
θ

[
zYz

H
Y

]
bY

]
=
ηPtx

2

∑
Y ∈ΦP

∑
XY∈ΦB

gXY,txgXY,rxL(rXY,tx)L(rXY,rx)

(7)

where the last equation follows from the facts that Eθ
[
zY z

H
Y

]
is a diagonal matrix and E[b2XY (n)] = 1/2, ∀XY. Similarly,
the powers of sPT(t), sBT(t), and IPT(t) can be represented
as

SPT = gY0
L(r0)Ptx, (8)

SBT =
ηPtx

2

∑
XY0
∈ΦB(Y0)

gXY0 ,tx
gXY0 ,rx

L(rXY0 ,tx
)L(rXY0 ,rx

),

(9)

IPT =
∑
Y ∈ΦP

gY L(rY )Ptx. (10)

We note that the mutual correlations among the signals
sPT(t), sBT(t), IPT(t), and IBT(t) can be neglected if we
decondition the correlations on the channel phases and use the
fact that sY (t)’s are i.i.d. zero mean Gaussian.

The typical PR aims to receive the typical PT’s signal
sY0

(t), which is contained in sPT(t) and sBT(t). However,
the time delays of the PT-BT-PR paths are larger than the
time delay of the direct PT-PR path and are random due to

3assuming that the channel phases change faster than amplitudes.
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the PCP formed by the BT locations, which may introduce
different levels of inter symbol interference (ISI) at the typical
PR. Therefore, sBT(t) has a two-side effect, i.e., causing
interference or enhancing the detection at the PR. Particularly,
[22] concludes that AmBC causes little interference to legacy
systems in some deployment scenarios, and [10] indicates that
detection performance can be enhanced with the cooperation
of AmBC nodes. In this paper, we parameterize the two-
side effect with β ∈ [0, 1], which denotes the fraction of the
backscattered signal power that is not regarded as interference,
and introduce an approach to estimate β in Appendix A. Next,
given β ∈ [0, 1], we can represent the SINR at the typical PR
as

SINR =
SPT + βSBT

(1− β)SBT + IPT + IBT + σ2
(11)

and

SINRu =
SPT + βSBT

(1− β)SBT + IPT + σ2
, (12)

for scenario-1 and scenario-2, respectively. Since SINR ≤
SINRu, the coverage probability of scenario-2 (where BTs are
only located around the typical PT) upper bounds the coverage
probability of scenario-1 (where BTs are located around all
PTs). We note that both scenarios can be interference-limited
if the transmit signal-to-receive-noise ratio (TSRNR) Ptx/σ

2

is large enough. Thus, we will also analyze the SIR based
coverage probabilities for both scenarios and compare them
with the SINR based results.

B. Coverage Probability Expression

Denoting the SINR or SIR threshold at the typical PR as Γ,
the coverage probability is defined as the probability that the
SINR or SIR is not less than the threshold:

P (SINR ≥ Γ) =P(SPT ≥ [Γ(1− β)− β]SBT

+ ΓIPT + ΓIBT + Γσ2),
(13)

P (SINRu ≥ Γ) = P(SPT ≥ [Γ(1− β)− β]SBT

+ ΓIPT + Γσ2),
(14)

P (SIR ≥ Γ) = P(SPT ≥ [Γ(1− β)− β]SBT + ΓIPT

+ ΓIBT),
(15)

P (SIRu ≥ Γ) =P(SPT ≥ [Γ(1− β)− β]SBT + ΓIPT).
(16)

To calculate the coverage probabilities, we will need the
following lemmas:

Lemma 1. To analyze the aggregated signal power at the
typical PR, the clustered BTs can be approximately regarded
as a virtual transmitter (VT) located at the center of the cluster.

The VT’s transmit power is the sum of backscattered signal
powers P̃t of all BTs in the cluster, which is derived as

P̃t = E

 ∑
XY ∈ΦB(Y )

gXY,txL(rXY,tx)Ptx


(a)
= λB

∫
B(Y,ρ)

E [gXY,tx]L(rXY,tx)dXY Ptx

(b)
=

2π

µ
λB

(∫ ρ

0

r

rα + 1
dr

)
Ptx = γPtx

(17)

where (a) is from the Campbell Theorem, (b) is by chang-
ing Cartesian coordinates to polar coordinates, and the last
equality is achieved by defining γ , 2π

µ λB
∫ ρ

0
r

rα+1dr.

Lemma 2. The Laplace transform of the probability density
function (PDF) of double fading random variable g = g1g2,
where g1, g2 ∼ exp(µ) is

Lg(s) = E [exp(−sg)] =

∫ ∞
0

e−sg
∫ ∞

0

µ2

t
e−µ(t+ g

t )dtdg

=

∫ ∞
0

µ2e−µt

st+ µ
dt

(18)

where we use the fact that the PDF of g is

fg(g) =

∫ ∞
0

µ2

t
e−µ(t+ g

t )dt (19)

which can be derived according to the PDF of the product of
two random variables.

Lemma 3. Denoting G = ω1g1 + ω2g2 as the nonnegative
weighted sum of two independent exponential random vari-
ables, gi ∼ exp(µi), i = 1, 2, where ωi ≥ 0, the cumulative
distribution function (CDF) of G is

FG(g) = 1− µ̃1

µ̃1 − µ̃2
e−µ̃2g +

µ̃2

µ̃1 − µ̃2
e−µ̃1g, g ≥ 0 (20)

where µ̃i = µi/ωi, i = 1, 2.

Proof. Please see Appendix B.

Now, we are ready to derive the coverage probability. For
the two cases according to whether Γ(1− β)− β is negative
or not, we have the following theorems.

Theorem 1. When 0 ≤ β ≤ Γ
Γ+1 , i.e., Γ(1 − β) − β ≥ 0,

the SINR and SIR based coverage probabilities for the two
scenarios are

P(SINR ≥ Γ) ≈ ξ1ξ2ζ1, P(SINRu ≥ Γ) = ξ1ξ2,uζ1 (21)
P(SIR ≥ Γ) ≈ ξ1ξ2, P(SIRu ≥ Γ) = ξ1ξ2,u (22)
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where

ξ1 =

exp

{
−λB

∫
XY0
∈B(Y0,ρ)

(
1−

∫ ∞
0

µ2e−µt

aXY0
t+ µ

dt

)
dXY0

}
,

ξ2 =

exp

{
−2πλP

∫ R

r0

(
1− 1

1 + Γ
rα0 +1
rα+1

1

1 + γΓ
rα0 +1
rα+1

)
rdr

}
,

ξ2,u = exp

{
−2πλP

∫ R

r0

(
1− 1

1 + Γ
rα0 +1
rα+1

)
rdr

}
,

ζ1 = exp

(
− µσ2Γ

L(r0)Ptx

)
,

aXY0
= µη[Γ(1−β)−β]

2L(r0) L(rXY0
,tx)L(rXY0

,r), and γ is defined
in Lemma 1.

Proof. Please see Appendix C.

Theorem 1 indicates that the coverage probabilities are the
multiplications of two or three specific terms when β is not
greater than the threshold Γ

Γ+1 . In particular, ξ1 corresponds to
the effect of BTs around the typical PT, ξ2 corresponds to the
interference effect of atypical PTs and their surrounding BTs
for scenario-1, ξ2,u corresponds to the interference effect of
atypical PTs for scenario-2, and ζ1 corresponds to the noise
effect. Furthermore, the coverage probabilities in scenario-1
are upper bounded by the coverage probabilities in scenario-2
since ξ2 < ξ2,u.

Theorem 2. When Γ
Γ+1 < β ≤ 1, i.e., Γ(1 − β) − β < 0,

the SINR and SIR based coverage probabilities of the two
scenarios are

P(SINR ≥ Γ) ≈ γ̃

γ̃ − 1
ξ3ζ2 −

1

γ̃ − 1
ξ2ζ1, (23)

P(SINRu ≥ Γ) ≈ γ̃

γ̃ − 1
ξ3,uζ2 −

1

γ̃ − 1
ξ2,uζ1, (24)

P(SIR ≥ Γ) ≈ γ̃

γ̃ − 1
ξ3 −

1

γ̃ − 1
ξ2, (25)

P(SIRu ≥ Γ) ≈ γ̃

γ̃ − 1
ξ3,u −

1

γ̃ − 1
ξ2,u (26)

where

ξ3 =

exp

{
− 2πλP

∫ R

r0

1− 1

1 +
Γ(rα0 +1)
γ̃(rα+1)

1

1 +
γΓ(rα0 +1)
γ̃(rα+1)

 rdr

}
,

ξ3,u = exp

{
− 2πλP

∫ R

r0

1− 1

1 +
Γ(rα0 +1)
γ̃(rα+1)

 rdr

}
,

ζ2 = exp

(
− µσ2Γ

γ̃L(r0)Ptx

)
,

γ̃ = − [Γ(1− β)− β] γ > 0, and γ is defined in Lemma 1.

Proof. Please see Appendix D.

Different from the simple multiplication forms of Theo-
rem 1 where each term in the multiplication corresponds to a
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specific effect, the coverage probabilities for β greater than
the threshold Γ

Γ+1 are more complicated. Specifically, the
coverage probabilities in Theorem 2 are expressed by weighted
sums of the multiplications among ξ2, ξ2,u, ξ3, ξ3,u, ζ1, and ζ2
since we use a VT to approximate the BTs around the typical
PT. In this case, the VT’s effect is embodied by γ̃, ξ3, ξ3,u, and
ζ2. Furthermore, as Ptx/σ

2 increases toward infinity, ζ1 and
ζ2 approach 1, so that the SINR based coverage probabilities
will converge to the SIR based coverage probabilities for an
arbitrary β.

IV. NUMERICAL RESULTS

The simulation results of both scenario-1 and scenario-2 are
shown in Fig. 4-7 where we use Monte Carlo simulations with
50000 independent system realizations to verify the analytical
results. We set λP = 2 × 10−4, λB = 0.1, ρ = 10, R =
100, η = 0.5, α = 3.5 by default. Other system settings are
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illustrated in the captions of the figures, where the distance
metric unit is meter. Additionally, we also compare our results
with the classic scenario (as a benchmark) where no BT exists
(i.e., the interference received by the typical PR is only from
atypical PTs).

The effect of TSRNR on the coverage probabilities is shown
in Fig. 3, where the horizontal axis represents the TSRNR
after deducting the absolute value of path loss (which is
10 log10(L(r0)−1) = 41 dB). Clearly, the SIR based coverage
probabilities are not affected by the TSRNR. However, the
SINR based coverage probabilities gradually increase with the
growth of TSRNR, finally converge to the SIR curves. With
the listed system parameters, we observe that the TSRNR
should be no less than 23 dB to make the SIR based coverage
probabilities as accurate as the SINR based results. We set
r0 = 15 as a standard value for comparison and use TSRNR
= 51 dB, i.e., the TSRNR after deducting the absolute value
of path loss is 10 dB (except for Fig. 6 where r0 is a variable).

Fig. 4 shows the coverage probabilities for different values
of β. From 0 to 1, the value of β indicates the fraction
of backscattered signal power from the typical PT that can
enhance the SINR and SIR at the typical PR. With the
growth of β, the coverage probabilities of both scenario-1
and scenario-2 increase. In addition, when β is larger than
a certain value, the coverage probabilities of scenario-1 and
scenario-2 exceeds the coverage probability of the benchmark
scenario. These results correspond to the fact that the effect
of backscattered signals has two sides: interference inducing
and signal enhancing, i.e., the interference dominates when
β is less than the specific value, while the decodable signals
dominate when β is greater than that value.

Typically, the mean power gain 1/µ can be canceled in
deriving the SIR based coverage probabilities for most of the
network models (e.g., the benchmark scenario), if the chan-
nels are described as i.i.d. Rayleigh fading. However, in the
considered two AmBC network scenarios, the channel power
gains of the PT-BT path and the BT-PR path are multiplied due
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Fig. 6: Coverage probability versus typical PT to PR distance
r0. (Γ = 3dB, β = 0.8, µ = 1,TSRNR = 51dB)
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to the double fading effect, making the coverage probabilities
more sensitive to the channel fading gain. As shown in Fig. 5,
the SIR based coverage probability of the benchmark scenario
does not change with the fading power gain, but the SIR based
probabilities for scenario-1 and scenario-2 increase with the
growth of 1/µ. As the fading power gain grows, the SINR
based coverage probabilities of all three scenarios increase,
and tend to converge to the SIR based results since the noise
becomes less significant. Furthermore, we observe that the
increase of SINR and SIR based coverage probabilities are
ranked as: scenario-2 > scenario-1 > benchmark scenario, as
1/µ grows. This happens due to that 1) β = 0.8 is greater
than the threshold Γ

Γ+1 , thus the signal enhancing effect of
the backscattered signals of a typical PT dominates (as Fig. 4
shows), and 2) there is less interference to a typical PR in
scenario-2 than in scenario-1.

Fig. 6 shows that the coverage probabilities decrease with
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the increase of the typical PT to PR distance r0. Moreover, as
r0 increases, BTs’ signal enhancing effect becomes less sig-
nificant than their interference effect, leading to the coverage
probability of the benchmark scenario exceeds the coverage
probability of scenario-1. Besides, the SINR based curves have
steeper inclinations than the SIR based curves do for r0 < 26,
but gentler inclinations for r0 > 28. This is because as the
distance r0 increases, the signal power from the typical PT
and its surrounding BTs decreases exponentially, resulting in
the SINR being dominated by noise.

It is observed in Fig. 7 that the coverage probabilities
decrease as the SINR or SIR threshold Γ increases. Moreover,
with the growth of Γ, BTs’ signal enhancing effect becomes
less significant than their interference effect, leading to the
coverage probability of the benchmark scenario exceeds the
coverage probability of scenario-1. Besides, the SINR based
curves always have greater inclinations than the SIR based
curves do, due to the noise effect formulated by ζ1 and ζ2 in
Theorem 2.

Furthermore, as shown in Fig. 3 - Fig. 7, the coverage
probabilities of scenario-1 are always upper bounded by the
results of scenario-2 as expected. We also notice that the
simulation results almost perfectly match the analytical results,
which indicates the VT approximation performs well.

V. CONCLUSIONS

We investigated new large-scale wireless network schemes,
where AmBC nodes are involved in the conventional PPP-
based communication model. In the new network scheme,
the backscattered signals are regarded as either interference
or decodable signals and we parameterized this effect with
a fraction β. Depending on the value of β, SINR and SIR
based coverage probabilities for two scenarios, where the BTs
operate around either a single PT or all PTs, are derived in
integral forms with the key system parameters. To make this
work self-contained, we also provided an approach to estimate
β. In summary, the coverage probability of our considered
scheme lies in a wide range around the coverage probability
of the conventional model, depending on the system settings,
especially the value of β. Numerical results indicate that it is
possible for the conventional communication system to keep
satisfiable coverage probability while enabling backscatter
communications for secondary systems if many AmBC nodes
are involved in the large-scale wireless network.

APPENDIX A.
A METHOD TO ESTIMATE β

This part introduces an approach to compute β with the
available system parameters such as the distance between a
typical PT and PR, the distribution range of the BTs, the
symbol bandwidth of a PT, and the maximum tolerable delay
for a typical PR.

First, denote the aggregated power of signals from the
offsprings of a typical PT to be SBT = S(1)

BT + S(2)
BT, where

S(1)
BT = βSBT represents the backscattered signal power that

is not regarded as interference, while S(2)
BT = (1 − β)SBT

is the counterpart that is regarded as interference. Since

ρ 

r0-Vc Δτ/2 0

θ0

 1 2

 3  4

PT PR

Fig. 8: Integration area in computing β

S(i)
BT, i = 1, 2 is the aggregated power of signals from a

relatively large number of BTs, β can be written approximately
as the ratio between the two expected signal powers

β =
S(1)

BT

SBT
≈

E[S(1)
BT]

E[SBT]
. (27)

Next, to compute E[S(1)
BT], we assume a typical PT is located

at the origin, the offspring BTs are located in the circle
B(0, ρ), and the typical PR is located at (0, r0) as shown
in Fig. 8. Then, we denote ∆τ = k/∆B to be the maximum
tolerable symbol delay at a typical PR, where ∆B represents
the bandwidth of a symbol sent from the typical PT and k is
a scalar which indicates the ratio of the maximum tolerable
delay to the symbol duration. Consequently, the BTs that can
help to enhance the PR’s receiving SINR and SIR are located
in the intersection (shown as the shadow areas ∪4

i=1Ri in
Fig. 8) of a circular region B(0, ρ) and a ellipse region with
the foci at (0, 0) and (0, r0), and a semi-major axes length of
l = 1

2 (r0 + vc∆τ), where vc = 3 × 108m/s is the speed of
radio waves. Then, expressions of the circle and the ellipse
can be represented in polar coordinate4 as

r = ρ, (28)

and

r =
l(1− ε2)

1− ε× cos θ
(29)

respectively, where ε = r0
2l is the eccentricity of the ellipse.

Equating (28) and (29), we obtain the intersection points
(ρ, θ0) and (ρ,−θ0), where θ0 = cos−1

(
1
ε −

l(1−ε2)
ερ

)
. Thus,

we obtain (30) shown on top of next page, where D denotes the
ellipse region and PL(r, θ) , L(r)L((r2+r2

0−2rr0 cos θ)1/2)
denotes the integrated path loss of the PT-BT-PR path for a BT
at (r, θ). Specifically, (a) is from Campbell’s Theorem, (b) is
from changing the Cartesian coordinates to polar coordinates,
and (c) is from separating the integration in region R1 and R2

shown in Fig. 8. Similarly, we obtain

E[SBT] =
ηPtx

µ2

∫ π

0

∫ ρ

0

PL(r, θ)rdrdθ. (31)

4We have a slight abuse of symbol θ, which represents the channel phase
in the system model. Here, θ represents the angel in a polar coordinate.
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E[S(1)
BT] = E

ηPtx

2

∑
XY0
∈ΦB(Y0)∩D

gXY0
,txgXY0

,rxL(rXY0
,tx)L(rXY0

,rx)

 (a)
=
ηPtx

2
E[gXY0

,txgXY0
,rx]

∫
B(0,ρ)∩D

L(rXY0
,tx)L(rXY0

,rx)dXY0

(b)
=

ηPtx

µ2

∫
R1∪R2

L(r)L((r2 + r2
0 − 2rr0 cos θ)1/2)rdrdθ

(c)
=
ηPtx

µ2

∫ θ0

0

∫ ρ

0

PL(r, θ)rdrdθ +

∫ π

θ0

∫ l(1−ε2)
1−ε cos θ

0

PL(r, θ)rdrdθ


(30)
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Fig. 9: β versus ρ and r0 (α = 3.5, ∆B = 100MHz )

Therefore, (27), (30) and (31) yield

β ≈
∫ θ0

0

∫ ρ
0
PL(r, θ)rdrdθ +

∫ π
θ0

∫ l(1−ε2)
1−ε cos θ

0 PL(r, θ)rdrdθ∫ π
0

∫ ρ
0
PL(r, θ)rdrdθ

.

(32)

Numerical results for β versus ρ and r0 are shown in Fig. 9a
and Fig. 9b respectively, where the settings are listed in the
titles. These two figures show that fraction β decreases with
the growth of the radius ρ and the typical PT-PR distance
r0. The former happens because increasing ρ results in more
BTs locating closer to the typical PR that can cause severer
interference. When typical PT-PR distance r0 increases, both
S(1)

BT and S(2)
BT are reduced. However, S(2)

BT decreases more
than S(1)

BT since it is the aggregated power of signals from the
offspring BTs that are farther to the typical PR (comparing
with the other offspring BTs in the region Ri, i = 1, . . . , 4,
which contribute to S(1)

BT, see Fig. 8). Thus, a greater r0

corresponds to a smaller β. Furthermore, Fig. 9 shows that
β increases with the growth of k since a larger k indicates a
better delay tolerant capability at the typical PR such that only
a smaller amount of BTs that are close enough to the typical
PR can cause interference (i.e., the integration area ∪4

i=1Ri
decreases).

APPENDIX B. PROOF OF LEMMA 3

Let g̃i = ωigi, i = 1, 2. Then, we recognize g̃i is exponen-
tially distributed with mean 1/µ̃i = ωi/µi and have

FG(g) = P (g̃1 ≤ g − g̃2)

=

∫ g

0

∫ g−t2

0

µ̃1e
−µ̃1t1 µ̃2e

−µ̃2t2dt1dt2

= 1− µ̃1

µ̃1 − µ̃2
e−µ̃2g +

µ̃2

µ̃1 − µ̃2
e−µ̃1g

(33)

for g ≥ 0.

APPENDIX C. PROOF OF THEOREM 1

In the first scenario, substituting (7)-(10) in (13), we obtain
equality (a) in (34) shown on the next page. Then, (b) results
from using Lemma 1 to replace the clustered BTs around
atypical PTs with VTs, where g̃Y ∼ exp(µ) with Y ∈ ΦP
is the mean fading power gain of the channel between the
VT at Y (co-located with the PT) and the typical PR. (c)
is from the complementary cumulative distribution function
(CCDF) of exponential random variable gY0 . Substituting
aXY0

= µη[Γ(1−β)−β]
2L(r0) L(rXY0

,tx)L(rXY0
,rx) to (c), we obtain

(d). Next, (d) is written as the product of two expectations in
(e) due to the independence between XY0

and Y .
Furthermore, we derive (35) and (36) on the next page,

where gXY0
, gXY0

,txgXY0
,rx, and D = B(0, r0) − B(0, R)

is the distribution range of Y . (a) in (35) and (36) is from
the probability generating functional (PGFL) of PPP [23].
Then, we obtain (b) in (35) by Lemma 2. By changing
Cartesian coordinates to polar coordinates and calculating the
expectation, (b) and (c) in (36) are obtained in sequence.
Thus, we obtain P(SINR ≥ Γ) ≈ ξ1ξ2ζ1 by substituting
(35) and (36) to (34). Applying similar derivations for the
second scenario yields (37) shown on the next page. Setting
σ2

Ptx
= 0 (i.e., ζ1 = 1), we can obtain the SIR based coverage

probabilities.

APPENDIX D. PROOF OF THEOREM 2

When Γ(1 − β) − β < 0, the derivation of coverage
probability for the first scenario can be started from the
approximation (b) of (34). As we can notice, the equality (c)
in (34) will not hold if Γ(1−β)−β < 0 since the exponential
in (c) in (34) is not guaranteed to be non-positive. In this case,
we further approximate the sum power from the clustered BTs
around the typical PT as the power from a virtual transmitter
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P(SINR ≥ Γ)

(a)
= P

{
gY0
≥ 1

L(r0)

[
(Γ(1− β)− β)

η

2

∑
XY0
∈ΦB(Y0)

gXY0 ,tx
gXY0 ,rx

L(rXY0 ,tx
)L(rXY0 ,rx

) + Γ
∑
Y ∈ΦP

gYL(rY)

+ Γ
η

2

∑
Y ∈ΦP

∑
XY ∈ΦB(Y )

gXY,txgXY,rxL(rXY,tx)L(rXY,rx) +
σ2Γ

Ptx

]}
(b)
≈ P

{
gY0
≥ 1

L(r0)

[
(Γ(1− β)− β)

η

2

∑
XY0
∈ΦB(Y0)

gXY0 ,tx
gXY0 ,rx

L(rXY0 ,tx
)L(rXY0 ,rx

) + Γ
∑
Y ∈ΦP

(gY + γg̃Y)L(rY) +
σ2Γ

Ptx

]}

(c)
= E

{
exp

(
−µ
L(r0)

[
(Γ(1− β)− β)

η

2

∑
XY0
∈ΦB(Y0)

gXY0
,txgXY0

,rxL(rXY0
,tx)L(rXY0

,rx) + Γ
∑
Y ∈ΦP

(gY + γg̃Y)L(rY) +
σ2Γ

Ptx

])}

(d)
= E

{
exp

(
−

∑
XY0
∈ΦB(Y0)

aXY0
gXY0

,txgXY0
,rx −

µΓ

L(r0)

∑
Y ∈ΦP

(gY + γg̃Y)L(rY)

)}
exp

(
−µσ2Γ

L(r0)Ptx

)
(e)
= E

{
exp

(
−

∑
XY0
∈ΦB(Y0)

aXY0
gXY0 ,tx

gXY0 ,rx

)}
× E

{
exp

(
− µΓ

L(r0)

∑
Y ∈ΦP

(gY + γg̃Y)L(rY)

)}
ζ1

(34)

E

{
exp

(
−

∑
XY0
∈ΦB(Y0)

aXY0
gXY0

,txgXY0
,rx

)}
= E

ΦB(Y0)

{ ∏
XY0
∈ΦB(Y0)

E
gXY0

[
exp

(
−aXY0

gXY0

)]}

(a)
= exp

{
−λB

∫
B(Y0,ρ)

(
1− E

gXY0

[
e
−aXY0

gXY0

])
dXY0

}
(b)
= exp

{
−λB

∫
B(Y0,ρ)

(
1−

∫ ∞
0

µ2e−µt

aXY0
t+ µ

dt

)
dXY0

}
= ξ1

(35)

E

{
exp

(
− µΓ

L(r0)

∑
Y ∈ΦP

(gY + γg̃Y)L(rY)

)}
= E

{ ∏
Y ∈ΦP

exp

(
− µΓ

L(r0)
(gY + γg̃Y)L(rY)

)}
(a)
= exp

{
−λP

∫
D

(
1− E

gY,g̃Y

[
e

−µΓ
L(r0)

(gY+γg̃Y)L(rY)
])
dY

}
(b)
= exp

{
−λP

∫ 2π

0

∫ R

r0

(
1− E

[
e

−µΓL(r)
L(r0)

(gY+γg̃Y)
])
rdrdθ

}
(c)
= exp

{
−2πλP

∫ R

r0

(
1− 1

1 + Γ
rα0 +1
rα+1

1

1 + γΓ
rα0 +1
rα+1

)
rdr

}
= ξ2

(36)

P(SINRu ≥ Γ)

= P

{
gY0
≥ 1

L(r0)

[
(Γ(1− β)− β)

η

2

∑
XY0
∈ΦB(Y0)

gXY0
,txgXY0

,rxL(rXY0
,tx)L(rXY0

,rx) + Γ
∑
Y ∈ΦP

gYL(rY) +
σ2Γ

Ptx

]}

= E

{
exp

(
−

∑
XY0
∈ΦB(Y0)

aXY0
gXY0 ,tx

gXY0 ,rx

)}
× E

{
exp

(
− µΓ

L(r0)

∑
Y ∈ΦP

gYL(rY)

)}
ζ1 = ξ1ξ2,uζ1

(37)
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located at Y0. Then, from (b) in (34), the coverage probability
is written as
P (SINR ≥ Γ)

(a)
≈ P

{
gY0 + γ̃g̃Y0 ≥

Γ

L(r0)

∑
Y ∈ΦP

(gY + γg̃Y)L(rY) +
σ2Γ

Ptx

}
(b)
=

µ

µ− µ/γ̃
E
[

exp
( −µΓ

γ̃L(rY0
)

∑
Y ∈ΦP

(gY + γg̃Y)L(rY)
)]
ζ2

− µ/γ̃

µ− µ/γ̃
E
[

exp
( −µΓ

L(rY0
)

∑
Y ∈ΦP

(gY + γg̃Y)L(rY)
)]
ζ1

(c)
=

γ̃

γ̃ − 1
ξ3ζ2 −

1

γ̃ − 1
ξ2ζ1

(38)

where γ̃ = − [Γ(1− β)− β] γ > 0. (a) results from using
Lemma 1 to replace the clustered BTs around the typical PT
with a VT, where g̃Y0 ∼ exp(µ) is the mean power gain of
the channel between the VT at Y0 and the typical PR. Then,
(b) is obtained by calculating the CCDF of gY0

+ γ̃g̃Y0
with

Lemma 3. Finally, we have (c) using PGFL of PPP, changing
coordinates and calculating the expectation (with the same
steps as in (36)).

For the second scenario, we derive the coverage probability
in the same way and obtain

P (SINRu ≥ Γ)

≈P

{
gY0

+ γ̃g̃Y0
≥ Γ

L(r0)

∑
Y ∈ΦP

gYL(rY) +
σ2Γ

Ptx

}

=
µ

µ− µ/γ̃
E
[

exp
( −µΓ

γ̃L(rY0)

∑
Y ∈ΦP

gYL(rY)
)]
ζ2

− µ/γ̃

µ− µ/γ̃
E
[

exp
( −µΓ

L(rY0
)

∑
Y ∈ΦP

gYL(rY)
)]
ζ1

=
γ̃

γ̃ − 1
ξ3,uζ2 −

1

γ̃ − 1
ξ2,uζ1.

(39)

Setting σ2

Ptx
= 0 (i.e., ζ1 = ζ2 = 1), we can obtain the SIR

based coverage probabilities.
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