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Abstract—Large-scale mobile edge computing (MEC) systems
require scalable solutions to allocate communication and com-
puting resources to the users. In this letter we address this
challenge by applying dynamic spectrum sharing among the
base stations (BSs), together with local resource allocation in the
cells. We show that the network-wide resource allocation can be
transformed into a convex optimization problem, and propose
a distributed, hierarchical solution with limited information
exchange among the BSs. Numerical results demonstrate that
the proposed solution is superior to other baseline algorithms,
when wireless and computing resource allocation is not jointly
optimized, or the wireless resources allocated to the BSs are fixed.

Index Terms—MEC, multi-cell, resource allocation

I. INTRODUCTION

By enabling mobile devices to offload computation-

intensive tasks to servers in close proximity, mobile edge com-

puting (MEC) can provide low-latency services for emerging

applications, such as immersive augmented reality, wearable

cognitive assistance, or autonomous driving. Meanwhile, com-

putation offloading can decrease the energy consumption of the

mobile devices [1] and thus prolong their lifetime.

Early works on MEC focus on single cell systems with

multiple users [1]–[3]. Recently, the general scenario of multi-

cell MEC is receiving attention [4]–[7]. In [4], a MIMO

multicell system with a common edge server is considered.

The formulated energy minimization problem is solved using

successive convex approximation. A game theoretic approach

for the joint optimization of wireless and computing resources

is proposed in [5], while the performance of MEC in het-

erogeneous networks is evaluated in [6], using stochastic

geometry. A comprehensive study on the complexity of service

placement and request routing in multi-cell MEC is provided

in [7]. Most of the above works consider resource allocation

in the multi-cell MEC as a large, centralized optimization

problem, an approach that is not viable for large-scale systems.

Research on cellular networks faced the same issue, and

provided the approaches of biasing (also called cell breathing)

[8], [9], and dynamic spectrum sharing (also called channel

borrowing) [10]–[12] to balance network traffic across the

cells. Initial results for biasing in MEC are shown in [6].

In this letter we adapt dynamic spectrum sharing to achieve

communication and computation load balancing among the

BSs, with the objective to minimize the total transmission
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energy consumption under computational delay constraints [1].

We show that energy minimization can be transformed into a

convex optimization problem, for which centralized optimal

solution exists. Based on the centralized problem formulation,

we propose a primal-dual resource allocation algorithm that

lends itself to an iterative distributed solution, where BSs

cooperate to share the spectrum, while each individual BS

allocates its local communication and computing resources

to the associated users. Numerical results show that the joint

resource allocation can reduce the energy consumption signifi-

cantly, while the proposed distributed solution requires limited

information exchange among the BSs and converges within a

few iterations.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a MEC system that consists of K users, and

M BSs, each equipped with a MEC server. The users offload

their computation tasks to a BS for processing. We denote

the set of users by K = {1, · · · ,K}, and the set of BSs

by M = {1, · · · ,M}. We consider that each user i ∈ K
generates computationally intensive and delay sensitive tasks,

characterized by three parameters, the size Li of the input

data, the number Wi of CPU cycles required to perform the

computation, and the completion time constraint Di.

The objective of the considered MEC system is to minimize

the energy consumption for data transmission under the delay

constraint, by jointly allocating the wireless and computing

resources, as well as the transmission power of the users.

Communication resources: The overall system bandwidth

is B Hz. We consider flat fading channel and orthogonal access

with frequency division multiple access. Users are associated

to the BS with the best received signal-to-noise ratio, as it is

often the case in today’s cellular systems. Denote the corre-

sponding channel gain for user i by hi. Then, the achievable

data rate at user i is given by Ri = xi log2

(

1 + Pihi

xiN0

)

, where

Pi is the corresponding transmission power, and xi denotes the

allocated bandwidth, satisfying
∑

i∈K
xi = B. Besides, N0 is

the noise power spectral density coefficient. Accordingly, the

transmission time and the resulting transmission energy con-

sumption are respectively given by Ti =
Li

Ri
and Ei =

LiPi

Ri
.

Note that we consider orthogonal spectrum access here to

reveal insights on joint resource allocation in MEC. Extension

to multi-cell MEC systems with frequency reuse is discussed

in Section V.

Computing resources: Let us denote the computational

capacity of the MEC server at BS j, j ∈ M by Cj and

the set of users associated with BS j by Sj , |Sj | = Kj . The
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users served by the BS j, i.e., ∀i ∈ Sj share the computing

resource of the MEC server. We denote the computing resource

allocated to user i as qi, satisfying
∑

i∈Sj
qi = Cj . Then, the

computational time of user i’s task is given by Qi =
Wi

qi
[13].

Energy consumption minimization: We consider the prob-

lem of total transmission energy minimization, under the

constraint on the completion time of the computational tasks.

That is, for each user i, the sum of the transmission and

computational times should not violate the maximum delay

Di, i.e., Ti + Qi ≤ Di. The delay constraint then can be

turned into the following rate requirement: Ri ≥
Li

Di−Qi
.

The energy minimization problem can be formulated as

P1 : min
P,x,q

∑

i∈K

Ei (1a)

s.t. Ri ≥
Li

Di −Qi
, ∀i ∈ K (1b)

∑

i∈K

xi = B (1c)

∑

i∈Sj

qi = Cj , ∀j ∈M (1d)

where P ∈ R
K ,x ∈ R

K ,q ∈ R
K are the vectors of allocated

powers Pi, bandwidth xi and computational resource qi,
respectively. Inequality constraints (1b) reflect the minimum

data rate requirement for each user. Constraints (1c) limit the

bandwidth, while (1d) restrict the computing resource.

III. CENTRALIZED RESOURCE ALLOCATION

To solve P1, the wireless and computing resources need

to be allocated jointly. They are however coupled in a non-

linear way through the delay constraint. To progress with the

solution, we first state the following theorem.

Theorem 1: Under any given bandwidth and computing

resource allocation x,q, the energy consumption is minimized

when Ti+Qi = Di, ∀i ∈ K holds and the transmission power

is set as Pi = N0xi

hi

(

2
Rmin

i
xi − 1

)

, ∀i ∈ K where Rmin
i is

the minimum rate that still fulfills the delay requirement, i.e.,

Rmin
i = Li

Di−Qi
.

Proof: When xi and qi are given, the energy consumption

of the users is independent, and minimizing the total energy

consumption is equivalent to minimizing that of each user.

Without loss of generality, we look at Ei, which can be

reformulated as Ei = LiPi

Ri
= LiPi

xi log2

(

1+
Pihi
xiN0

) . Clearly, Ei

increases with Pi, and thereofre, Ei is minimized when the

minimum power is used. Meanwhile, to satisfy the delay

constraint, we have Ri = xi log2

(

1 + Pihi

xiN0

)

≥ Rmin
i ,

i.e., Pi ≥ (2R
min
i /xi − 1)N0xi/hi. At equality the achieved

rate is Rmin
i , which in turn results a transmission time of

Ti = Di −Qi. This concludes the proof.

Let us then reformulate P1, based on Theorem 1. In addi-

tion, let us replace variables qi with

ti = Di −Wi/qi. (2)

This then leads to

P2 : min
x,t

∑

i∈K

N0

hi
xiti

(

2
Li

xiti − 1
)

(3a)

s.t.
∑

i∈K

xi = B (3b)

∑

i∈Sj

Wi

Di − ti
= Cj , ∀j ∈ M (3c)

In P2, equality (3c) is clearly not affine, and thus, the

feasible set is non-convex. To address it, we relax the equality

constraint and substitute (3c) with

∑

i∈Sj

Wi

Di − ti
≤ Cj , ∀j ∈ M (4)

As a consequence of Theorem 1, for any user i, the energy

consumption decreases if qi, the computing resource allocated

to the user is increased. Thus, for the optimal solution, equality

is achieved in (4), which means substituting (3c) with (4) will

not change the solution.

Theorem 2: Problem P2 with the relaxed constraint (4) is a

convex optimization problem.

Proof: First, equality constraint (3b) is affine. Then,

for inequality constraint (4), its second derivative is
∑

i∈Sj

2Wi

(Di−ti)
> 0, and thus, it is convex. Last, let us

consider the objective function (3a). It can be seen that the

energy consumption for each user is only affected by its

own variables, e.g., for user i, N0xiti

(

2
Li

xiti − 1
)

/hi is only

affected by xi and ti. Therefore, we can consider each user

separately. Without loss of generality, we consider user i,
whose Hessian matrix is given by

Hi =
N0

hi
·

[

Hi(1, 1) Hi(1, 2)
Hi(2, 1) Hi(2, 2)

]

,

where Hi(1, 1) = ln 22 · 2
Li

tixi ·
L2

i

tix3
i

, while Hi(2, 2) = ln 22 ·

2
Li

xiti ·
L2

i

xit3i
. Besides, Hi(1, 2) = Hi(2, 1) = 2

Li
xiti −1+ ln 22 ·

L2
i

x2
i
t2
i

2
Li

xiti −ln 2· Li

xiti
2

Li
xiti . After some algebraic manipulations,

it can be verified that det(Hi) > 0 holds for all Li

xiti
> 0,

which indicates (3a) is convex. This completes the proof.

Based on Theorem 2, the optimal solution of P2 can be

obtained using standard convex optimization methods in a

centralized manner.

IV. DISTRIBUTED RESOURCE ALLOCATION WITH

DYNAMIC SPECTRUM SHARING

In this section we propose an Iterative Resource Allocation

algorithm to solve problem P2, that lends itself to a distributed

implementation, with decreased signaling needs. As shown in

Algorithm 1, it follows two iterative steps: i) the Bandwidth

Allocation Algorithm (BAA) updates x to allocate bandwidth

across and within the BSs, for given t, and ii) the Computation

resource Allocation Algorithm (CAA) updates t to allocate the

computing resource at each BS, for given bandwidth allocation

x. We denote by Et
i and Ex

i the energy consumption of user

i after optimizing ti and xi, respectively, and ǫ is the stop

condition.
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Algorithm 1 Iterative Resource Allocation

1: Initialization: qi ← Cj/Kj, ti ←
(

Di −
Wi

qi

)

, ∀i ∈

Sj , j ∈ M;

2: Update xi, ∀i ∈ K based on BAA, and calculate
∑

i

Ex
i ;

3:
∑

iE
t
i ←

∑

i E
x
i + 2ǫ;

4: while
∑

iE
t
i −

∑

iE
x
i > ǫ do

5: Update ti based on CAA, and recalculate
∑

i E
t
i ;

6: Update xi based on BAA, and recalculate
∑

iE
x
i ;

7: end while

The Bandwidth Allocation Algorithm (BAA): Assuming

that the computing resource allocation t is given, problem P2

is simplified as

P3 : min
x

∑

i∈K

N0

hi
tixi

(

2
Li

tixi − 1
)

s.t. (3b). (5a)

Since Hi(1, 1) > 0, P3 is a convex problem, and we can

use the Karush-Kuhn-Tucker (KKT) condition to derive the

optimal x. The KKT condition for user i is

g(xi) =
N0ti
hi

[

2
Li

tixi −
Li

tixi
2

Li
tixi ln 2− 1

]

+ λ = 0, ∀i ∈ K

where λ is the introduced auxiliary variable, satisfying λ > 0.

For given λ, the above equation can be used to obtain xi.

Specifically, we have
∂g(xi)
∂xi

=
ln 22·N0L

2
i

hitix3
i

2
Li

tixi > 0, which

indicates that g(xi) grows with xi, and thus a bisection search

can be used to obtain xi by comparing g(xi) with 0. Now the

problem lies in how to obtain λ. When λ is increased, xi, ∀i ∈
K will decrease to ensure g(xi) = 0. Meanwhile,

∑

i xi =
B needs to hold. Consequently, λ can also be obtained with

bisection search, by comparing
∑

i xi with B.

The resulting BAA consists of two loops: an outer loop

to find the value of λ and an inner loop to determine the

bandwidth allocation x.

The Computing resource Allocation Algorithm (CAA):

Under given bandwidth allocation, the computing resource

allocation is independent across the BSs. Thus, the energy

minimization for each BS is equivalent to that of the overall

system. Let us consider BS j and user set Sj , j ∈ M. The

corresponding optimization problem can be formulated as

P4 : min
t

∑

i∈Sj

N0

hi
xiti

(

2
Li

xiti − 1
)

s.t. (4). (6)

As P3, P4 is also a convex problem, and the KKT condition

is given by

f(ti) =
N0xi

hi

[

2
Li

xiti −
Li

xiti
2

Li
xiti ln 2− 1

]

+
Wi

(Di − ti)2
µj = 0,

∀i ∈ Sj , j ∈ M

where µj is the introduced auxiliary variable, satisfying µj ≥
0.

Since
∂f(ti)
∂ti

=
ln 22·N0L

2
i

hixit3i
2

Li
xiti + 4Wi

(Di−ti)2
µj > 0, we can

conclude that f(ti) grows with ti, and further ti declines with

µj . Therefore, ti and µj can be found with bisection search.

At each BS j, j ∈ M, the resulting CAA includes an outer

loop to find the value of µj and an inner loop to determine

t, which in turn gives the computing resource allocation q,

according to (2).

Distributed Implementation with Dynamic Spectrum

Sharing among the BSs:

The Iterative Resource Allocation algorithm requires the

implementation of BAA and CAA, and the exchange of the

parameters between these algorithms. Note that CAA can be

performed by the individual BSs. Similarly, for BAA, the

update of xi under given λ can happen locally at the BS.

Finding the appropriate λ value for the KTT condition however

requires collaboration. Specifically, the BSs need to share

their
∑

i∈Sj
xi values, that is, the bandwidth that should be

allocated to BS j, and increase or decrease λ in the bisection

search, if
∑

j∈M

∑

i∈Sj
xi is larger or smaller than B.

Optimality and complexity:

Theorem 3: The Iterative Resource Allocation algorithm

gives the optimal resource allocation in finite steps, with

predefined accuracy ǫ.

Proof: In both lines 5 and 6 of Algorithm 1, the energy

consumption decreases, or remains unchanged. Since there is a

lower bound for the energy consumption, e.g., 0, the Iterative

Resource Allocation algorithm always terminates, either by

reaching the lower bound, or by achieving a decrease less than

ǫ. Moreover, the obtained local optimum is also the global

optimum since the considered problem is convex.

The centralized implementation requires the collection of

user parameters and the distribution of the resource allocation

vectors to the BSs, thus, the signaling complexity is O(K),
where K is the total number of users in the multi-cell system.

The computational complexity comes form the iterations of

Algorithm 1, where both BAA and CAA perform bisection

search for λ and µ as well as for the xi and ti values. This

gives a computational complexity of O(NK), where N is the

number of iterations in Algorithm 1.

The distributed implementation requires information ex-

change among the BSs, to search for λ in BAA, in each

iteration steps of Algorithm 1. This leads to a signaling

overhead of O(NM), where M is the number of BSs. Each

BS j needs to run BAA and CAA locally, and thus, the

computation complexity is O(NKj).

The distributed implementation has good scalability prop-

erties, however, the complexity depends on the number of

iterations N . Therefore, in Section VI we investigate how N
depends on the network parameters.

V. MULTI-CELL MEC WITH FREQUENCY REUSE

The previous sections consider orthogonal spectrum alloca-

tion among cells to reduce the complexity of the analysis and

reveal insights. Frequency reuse is however necessary in large

systems to increase spectrum efficiency. To this end, let us first

consider the case when fixed frequency reuse (i.e., according to

3 or 7 cell pattern) is adopted to avoid co-channel interference.
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Fig. 1: Energy consumption as a function of (a) the data size, (b) the average computing need, and (c) the delay constraint.

In this case, we can reformulate P2 as

P5 : min
x,t,Bf

∑

i∈K

N0

hi
xiti

(

2
Li

xiti − 1
)

(7a)

s.t.
∑

i∈Sj

xi = Bf , ∀j ∈ Mf , f = {1, · · · , F} (7b)

F
∑

f=1

Bf = B (7c)

∑

i∈Sj

Wi

Di − ti
= Cj , ∀j ∈M (7d)

where F denotes the cell reuse factor, andMf represents the

cell set using the same frequency band Bf , f = {1, · · · , F}.
Then, (7b) denotes the bandwidth constraint for each cell,

while (7c) is the total bandwidth constraint. Both (7b) and (7c)

are affine constraints, and thus problem P5 with a relaxed (7d)

(i.e., (4)) is convex, and can be easily solved using standard

convex optimization tools.

An iterative solution that also allows distributed imple-

mentation can follow the lines of Algorithm 1. CAA can be

performed as described in Section IV, but the bandwidth allo-

cation algorithm has to be extended. Now the KKT conditions

are given by

N0ti
hi

[

2
Li

tixi −
Li

tixi
2

Li
tixi ln 2− 1

]

+ λj = 0, ∀i ∈ Sj , j ∈M

(8)

β =
∑

j∈Mf

λj , ∀f = {1, · · · , F} (9)

where λj and β are the introduced auxiliary variables for (7b)

and (7c), respectively, satisfying λj , β > 0.

Algorithm 2 summarizes the steps to find Bf , xi, λj and β.

The algorithm has an inner loop to determine Bf , xi and λj for

given β, according to BAA in Section IV and (9). This iteration

ensures that the bandwidth is optimally allocated for given β
values. Then, an outer loop finds β, such that constraint (7c)

is satisfied. The distributed implementation requires β,Bf and

λj to be exchanged among the cells.

Now let us consider the extreme case with universal fre-

quency reuse. Due to the existence of co-channel interfer-

ence, users’ achievable rates are non-convex functions over

their transmit powers. As a result, the energy minimization

problem is likely to be NP-hard [12, Theorem 1]. To make it

tractable, we may need to refer to convex approximation or

dual optimization [4], [12], [14].

Algorithm 2 Bandwidth Allocation with Frequency Reuse

1: Initialization: βlow; βup; ǫ
2: while βup − βlow > ǫ

3: β ←
βlow+βup

2 ;

4: for f ← 1, · · · , F
5: initialization: Blow

f , Bup
f ;

6: while Bup
f −Blow

f > ǫ

7: Bf ←
Blow

f +Bup

f

2 ;

8: obtain xi, λj , i ∈ Sj , j ∈Mf as in BAA;

9: if
∑

j∈Mf
λj > β then Blow

f ← Bf ;

10: else Bup
f ← Bf ;

11: end;

12: end while;

13: end for;

14: if
∑F

f=1 Bf > B then βlow ← β
15: else βup ← β
16: end;

17: end while

VI. NUMERICAL RESULTS

We evaluate the performance of the joint bandwidth and

computing resource allocation scheme in a simulator imple-

mented in Matlab. For each trial, we place the BSs and the

users randomly uniformly in a disk of a radius of 200 m. The

pathloss model follows 30.6 + 36.7 log10(d), where d is the

distance in m. Rayleigh fading is used for small-scale fading.

We set B = 10 MHz, N0 = −174 dBm/Hz and ǫ = 10−6.

We consider four baseline algorithms: a) equal bandwidth

and computing resource per user, referred to as Fixed; b)

equal bandwidth per user, while the computing resource is

optimized, referred to as Fixed bandwidth; c) equal bandwidth

for each BS, but optimized joint resource allocation within

each BS, referred to as Fixed bandwidth per BS; and d)

equal computing resource per user, with optimized bandwidth,

referred to as Fixed computing.
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Fig. 2: Energy consumption for Fixed computing and Joint allocation as a function of (a) data size, and (b) delay constraint.

Fig. 1 shows the energy consumption under the five al-

gorithms when the data size, the average computing need,

and delay constraint vary, respectively. The default simulation

values are: M = 4, K = 32, Cj = 100 G CPU cycles/s,

Li = 0.5 Mbits, Di = 500 ms. For Figs 1(a) and (c), Wi is

generated randomly uniformly within [0.5, 2.5] G CPU cycles

for each user. In Fig. 1(b), W is increased, and for each user

Wi is generated randomly uniformly within [ 13W, 5
3W ].

As expected, the energy consumption grows with the data

size and computing need, but decreases as delay constraint

gets relaxed. The proposed Joint resource allocation always

achieves the best performance. The large difference between

Joint allocation and Fixed bandwidth illustrates the gain of op-

timizing the bandwidth allocation among the users. Likewise,

the difference between Joint allocation and Fixed bandwidth

per BS indicates that the load in the cells can be highly

unbalanced, and thus dynamic bandwidth sharing among the

BSs is necessary. Fixed computing has similar performance

to Joint allocation, the reason is probably that the disparity

among users’ computing needs is small in the considered

scenario. Therefore, in Fig. 2 we present the corresponding

results with a higher variance, i.e., Wi is generated randomly

uniformly within [0.5, 4] G CPU cycles for each user. It can

be seen that Joint allocation consumes much lower energy

than Fixed computing, especially under large data size or strict

delay constraint.

We also conducted extensive simulations to evaluate N ,

the number of iterations required for the Iterative Resource

Allocation algorithm to converge. We found that N does not

depend significantly on M , the number of BSs, for example,

for M = 16 and K = 64 the algorithm converges in two

iterations on average. However, N increases almost linearly

with Kj , the number of users in a cell. For example, under

M = 4, the average number of iterations increases from two

to four when Kj changes from Kj = 8 to Kj = 16.

VII. CONCLUSION

In this paper, we considered a multi-user multi-cell MEC

system, where users offload their computing tasks to the BS

with the best channel for processing. An overall transmission

energy minimization problem was formulated and transformed

into a convex optimization problem. Furthermore, a scalable

distributed solution was proposed inspired by the dynamic

spectrum sharing approach in cellular networks. Numerical

results showed that the proposed joint allocation outperforms

other baseline algorithms, when wireless and computing re-

sources are not jointly optimized, or the wireless resources

allocated to the BSs are fixed.
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