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Abstract—Beamforming (BF) design for large-scale antenna
arrays with limited radio frequency chains and the phase-shifter-
based analog BF architecture, has been recognized as a key
issue in millimeter wave communication systems. It becomes
more challenging with imperfect channel state information (CSI).
In this letter, we propose a deep learning based BF design
approach and develop a BF neural network (BFNN) which can be
trained to learn how to optimize the beamformer for maximizing
the spectral efficiency with hardware limitation and imperfect
CSI. Simulation results show that the proposed BFNN achieves
significant performance improvement and strong robustness to
imperfect CSI over the traditional BF algorithms.

Index Terms—Deep learning (DL), millimeter wave (mmWave),
beamforming (BF) design, large-scale antenna arrays, neural
network (NN), beamforming neural network (BFNN).

I. INTRODUCTION

A. Background and Motivations

Recently, hybrid analog and digital beamforming (HBF)

design for millimeter wave (mmWave) communication sys-

tems with large-scale antenna arrays has been receiving much

attention for its advantage of providing high beamforming

(BF) gains to compensate for the severe path loss at affordable

hardware cost and power consumption [1], [2]. It has been

recognized that the most difficult part in the HBF optimization

problem is the constant modulus constraint on analog BF due

to its phase-shifter-based architecture [3]-[5]. In the existing

works using the model-based design approach to handle this

difficulty, an orthogonal matching pursuit (OMP) based algo-

rithm was proposed in [1]. However, the analog beamformer is

limited to a pre-defined codebook. To enhance the performance

of OMP, the manifold optimization method was applied in [3],

[4] for the analog BF optimization. An element wise iterative

algorithm was proposed in [5] to optimize the analog beam-

former. However, all of these algorithms either require some

approximations to simplify the original objective function, or

a lot of serial time consuming iterations to obtain a solution.

Moreover, perfect channel state information (CSI) is assumed

in all of these algorithms.

In another aspect, recent works on intelligent communi-

cations have shown the great potential of the data-based

deep learning (DL) method in dealing with the traditional

challenging problems [6]-[9],[11]. Inspired by these works,

in this letter, we devote to applying the DL method to solve

the complex BF design problem for mmWave systems with
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hardware limitation and imperfect CSI. Our motivations can

be explained from the following three aspects:

• First, it is well known that as the BF design is quite a

complicated non-convex problem due to the joint opti-

mization of multiple variables and the constant modulus

constraint, it is unlikely to find a closed-form optimal

solution [1]. As DL has been regarded as an efficient

method to deal with intractable problems [12], it would

be interesting to see what could be obtained if using DL

to solve the BF optimization problem.

• Second, through a large number of training iterations

with a lot of samples, the DL-based schemes have been

shown to have the ability to understand the complicated

characteristics of wireless channels [6]. Compared with

the conventional works assuming perfect CSI [1], [3]-

[5], the DL based approach is expected to possess strong

robustness to imperfect CSI.

• Most efficient traditional BF algorithms require time-

consuming serial iterations with high-complexity [4], [5].

However, the neural network (NN) after offline training

has low complexity with limited matrix multiplications

and additions when deployed online. Besides, thanks to

the acceleration of parallel computation, the DL-based

schemes can operate fast and thus be more applicable for

high speed communications.

There have been some recent works on the DL-based HBF

design [13][14]. However, the assumption of perfect CSI is

made in [13], and the output beamformer does not directly

meet the constant modulus constraint. In [14], the analog

beamformer is limited to a pre-defined codebook, which

normally leads to certain performance loss.

B. Novelty and Contributions

In this letter, we propose a DL-based BF design approach

and develop a BF neural network (BFNN) which can be trained

to learn how to optimize the beamformer for maximizing the

spectral efficiency (SE) with hardware limitation and imperfect

CSI. The contributions can be summarized as follows:

• New design approach: As the analog beamformer is

implemented with analog phase shifters, we cannot follow

the traditional full-digital design approach [6], [7] to

replace the analog beamformer by a digital NN and train

it in the whole communication link. Instead, we propose

a novel DL-based design approach by developing the

BFNN which directly outputs the optimized beamformer

based on the input of the estimated CSI.

• Novel Loss function: Different from the traditional NNs,

where the loss function is normally defined as the mean
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Fig. 1. Diagram of an MISO mmWave system with one RF chain.

square error (MSE) between the transmitted symbols

(labels) and the recovered ones [6], [7], [11], in the

BFNN, we propose an elegant loss function which is

closely related to the performance of SE.

• Robustness to imperfect CSI: We propose a two-stage

design approach to make the BFNN robust to imperfect

CSI. During the first offline training stage, the BFNN

learns how to approach the ideal SE when it only has

practical channel estimate as its input. By doing so, in

the second online deployment stage, the BFNN can adapt

itself to imperfect CSI and achieve robust performance to

channel estimation errors.

Since in the mmWave HBF design the optimal digital

beamformer normally has a closed-form solution [3]-[5], as

an initial work and for the easy of presentation, in this letter

we focus on the analog BF design and consider the scenario

of a large-scale antenna array with only one radio frequency

(RF) chain.

II. SYSTEM MODEL

Consider in Fig. 1 the downlink of a narrowband multiple-

input and single-output (MISO) mmWave system with the

analog BF (precoding) architecture, where a base station (BS)

with one RF chain and Nt antennas transmits one data stream

to a user with only one receive antenna.1 Let s denote the

transmitted symbol with normalized average symbol energy,

i.e., E{|s|2} = 1. The symbol is first multiplied by a scalar

digital precoder vD (since there is only one RF chain, vD is

actually a scalar), and then by an Nt × 1 analog precoder vRF,

which is implemented using phase shifters. The final precoded

signal is then given by x = vRFvDs.

Through the MISO mmWave channel, the received signal at

the user can be represented by r = h
H

vRFvDs + n, where n is

the additive noise satisfying the circularly symmetric complex

Gaussian distribution with zero mean and covariance σ2, and

h
H is the channel vector between the BS and the user. In

this letter, a widely used Saleh-Valenzuela mmWave channel

model [10][11] for h
H with one line-of-sight (LoS) path and

(L−1) non-LoS (NLoS) paths is adopted, which is represented

as

h
H
=

√

Nt

L

L
∑

l=1

αla
H

t

(

φlt

)

, (1)

where αl denotes the complex gain of the lth path, and at

(

φlt

)

denotes the antenna array response vector at the BS, with φlt

1Although this letter focuses on the narrowband analog BF design with the
aid of DL, the design approach can be generalized to a broadband MIMO
mmWave system with HBF, which will be discussed in Section V.

denoting the azimuth angle of departure associated with the

lth path. In particular, the term with l = 1 denotes the LoS

component in h
H .

In this letter, the SE, which has been widely used in the

existing BF designs [4], [5], is chosen as the optimization

objective, which is given as follows for the studied system

R = log2

(

1 +
1

σ2
‖hH

vRFvD‖2

)

. (2)

Considering the constant modulus constraint, |[vRF]i |2 = 1,

for i = 1, . . . , Nt, and the maximum transmit power constraint

‖vRFvD‖2 ≤ P, it can be proved that the optimal vD for

maximizing R is given by
√

P/Nt. Then, the BF optimization

problem for vRF is given by

minimize
vRF

log2(1 +
γ

Nt
‖hH

vRF‖2)
subject to |[vRF]i |2 = 1, for i = 1, . . . , Nt,

(3)

where γ = P

σ2 denotes the signal to noise ratio (SNR). As

the SNR can be generally considered to be more accurately

estimated than the CSI, throughout this letter we assume γest =

γ, where γest denotes the estimated SNR, and focus on how

to deal with imperfect CSI.

III. DL MODEL AND DESIGN OF BFNN

In this section, we first introduce the new challenges when

applying the DL method to solve (3) with imperfect CSI.

Then, we describe in detail the BFNN architecture. Finally,

we analyze its complexity.

A. Challenges

Since the analog beamformer has a specific architecture con-

taining analog phase shifters, we cannot follow the traditional

approach to replace it by a multi-layer NN and train it in

the BS-user communication link [6]-[8]. Here, we propose a

different DL design approach by designing the BFNN that

directly outputs vRF to solve (3). However, this design is not

trivial due to the following three challenges.

• What should the input of the BFNN be? Most existing

DL-based works [6], [7], [14] take the received baseband

digital signal as the input. However, this approach cannot

be applied here as the received signal itself is a function

of the analog precoder to be optimized. Furthermore, the

number of dimensions of the received signal is much

lower than that of the precoder (Nt) to be optimized.

• How to guarantee that the output (vRF) satisfies the

constraint? As it is well known that complex output is not

well supported by most DL frameworks (e.g., Tensorflow,

pytorch), it would be more difficult to further impose the

constant modulus constraint on the output.

• What should the label be when training the BFNN? In

almost all of the conventional intelligent communication

designs [8], [11], the label is set exactly as the transmitted

bits or perfect CSI. However, it is difficult to find a proper

label for this BF design problem. For example, if we take

an optimized analog beamformer based on a traditional

algorithm as the label, the resulting BFNN would not

perform better than the traditional algorithm.
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Fig. 2. Illustration of the two-stage DL-based HBF design approach: offline training and online deployment.

B. BFNN Architecture

In this subsection we first elaborate on some considerations

for the above three challenges, and then describe the two-stage

design approach of the BFNN.

1) Three Specific Considerations:

• Input of the BFNN: As the analog beamformer is imple-

mented with analog devices, it cannot be replaced by a

full-digital NN and trained in the whole communication

link. Instead, the BFNN is designed to generate an

optimized analog BF vector vRF based on the input of

the channel estimate hest and the SNR estimate γest.

• Lambda Layer: To ensure that the output of the BFNN,

i.e., vRF, is a complex-valued vector satisfying the con-

stant modulus constraint, a self-defined Lambda layer is

added at the end of the BFNN. Specifically, letting θ

denote its real-valued input (the output of the last dense

unit), its complex-valued output is given by

vRF = exp(j · θ) = cos(θ) + j · sin(θ), (4)

where j =
√
−1. It can be seen from (4) that θ has a clear

physical meaning that each element of θ corresponds to

the phase of each analog BF coefficient in vRF. Compared

with an alternative approach which is to first generate

the real and imaginary parts of a complex value and

then normalize that complex value on the unit circle, the

proposed method directly generates the phase component,

which automatically guarantees the constant modulus

constraint with less neurons and makes the NN more

elegant.

• Loss Function: Different from traditional supervised

learning designs [6], [7], in our design, there is no need

of labels and the BFNN is trained with the following new

loss function directly related to the objective in (3)

Loss = − 1

N

N
∑

n=1

log2(1 +
γn

Nt

‖hH

n vRF,n‖2), (5)

where N denotes the total number of training samples,

and γn, hn and vRF,n represent the SNR, CSI and output

analog beamformer associated with the nth sample. Note

that the reduction of the loss exactly corresponds to the

increase of the average SE.

2) Two-stage Design Approach: With the above considera-

tions on BFNN, the two-stage DL-based BF design approach

is illustrated in Fig. 2. In the offline training stage, channel

samples, transmit pilot symbols, noise samples are generated

via simulation according to the system model in Section II.

Then, a practical mmWave channel estimator is applied for

the BS to obtain partial CSI. In this letter, we apply the

classical mmWave channel estimator proposed in [2], where

the BS estimates the channel by sending pilot symbols with

beamformers in a hierarchical codebook and receiving the

feedback of the user’s decision based on its received signal rp.

The channel estimate hest and the SNR estimate γest are sent

into the BFNN as input. Note that as mentioned in Section II, it

is assumed γest = γ. Then, the BFNN generates the optimized

analog beamforming vector vRF,n by minimizing the loss

function defined in (5). Since the channel samples and SNR

values are generated via simulation, they (perfect CSI and SNR

information) can be directly used in the calculation of the loss,

as shown in Fig. 2. As the DL-based technique is essentially

a gradient-descend method, the loss can be guaranteed to

converge to a local optimal with a proper learning rate [12]. By

taking the channel estimate as the input of BFNN and using

the perfect CSI in the loss function, the BFNN can be trained

to learn how to approach the ideal SE with perfect CSI as

much as possible and be robust to channel estimation errors.

In the online deployment stage, the same mmWave channel

estimator is applied for the BS to obtain partial CSI. The

channel estimate is then sent into the BFNN to obtain the

optimized beamformer. It is worth noting that the perfect CSI

is only required to compute the loss during the offline training

stage. When deployed online, all parameters of the BFNN have

already been fixed and the well-trained BFNN only accepts

the imperfect CSI as the input and directly outputs the analog

beamformer, with no need to take the perfect CSI to calculate

the loss.

To show the detailed structure of the BFNN, we consider a

MISO system with Nt = 64 and show in Tab. I the network

structure, the output dimension, the activation function (if

used) and the number of trainable parameters of each layer. It

will be shown in Section IV that such a network can achieve

excellent performance in the mmWave system setup there. As

shown in Fig. 2, since the input hest is a complex-valued vector

and the BFNN is a real-valued network, the real and imaginary
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parts of hest are concatenated and further with γest to form a

(2Nt + 1) × 1 real-valued input vector. Three dense layers are

then applied with 256, 128, 64 neurons, respectively. Similar to

most related works [6]-[9][11][13][14], the number of dense

layers and that of the neurons in each layer are determined

by the empirical trials. Different activation functions (e.g.,

Relu, tanh and sigmoid) have been tried for the last dense

layer, but simulation results suggested that the output without

any activation function achieves the best performance and

convergence behavior. To enhance the convergence, each dense

layer is preceded by a batch normalization layer, which is

omitted in the Tab. I. At the end, the Lambda layer imposes

the constraint modulus constraint on the final output. To

guarantee the generality of the BFNN, multiple samples are

required for offline training. In our experiments, the training,

validation, and testing sets contain 105, 104, and 104 samples,

respectively.

C. Complexity Analysis

In this subsection we analyze the computational complexity

in terms of the number of floating-point operations (FLOPs)

for the proposed BFNN. As the complexity in the offline

training stage is normally not counted [8], only that in the

online deployment stage is counted. According to [16], the

number of FLOPs of a dense layer is given by (2NI − 1)NO,

where NI and NO denote the input and output dimensions,

respectively. In the case when Nt = 64, considering the BFNN

in Tab. I, the total number of FLOPs of the BFNN is about

0.15 million.

For conventional model-based HBF designs [1][4][5], the

asymptotic computational complexity in terms of the number

of complex multiplications is in the order of O
(

N3
t

)

as they in-

volve the operations such as singular value decomposition and

matrix inversion. Even taking the coefficient in the complexity

order to be 1, the number of N3
t complex multiplications is

about 0.26 million with Nt = 64. It can be seen that the pro-

posed BFNN has competitive computational complexity when

compared with the traditional model-based HBF algorithms.

In addition, the main operation of BFNN involves large-scale

matrix multiplications and additions, which can be effectively

accelerated by the graphics processing unit (GPU). However,

most of the traditional model-based HBF algorithms normally

involve serial iterations (the optimization of the next iteration

depends on the result of the previous iteration) and are not

suitable for parallel computing.

IV. SIMULATION RESULTS

Throughout the simulations, a half-wave spaced uniform

linear array with Nt = 64 is deployed at the BS. The Saleh-

Valenzuela mmWave channel model in (1) with exactly the

same parameters as those in [10] is considered, where L is set

to 3, i,e, the channel contains one LoS path and two NLoS

paths. αl satisfies independently and circularly symmetric

Gaussian distribution with zero mean, and the variance of αl
is set to 1 for l = 1, and set to 10−0.5 for l = 2, 3. φlt satisfies

independently uniform distribution in [−0.5π, 0.5π]. Two state-

of-the-art HBF algorithms in the special case of one RF chain

TABLE I
IMPLEMENTATION DETAILS OF THE BFNN.

Layer Name Output Dim. Activation Func. Number of Paras.

Input Layer 129 × 1 0

Dense Layer 1 256 × 1 ReLu 33024

Dense Layer 2 128 × 1 ReLu 32896

Dense Layer 3 64 × 1 8256

Lambda Layer 64 × 1 0

are considered for comparison, i.e., the manifold-optimization

based HBF algorithm in [4] and the iterative HBF algorithm in

[5]. The classical channel estimation algorithm in [2] is applied

for obtaining hest. In the traditional HBF algorithms, h is

directly replaced by hest when computing the BF coefficients.

In the proposed BFNN, the hyper-parameter setting is shown

in Tab. I and fixed throughout all experiments. The learning

rate is initialized at 0.001 and the Adam optimizer is used.

The real-valued loss function results in real-valued gradient

of trainable parameters of the BFNN, and therefore can be

directly implemented with Tensorflow. All source codes, data

sets and some trained weights are provided openly in [15].

Fig. 3 shows the SE versus SNR performance under three

channel estimation levels, which are characterized by three

pilot-to-noise power ratios (PNRs), i.e., −20dB, 0dB and

20dB. It is assumed that the estimation of the number of

channel paths is correct, i.e., Lest = 3. The results in Fig.

3 show that with imperfect CSI the two traditional HBF

algorithms perform quite similarly, but proposed BFNN signif-

icantly outperforms them. For example, at a SE of 8bits/s/Hz,

the proposed BFNN achieves around a 1.5dB gain in SNR over

the traditional algorithms when PNR = 20dB, and such a gain

becomes larger for smaller PNRs.

In practical systems, there also exist estimation errors in

estimating the number of total paths L. Due to the sparsity

of the mmWave channels and considering the estimation

complexity, Lest is preset to a small value [2]. Fig. 4 shows the

SE performance for different Lest values. It can be seen from

this figure that the proposed BFNN outperforms the traditional

HBF algorithms with the improvement becoming larger for

less accurate Lest.

In summary, it can be concluded that the proposed BFNN

exhibits much stronger robustness to imperfect CSI than the

traditional algorithms. The less accurate the channel estimate

is, the larger the performance gap is. This is because through

many iterations with large training sets, the BFNN has been

trained to learn the characteristics of the mmWave propagation

channels, as well as the relationship between the imperfect CSI

and the ideal SE with perfect CSI.

V. DISCUSSION OF THE GENERALITY OF BFNN

Although the BFNN is designed specifically for a simple

scenario in this paper, it has good generality for other more

complex problems. For example, in the broadband scenario,

by concatenating the multi-tap channel vectors as the input

and redefining the loss function to the one related to the

broadband SE [4], the BFNN can be extended to optimize

the analog beamformer for broadband mmWave channels. For
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Fig. 3. SE v.s. SNR for different BF algorithms with different PNRs.
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Fig. 4. SE v.s. SNR for different BF algorithms with different Lest .

another example, considering the HBF problem with multiple

RF chains, while the optimal digital beamformer can be solved

with a closed-form solution [3], [5], a simple extension of the

current BFNN is to increase the output dimensions from Nt

to NRFNt for the Nt × NRF analog BF matrix with a new loss

function. Following the similar idea, the BFNN can also be

considered in the joint transmit and receive BF design or the

multi-user BF design.

VI. CONCLUSION AND FUTURE WORK

We have proposed a DL-based BF design approach for

mmWave systems with large-scale antenna arrays. With some

special designs on the self-defined Lambda layer and the loss

function, the proposed BFNN can well handle the challenges

of hardware limitation and imperfect CSI in mmWave systems.

Simulation results have shown the competitive performance

of the BFNN and provided valuable insights for future BF

designs.

As for future work, due to the generality of BFNN, it is of

interest to extend the BFNN to more complex BF problems.

Furthermore, like that in the existing works [6][8][13][14],

in this study the number of layers and that of the neurons

in each layer in the proposed BFNN are mainly determined

by the empirical trials, it is also of interest to investigate the

physical meaning of each layer.
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