
ar
X

iv
:1

90
9.

02
73

0v
1 

 [
cs

.I
T

] 
 6

 S
ep

 2
01

9
1

Deep Learning for Spectrum Sensing
Jiabao Gao, Xuemei Yi, Caijun Zhong, Xiaoming Chen, and Zhaoyang Zhang

Abstract— In cognitive radio systems, the ability to accurately
detect primary user’s signal is essential to secondary user in
order to utilize idle licensed spectrum. Conventional energy
detector is a good choice for blind signal detection, while it
suffers from the well-known SNR-wall due to noise uncertainty.
In this letter, we firstly propose a deep learning based signal
detector which exploits the underlying structural information of
the modulated signals, and is shown to achieve the state of the
art detection performance, requiring no prior knowledge about
channel state information or background noise. In addition, the
impacts of modulation scheme and sample length on performance
are investigated. Finally, a deep learning based cooperative de-
tection system is proposed, which is shown to provide substantial
performance gain over conventional cooperative sensing methods.

Index Terms— Spectrum sensing, SNR-wall, deep learning,
cooperative detection

I. INTRODUCTION

Cognitive radio, which allows unlicensed devices to oppor-

tunistically utilize the licensed spectrum such as TV broadcast

bands, has been proposed as a potential method to address

the spectrum shortage issue [1–3]. One of the key challenges

for the practical deployment of cognitive radio systems is

to provide sufficient protection to the licensed users. Hence,

reliable detection of the presence of primary signals, which

are usually very weak, is of paramount importance [4].

Energy detector is a widely used conventional detector due

to its simplicity. However, the performance of energy detector

hinges heavily on the knowledge of noise density. In practice,

due to the existence of noise uncertainty, energy detector fails

to work when the signal to noise ratio (SNR) falls below

some threshold, commonly known as the SNR-wall. According

to the existing literature, the SNR-wall for practical noise

uncertainty is about −6 dB, which is far away from the SNR

limit of −15 dB as required by IEEE 802.22. In [4], the authors

suggested three different approaches to get around the SNR-

wall, namely, exploiting the structure of the primary signal,

using diversity and reducing the noise uncertainty.

Since the secondary users often do not have any prior

knowledge of the primary signals, it is desirable to devise

a blind sensing method, which can identify the underlying

structure of the primary signals. Recently, deep learning (DL)

has demonstrated its remarkable potential in extracting the

hidden structure of different objects in various complicated

tasks such as computer vision [5] and wireless communication

[6]. Comprehensive reviews of the application of DL in the

physical layer can be found in [7] and [8]. In the context of

spectrum sensing, machine learning approaches have also been

proposed in the literature [9, 10]. In particular, [10] proposed a
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DL based spectrum sensing method for OFDM systems, where

a stacked autoencoder is used for feature extraction.

Motivated by the encouraging results of [10], in this letter,

we firstly propose a DL based detector using convolutional

long short-term deep neural networks (CLDNN) [11], which

is applicable for arbitrary types of primary signals. It is

worth highlighting that the proposed detector does not require

any additional information of the primary signal or noise

density when deployed online. Moreover, to further improve

the sensing performance, a DL based soft combination strat-

egy is proposed for cooperative detection. According to the

simulation results, the proposed DL based detection methods

significantly outperform the conventional methods.

II. PROBLEM FORMULATION

Depending on idle or busy state of the primary user, the

signal detection at the secondary user can be modeled as the

following binary hypothesis testing problem [12, 13]

y(n) =

{

w(n) : H0

hs(n) +w(n) : H1

, (1)

where y(n) is the n-th received sample, s(n) is the signal

from the primary user, h is channel gain which is assumed to

remain unchanged during the sensing period [14], and w(n) is

additive noise following the zero mean circularly symmetric

complex Gaussian (CSCG) distribution with variance 2σw
2.

Also, H0 and H1 are the two hypotheses denoting the absence

and presence of primary signal in a certain band, respectively.

For the conventional energy detector, the test statistic is the

energy of the received signal normalized with respect to the

sample number N and noise variance 2σw
2, as given by [15]

Λ =
1

2σw
2N

N
∑

n=1

|y(n)|2. (2)

Hence, the two key performance measures for the energy

detector, namely, false alarm probability and missed detection

probability can be respectively expressed as Pf = Pr(Λ >

λ|H0) and Pmd = Pr(Λ < λ|H1), where λ denotes SNR

threshold. Also, the probability of detection is given by Pd =
1− Pmd. A good detector needs to achieve both low Pf and

Pmd (less than 10%), even at very low SNRs.

In practice, the noise density can be estimated by using

noise only samples, and the SNR-wall under certain perfor-

mance requirement is given by [15]

γmin =
1−Q−1(Pd)

√
φ

1−Q−1(Pf )
√
φ
− 1, (3)

where N is the sample number for detection, M is the number

of noise only samples, φ is N+M
NM

, and Q−1(x) is the inverse

of Gaussian Q-function.
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III. DL BASED DETECTOR

We now introduce the DL based sensing framework. In

general, the detection algorithm Ddl can be expressed as

Ddl(y) = argmax(fL(fL−1(fL−2(· · · f1(y))))), (4)

where the input y is the vector of received samples, which is

processed through a customized neural network consisting of

L layers. f i, i = 1, · · · , L− 1, represents for the computation

with weights and activation function of the i-th layer. fL is

the SOFTMAX function which gives the probabilities of two

hypotheses, and argmax is an operator returning the index of

the largest number in a list.

A. Network Architecture Design

Inspired by the result of [16] where CLDNN performs best

in modulation recognition tasks, we also adopt this kind of

architecture in this letter. The superiority of CLDNN over

other popular neural network architectures will be validated

through numerical simulations as well.

It turns out that a network with two convolution (Conv)

layers, two long short-term memory (LSTM) layers, one fully-

connected (FC) layer after Conv layers and two FC layers after

LSTM layers yields best performance. For activation function,

FC3 uses SOFTMAX while all other layers use ReLu. Dropout

is also used after every layer to prevent overfitting. The above

model is termed as “DetectNet” and its network architecture

is illustrated in Fig. 1. Hyperparameters determined through

extensive cross-validation are detailed in Table I.

Hyperparameter Value

Filters per Conv layer 60

Filter size 10

Cells per LSTM layer 128

Neurons per FC layer 128 & Sample length & 2

Optimizer Adam

Initial learning rate 0.0003

Batch size 200

Dropout ratio 0.2

TABLE I. Hyperparameters of the proposed CLDNN

Fig. 1. Network architecture of DetectNet.

B. Dataset Generation and Preprocessing

For dataset, we generate 8 kinds of digitally modulated

signals at different SNRs as positive samples as per Ra-

dioML2016.10a [17], which is a widely used baseline dataset

in modulation recognition tasks, and the negative samples are

CSCG noises. The entire dataset is partitioned into three differ-

ent sets for training, validation and testing with a commonly

Modulation scheme
BPSK,QPSK,8PSK,CPFSK

QAM16,QAM64,GFSK,PAM4

Samples per symbol 8

Sample length 64, 128, 256, 512, 1024

SNR range -20∼20dB in 1-dB increments

Training samples 48000

Validation samples 16000

Testing samples 16000

TABLE II. Dataset parameters

used split ratio of 3:1:1. Dataset parameters are detailed in

Table II.

Instead of directly using the received time domain complex

signal, energy normalization is performed prior to training

or inferring. The motivation is three-fold: 1) the impact of

energy turns out to be minimal according to simulation results,

2) the modulation structure of the signals can be better

exposed without the interference of signal energy, 3) an energy

independent model can have a better generalization capability

which can work well even if the background noise changes.

C. Customized Two-stage Training

Two key performance measures for signal detection, namely,

Pf and Pd, can not be obtained directly from the DL library.

Therefore, a callback function in Keras is implemented to

compute them for different SNRs at the end of each epoch.

Considering constant false alarm rate (CFAR) detector, a

customized two-stage training strategy is designed. In the first

stage, early stopping with 6 epochs patience is applied to train

the model to convergence. In the second stage, metrics trade-

off characteristic is observed that the validation loss and accu-

racy both keep stable while Pf and Pd at different SNRs varies

from epoch to epoch. Therefore, we set a Pf stop interval

first, continue from the best model in the first stage and stop

training when Pf falls into it. One drawback of DL methods

is the lack of precise performance control, applying the two-

stage training strategy, we can control detection performance

to some extent by adjusting the preset stop interval. The trade-

off between control precision and training time is achieved by

interval size parameter. A smaller interval attains more precise

performance control, but also results in longer training time.

D. Simulation Results

In this section, extensive simulation results are provided to

demonstrate the performance of the proposed model.1 Also,

the impact of key parameters such as modulation scheme and

sample length is investigated.

1) Comparison with Different Networks: Fig. 2 compares

the detection performance of the proposed model with several

other popular neural network models on QAM16 signals with

sample length of 128. For fair comparison, extensive cross-

validation is performed for all models to determine the best

hyperparameters. In particular, all models use 0.2 dropout.

The DNN consists of four FC layers with 256, 500, 250, 120

neurons respectively, the CNN uses two Conv layers with 60

1For reproducible research, all source codes can be found at
https://github.com/EricGJB/DL-based-signal-detection.
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Fig. 2. Detection performance for various DL models.

filters with filter size of 10 and one FC layer with 128 neurons,

while the LSTM uses two 128 cells LSTM layers.

It can be observed that DetectNet and CNN achieve better

detection performance than DNN and LSTM. In addition,

DetectNet attains similar Pd as CNN but outperforms CNN by

achieving lower Pf . To illustrate the advantage of DetectNet

over energy detector, considering the operating point with

Pf = 5.92% and Pd = 90%. According to Equation 3, the

SNR-wall of energy detector is -5.35 dB. From Fig. 2, the

SNR-wall of DetectNet is -8.5 dB, which is 3.15 dB lower.

Fig. 3. Impact of modulation scheme on performance.

2) Impact of Modulation Scheme: Fig .3 illustrates the

detection performance of DetectNet over different types of

modulation schemes with sample length of 128. As can be

observed, the performance for FSK signals, especially GFSK,

is better than for PSK and QAM signals. Moreover, it is

surprise to see that the detection performance difference be-

tween BPSK, QPSK and 8PSK is rather insignificant, which

implies that the performance of DetectNet is insensitive to the

modulation order.

3) Generalization Ability: Fig. 4 illustrates the generaliza-

tion ability of the proposed DetectNet. In particular, we test the

detection performance of a well trained network over signals

with different modulation schemes from the training signals.

Comparing Fig .3 and Fig. 4, it can be readily observed that as

long as the modulation type is the same, for instance, QAM16

and QAM64, or BPSK and QPSK, the DetectNet provides

decent generalization ability. In contrast, if the modulation

type is different, for instance, BPSK and GFSK, there is

a significant performance deterioration. The reason is rather

intuitive, since the DetectNet exploits underlying structural

information of modulated signals, which is similar between

signals with the same modulation type while differs substan-

tially between signals with different modulation types.

Fig. 4. Generalization ability to different modulation

schemes.

4) Impact of Sample Length: Intuitively, the detection

performance of DetectNet improves when the sample length

increases due to more available information. Recall that the

detection performance of energy detector also improves with

longer sample length, it is hence of particular interest to see

the performance gap of the two detectors with different sample

lengths. Let us consider the operating points with Pd = 90%
and set the Pf stop interval as [7%, 9%] , then the SNR-

walls of energy detector and DetectNet on GFSK signals with

different sample lengths are summarized in Table III. It turns

out that regardless of the sample length, DetectNet consistently

yields around 5dB improvements over the energy detector.

Pf (%) Sample length EDW DLW Improvement

8.05 64 -3.91 -9.00 5.09

7.34 128 -5.57 -11.00 5.43

8.45 256 -7.41 -12.30 4.89

7.73 512 -8.94 -13.50 4.56

7.86 1024 -10.55 -15.60 5.05

TABLE III. SNR-wall improvement for different sample

lengths. EDW and DLW represents for SNR-wall of energy

detector and DL based detector respectively. EDW is calcu-

lated by Eq .3 with M → ∞. The unit of SNR-wall is dB.

IV. DL BASED COOPERATIVE DETECTION

Cooperative sensing, which utilizes distributed nodes to

work in a collaborative fashion, has been demonstrated to be

an efficient means to improve the detection performance. For

cooperative sensing, the fusion center makes the final decision

based on the hard information from each sensing node. As

such, it is not able to exploit the confidence information of

the decision of each node. In addition, the priority of different

nodes is not used. Motivated by this, in this section, we

introduce a DL based cooperative detection system which

implicitly exploits these soft information.



4

A. System Design

For each sensing node, the DetectNet is employed locally

to obtain the probability vector of two hypotheses about

primary signal. Then, it is fed into the fusion center for further

processing. Unlike in the conventional sensing system where

a specific fusion rule is used to combine the hard decision

information from the distributed nodes, a neural network

consisting of three FC layers is proposed to directly learn the

best fusion rule through training.

Through extensive cross-validation, the numbers of neurons

of each FC layer are given by 32, 8 and 2, respectively. The

cooperative detection system model is termed as “SoftCombi-

nationNet” and the detailed network architecture is illustrated

in Fig. 5.

Fig. 5. DL based cooperative detection system design.

B. Simulation Results

For simulations, it is assumed that the channel gains be-

tween the primary transmitter and k sensing nodes are inde-

pendently and identically distributed (i.i.d.). Also, experiments

are conducted on QAM16 signals with a sample length of

128, and three cooperative systems with 2, 4 and 8 nodes

respectively are considered.

Fig. 6 depicts the detection performance of cooperative

sensing schemes. For illustration purpose, the Logical-OR

(LO) rule is used in the conventional cooperative detection

scheme, since it in general yields the highest Pd. Comparing

the performance of SoftCombinationNet (SCN) and LO, we

find that for all three systems, in the practical SNR regime of

interests, i.e., where Pd is larger than 90%, SoftCombination-

Net achieves almost same Pd as LO, but with a significant

reduction in the Pf , thereby demonstrating its supriority.

Fig. 6. Performance gain of DL based cooperative detection

system.

V. CONCLUSION

In this letter, we have proposed a novel DL based sig-

nal detector named DetectNet, which exploits the inherent

structural information of modulated signals. It was shown

that significant performance improvement can be achieved

over the conventional energy detector. Also, the DL based

detector is insensitive to the modulation order, hence have

good generalization ability to similar modulation schemes.

Then, a DL based cooperative detection scheme named Soft-

CombinationNet is proposed to exploit the soft information

from distributed sensing nodes, which is shown to achieve

high Pd and low Pf simultaneously.
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