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Ambient Backscatter: A Novel Method to Defend
Jamming Attacks for Wireless Networks

Nguyen Van Huynh, Diep N. Nguyen, Dinh Thai Hoang, Eryk Dutkiewicz, and Markus Mueck

Abstract—This paper introduces a novel idea to defend jam-
ming attacks for a wireless network. In particular, when the
jammer attacks the channel, the transmitter can leverage the
jamming signals to transmit data by using ambient backscatter
technique or harvest energy from the jamming signals to support
its operation. To deal with the uncertainty of the jammer, we
propose a reinforcement learning algorithm that allows the trans-
mitter to obtain the optimal operation policy through real-time
interaction processes with the attacker. The simulation results
show the effectiveness of ambient backscatter in combating
jammers, i.e., it enables the transmitter to transmit data even
under the jamming attacks. We observe that the more power the
jammer uses to attack the channel, the better performance the
network can achieve.

Index Terms—Anti-jamming, ambient backscatter, RF energy
harvesting, reinforcement learning, Q-learning, MDP.

I. INTRODUCTION

UE to the broadcast medium, wireless communications

are extremely vulnerable to jamming attacks. By in-
jecting interfering signals to a target wireless channel, the
jammer can decrease the signal-to-interference-plus-noise ratio
(SINR) at the receiver, thereby interrupting or preventing the
wireless communications between legitimate devices [1], [2].
Unlike inadvertent interference, jamming signals are usually
powerful and can continuously disrupt the legitimate wireless
communications.

There are various countermeasures to prevent and mitigate
impacts of jamming attacks [4]. One of the first well known
methods is regulating the transmission power of transmitters.
Specifically, a transmitter can choose to either transmit at a
very low power so that the jammer cannot detect its trans-
mission or at very high level to dominate jamming signals.
In [6], the authors also find out that by controlling transmission
rate and transmission power, the impact of jamming signals
can be reduced. However, this method is inefficient especially
when the jammer often attacks the channel with high power.
Another widely adopted approach is frequency-hopping spread
spectrum (FHSS) [4], [5]. The FHSS mechanism allows wire-
less devices rendezvous on a given channel to communicate
(e.g., sharing a predefined hoping pattern) once its current
communication channel is attacked. However, the FHSS mech-
anisms require a set of available communication channels
together with a predefined switching algorithms implemented
on wireless devices. In addition, in the case if the jammer
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has sufficient power to attack all channels simultaneously, the
communications can be completely disrupted.

In this paper, we introduce an unprecedented method that
allows the transmitter to communicate even under jamming
attacks. In particular, we adopt the ambient backscatter [7], a
novel communication technology that enables two backscatter
devices to communicate by leveraging surrounding signals.
Specifically, when a transmitter needs to send data, it backscat-
ters the data on ambient signals, e.g., TV or FM signals,
to its receiver. The receiver then can decode the data by
using the averaging mechanism [7]. Inspired by this idea,
when a channel is attacked by a jammer, the transmitter
can leverage the jamming signals to backscatter and transmit
information. As such, the transmitter not only can avoid the
jamming attacks but also leverage the jamming signals for
its transmissions. To deal with the uncertainty of jamming
attacks, we adopt Markov decision process (MDP) framework
and propose a reinforcement learning algorithm to help the
transmitter maximize its long-term reward in terms of network
throughput and delay. This proposed learning algorithm will
allow the transmitter to learn the optimal policy without
requiring information about the jammer in advance. Simula-
tion results show that our proposed solution can achieve the
best performance (in terms of throughput and packet loss)
compared with other optimal solutions that do not consider
neither utilizing ambient backscatter technology nor leveraging
jamming signals. More interestingly, our results reveal that the
more power the jammer uses to attack the channel, the better
performance the network can achieve.

II. SYSTEM MODEL

We consider a wireless network consisting of a gateway, a
transmitter, and a jammer as shown in Fig. 1. The transmitter is
equipped with an energy harvesting and a backscatter circuits
[7]. The transmitter thus can either harvest energy and use
the harvested energy to actively transmit its data, i.e., harvest-
then-transmit (HTT) mode, or backscatter data on the jamming
signals [7], i.e., backscatter mode.

A. Jamming Model

In the system under consideration, the jammer attacks the
channel to degrade the effective SINR at the receiver [6]. For
that, it usually sets the bandwidth and the center frequency
of the noise the same as those of the transmitter. The SINR
can be calculated as 6 = ﬁ, [3], [6], where Pg is the
received power from the transmitter at the gateway, Py is the
jamming power transmitted by the jammer, p? is the variance

of additive white Gaussian noise. The jamming power received
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Fig. 1: System Model.

at the gateway is ¢P;, where 0 < ¢ < 1 is the attenuation
factor. We denote P; = {PJ,...,P],....,P{} as a vector of
discrete jamming power levels from P({ to Pﬁ. At each time
slot, the jammer selects a given jamming power level P! with
a given probability x,, as long as its average power constraint
is satisfied. Specifically, let J; denote the strategy space of the
jammer and X as the attack probability vector, then we have:

N
JS:{x:(xo,...,xn,...,xN),an:1.}. @))
i=0

Given an average power constraint Py, XP}— < Pavg (6], the
jammer can select an optimal strategy to attack the channel
in order to achieve its objective, e.g., minimize the network’s
throughput. In particular, we consider a smart jammer that
would know the information of the transmitter, e.g., how many
packets the transmitter can transmit/backscatter and how many
packets it can bring down if the jamming is successful. Then,
we denote wy = {W(J),. .. ,wil,. . .,wﬁv} as the reward vector of
the jammer in which w} is the number of packets that have
been corrupted if the jamming power is P},. Thus, The optimal
attack strategy x is obtained by using linear programming to
solve the following problem.

max Xwj,
X
neotn = 1, @)
s.t.q x, €[0,1],Vn € {0,...,N},
XP| < Py

B. Channel Model

When the jammer attacks the channel, the transmitter can
either adapt its rate or cease its active transmission and then
choose to harvest energy or backscatter data on the jamming
signals. Through experiments and analysis on backscatter
communication systems, e.g., [7], it can be observed that the
stronger the ambient signal (i.e., higher jamming power), the
more packets the transmitter can backscatter to the gateway.
Note that the relationship between the backscatter rate and the
power of the ambient (jamming) signals can be either linear or
non-linear and our proposed framework and following analysis
are applicable to both. Thus, depending on the transmission
power level P/ of the jammer, the transmitter can harvest
an amount of energy, denoted by el or backscatter maxi-
mum d; packets based on the jamming signals. We denote
e={e),....en} andd = {d’,. .. ,c’l;{,} as the harvested energy
amount and backscattered packet vectors of the transmitter,
respectively.

As aforementioned, under jamming, the transmitter still can
(actively) transmit its data by adapting its rate with the jam-
ming power, i.e., rate adaptation (RA). The criterion for rate
adaptation is derived from the optimal strategy that maximizes
the long-term average throughput. Let r = {ry, .. e
denote the set of available transmission rates that the trans-
mitter can choose to transmit data when the jammer attacks
the channel/.\ At each rate r,,, the transmitter can transmit
maximum d), packets. Note that, for m = 1,...,M, when
Ym—-1 < 0 < y,, with y,, is the value of SINR, the gateway only
can decode packets sent at rates ro, 71, . . ., /y—1, and the packets
sent at rate r, or higher is lost [3] (i.e., not successfully
decoded). The transmitter can detect if the jammer is active or
idle, but not the specific jamming power level. The proposed
algorithm below allows the transmitter to learn the information
about the jamming power level and the associated likelihood,
then adapt its defense strategy to maximize the average long-
term throughput. The data arrival at the transmitter is assumed
to follow the Poisson distribution with mean rate A. If a packet
stays in the queue longer than a latency threshold, i.e., t,
it will be discarded. In summary, when the jammg‘ is idle,
the transmitter can (i) actively transmit maximum d, packets
(each packets requires e; units of energy to be successfully
transmitted) or (ii) stay idle. When the jammer is active, the
transmitter can leverage the jamming signals to (i) backscatter
maximum d;/ packets, (i) harvest e/ units of energy, (iii)
transmit maximum d}, packets using the RA technique or (iv)
stay idle.
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III. PROBLEM FORMULATION

A. State Space and Action Space

We define the state space of the system as follows:
S={(j.d.e): je{0.1}d e {0,....Dyee {0, E}}, O

where j represents the state of the jammer, i.e., j = 1 when
the jammer attacks and j = O otherwise. d and e represent
the numbers of packets in the data queue and the energy
units in the energy storage of the transmitter, respectively.
D and E are the maximum sizes of the data queue and the
energy storage, respectively. The state of the system is then
defined as a composite variable s = (j,d,e) € S. Note that, to
highlight the effect of the backscattering and energy harvesting
from the jamming signals, we assume that the transmitter has
zero energy at the beginning (i.e., the worst case in which
the transmitter has no energy and being attacked). If the
transmitter is powered with a battery or if the energy is not of
concern, our model is still applicable by setting the transmitter
with a non-zero or infinite initial energy level, respectively.
The transmitter can perform one of the 4 + M actions,
i.e., stay idle, actively transmit data, harvest energy from the
jamming signals, backscatter data using the jamming signals,
and reduce the transmission rate to one of M rates by using
the RA technique when the jammer attacks the channel.



Then, the action space of the transmitter can be defined by
Azx{a:aef{l,..., 4+ M}}, where

1, stays idle,
2, actively transmits data,
3, harvest energy from the jamming signals,
a= 4, backscatter data using the jamming signals, “)

4 + m, the transmitter adapts its transmission to
rate r,, with me {1,...,M}.

B. Reward Function

The reward of the transmitter is defined as the number of
packets it can send to the gateway. Thus, the immediate reward
of the transmitter after an action a is executed at state s is
defined as follows:

di (j=0,d>0,e>ena=2,0<d <d),
d2.(j=1,d>0,a=40<d <d),
d(j=1d>0,e>e,a=4+m0<d, < c’i\;l),
0, otherwise.

&)

In this paper, we aim to find the optimal policy for the
transmitter, denoted by Q*, to maximize its long-term average
reward defined as follows:

-
max  R(Q) = Tlggo;;E(ﬁ(ﬂ», (6)

where R(Q) is the long-term average throughput under the
policy Q, and 7;(Q) is the immediate throughput under policy
Q at time step k. The optimal policy Q* will allow the
transmitter to make its optimal decisions based on its current
states, i.e., data queue, energy queue, and channel state.

IV. Q-LEARNING ALGORITHM

To deal with the uncertainty of jamming attacks, we develop
a reinforcement learning algorithm based on the Q-learning
algorithm [8] to help the transmitter find the optimal policy
without requiring any information about the jammer in ad-
vance. In particular, the Q-learning algorithm constructs a Q-
table to store values of all state-action pairs. Given the current
state, the transmitter performs an action based on its current
policy and updates the Q-table based on its observations, i.e.,
immediate reward and the next state. In this paper, we aim to
find the optimal policy, i.e., a mapping from the state space to
the action space, 7* : S — A for the transmitter to maximize
its long-term average reward. The expected value function
obtained by policy 7 from state s € S is as follows:

(Vﬂ():En 3 tl(t’ t)l =
s [;'yr St,dz)|So s] -

= Ba|ri(susa0) + YV (50 = 5|,

where 0 < y < 1 is the discount factor that determines
the importance of long-term reward [8]. In particular, if y
is close to 0, the transmitter will prefer to select actions to
maximize its short-term reward. In contrast, if y approaches 1,
the transmitter will make actions to maximize its long-term
reward. r;(s;,a;) is the immediate reward achieved by taking

action a, at state s;,. At each state s, an optimal action
determined through the optimal value function is expressed
as V*(s) = maxg, {E,,[r,(s,,a,) + yq/”(s,+1)]}, Vs € S.
The optimal Q-functions for state-action pairs are denoted as
Q*(s,a) = ri(ss,ar) + YE[V™(s¢+1)], Vs € S. Then, V*(s)
can be expressed as V*(s) = max,{Q*(s,a)}. By making
samples iteratively, the problem is reduced to determining
Q*(s,a) for all state-action pairs. Intuitively, the Q-function is
updated to find the temporal difference between the predicted
Q-value and its current value as follows:

Qi(sr,ar) = Qi(ss,ar)+

a; | re(se,a0) + Vrclllax Q;(St41,Ar41) — Qt(st,as,) s
t+1

®)

where a; is the learning rate that determines the impact of new
information to the existing value. Moreover, to guarantee the
convergence for the Q-learning algorithm, the learning rate a;
is deterministic, nonnegative, and satisfies (9) [8].

a; € [0, l),Za, = oo, and Z:(oz,)2 < o0, 9)
=1 =1

Based on (8), the transmitter can employ the Q-learning
algorithm to obtain the optimal policy. Specifically, the algo-
rithm first initializes the table entry Q(s,a) arbitrarily, e.g.,
zero, for each state-action pair (s,a). Given current state s,
the algorithm performs action a through e-greedy algorithm.
In particular, the Q-learning algorithm selects a random action
with probability € or selects an action that maximizes the
Q(s,as) with probability 1—e. Thus, the algorithm can explore
the whole state space. The algorithm then determines the next
state and immediate reward after performing action a and
updates the Q-table based on (8). The algorithm is terminated
when all Q-values converge, or after a finite number of iter-
ations. This algorithm yields the optimal policy indicating an
action to be taken at each state such that Q(s,a) is maximized
for all states in the state space, i.e., 7*(s) = arg max Q" (s, a).
Under (9), it is proved in [8] that the Q—]earning algorithm
will converge to the optimal solution with probability one.
Note that the Q-learning algorithm is feasible to deploy on
the transmitter as it just needs to store a Q-table with a few
hundreds of state-action pairs and perform basic calculations.

V. PERFORMANCE EVALUATION
A. Experiment Setup

In our system, the data queue can store up to 10 packets with
a packet size set at 300 bits [9]. The energy storage capacity is
set at 10 units. The fundamental energy unit is 60 wJ [10]. A4
is set at 3 packets/time unit. If the transmitter performs active
transmission, it can successfully transmit up to 4 packets. Each
transmitted packet requires 1 unit of energy. The jammer has
four transmission power levels, i.e., Py = {OW,5W,15W,20W}
with Ppax = 20W [12]. As the numbers of harvested energy
units and backscattered packets increase when the jammer’s
transmission power increases [7], we set e = {0,1,2,3} and
d = {0,1,2,3}. When the jammer attacks the channel with
power level Py = {5W,15W,20W}, the transmitter can use the
RA technology to transmit r = {2,1,0} packets accordingly.
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Fig. 2: Convergence of the Q-learning algorithm.
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The latency threshold #;, is 3 time units and P,,, = 7W. Note
that the Q-learning algorithm does not require any information
about the jammer in advance. It can learn the jammer’s strategy
to obtain the optimal defense policy. To evaluate the proposed
solution, we compare its performance with the HTT scheme
in which the transmitter only performs harvest-then-transmit
protocol [11]. Moreover, in this scheme, the transmitter can
also adapt its data rates when the channel is under attack. For
the Q-learning algorithm, the learning rate and discount factor
are set at 0.1 and 0.9, respectively.

B. Simulation Results

In Fig. 2, we first show the convergence and learning process
of the Q-learning algorithm. Clearly, the Q-learning algorithm
can converge to the optimal policy after 2,000 iterations. As
such, our proposed solution is applicable to deploy in practice
as it can quickly obtain the optimal defense strategy for the
system. In Fig. 3, we vary Pg,, to evaluate the performance

of the system. Clearly, the throughput of the HTT scheme
increases when P, increases from 1W to 7W. The reason
is the transmitter has more opportunities to harvest RF energy
from the jamming signals. However, when P,,, > 7W, the
transmitter has less chance to actively transmit data, and thus
the throughput of the HTT scheme decreases. By switching
between backscattering data and harvesting energy from the
the jamming signals, the average throughput of the proposed
solution increases and the packet loss decreases (as shown in
Fig. 3(b)) when the jammer is likely to attack the channel. This
is a very interesting finding as the transmitter considers the
Jammer as an RF source to leverage for its operations. Next,
in Fig. 4, we vary the maximum number of packets d, that
can be actively transmitted. Clearly, when the d; increases,
the throughput of the HTT mode increases and remains the
same when the d; > 7. This is stemmed from the fact
that the amount of the harvested energy of the transmitter is
limited. In contrast, by balancing between the harvesting and
backscattering time, the proposed solution achieves the highest
throughput and lowest packet loss among the two schemes.

VI. SUMMARY

In this letter, we have proposed an anti-jamming approach
which allows the transmitter to backscatter data based on the
jamming signals. To deal with the uncertainty of the jammer,
we have formulated the optimization problem based on the
MDP framework and developed the Q-learning algorithm to
obtain the optimal solution. The simulation results interest-
ingly showed that the legitimate transmitters can attain higher
throughput and less packet loss with higher jamming power.
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