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Abstract—Freshness of status update packets is essential for
enabling a wide range of applications in wireless sensor networks
(WSNs). Accordingly, we consider a WSN where sensors com-
municate status updates to a destination by contending for the
channel access based on a carrier sense multiple access (CSMA)
method. We analyze the worst case average age of information
(AoI) and average peak AoI from the view of one sensor in
a system where all the other sensors have a saturated queue.
Numerical results illustrate the importance of optimizing the
contention window size and the packet arrival rate to maximize
the information freshness.

Index Terms– Age of information (AoI), multi-access channel,
CSMA/CA, M/G/1 queueing model.

I. INTRODUCTION

In a wide range of Internet of Things (IoT) applications,
such as surveillance in smart home systems and drone control,
the destination requires the status information of various
physical processes collected by multiple sensors. In these
applications, timeliness of status information is very critical.
The age of information (AoI) was introduced as a destination
centric metric that characterizes this timeliness [1]. The AoI
for a sensor is defined as the time elapsed since the last
received status update packet was generated at the sensor. To
evaluate the AoI, the most commonly used metrics are average
AoI and peak AoI [2].

Due to the scarcity of radio spectrum and simplicity of
devices in wireless sensor networks (WSNs), it is critical
to implement an appropriate channel access protocol to ef-
ficiently send the status update packets from the sensors to
the destination over a shared channel. Carrier sense multiple
access with collision avoidance (CSMA/CA) is the most
simple and practical contention based access technique in
the wireless networks. CSMA/CA is a distributed channel
access scheme that allows each sensor to initiate transmissions
without any admission whenever a sensor has a data packet to
transmit. Two versions of CSMA/CA are employed: I) basic
CSMA/CA, and II) CSMA/CA with channel reservation. The
basic CSMA/CA is appropriate for the systems with short data
packets (e.g., status update systems) and where the hidden
node problem is negligible [3].

Many works have evaluated the performance of a
CSMA/CA-based system or optimized the system with respect
to different criteria (e.g., throughput, delay, etc.). However,
there are only a few works that have studied the freshness in
a CSMA/CA-based system.
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The authors of [4] investigated the AoI in a CSMA/CA-
based vehicular network using simulation. The authors of [5]
investigated ALOHA and scheduled based access techniques
in WSNs and minimized the average AoI by optimizing the
probability of transmission in each node. The most related
work to our paper is [6]. The authors of [6] analyzed the AoI in
a CSMA/CA-based system using the stochastic hybrid systems
technique. To make the analysis tractable, they assumed that
there are no collisions in the system by considering that
the channel sensing delay is zero and the back-off time is
continuous. They considered a system without queueing time
where the total capacity of the queuing system is one packet
under service. They optimized the average AoI by calibrating
the back-off time of each link.

In this paper, we derive the worst case average AoI and
average peak AoI of a sensor in a simplified CSMA/CA-
based WSN under the first-come first-served (FCFS) policy
and infinite queue size. To the best of our knowledge, the
existing works have not analytically evaluated the AoI in such
a network model. The worst case analysis is carried out by
considering that when a sensor contends for the channel to
transmit its status update packet, all the other sensors have a
packet to transmit. Therefore, we consider a saturated system
where the probability of collisions has the highest value.
We confine to the commonly used procedure of considering
a worst case scenario and a simplified CSMA/CA protocol
because a more general case is intractable to analyze [3].

The rest of this paper is organized as follows. Section II
presents the system model and the AoI metrics. The worst
case average AoI and average peak AoI of the simplified
CSMA/CA-based system are derived in Section III. Numerical
results are presented in Section IV and conclusions are drawn
in Section V.

II. SYSTEM MODEL AND AOI METRICS

We consider a simplified CSMA/CA-based WSN consisting
of M sensors, denoted by M = {1, . . . ,M}. Each sensor is
assigned to send status update packets of a random process to a
destination. We study the AoI of one sensor, m, in a worst case
scenario where all the other sensors m′ ∈ M \ {m} always
have a packet to transmit, i.e., they have saturated queues. In
this scenario, the probability of collisions for sensor m has
the highest value. We assume that the packet arrival rate of
sensor m follows the Poisson process with rate λ, and the
server of sensor m works according to the FCFS policy. In
the following, a simplified CSMA/CA technique and the AoI
metrics are presented.

1) CSMA/CA Mechanism: Here, we briefly present the
main concept of the basic CSMA/CA technique, standardized
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by IEEE 802.11. When sensor m has a packet to transmit,
it monitors the shared channel. If the channel is idle for a
predetermined period time named distributed interframe space
(DIFS), the sensor transmits. Otherwise, if the channel is
sensed busy, the sensor persists to monitor the channel until it
is found idle for a DIFS period, denoted by TDIFS. The time
immediately following an idle DIFS period is slotted. At this
point, the sensor generates a random number w according to
the discrete uniform distribution taking values in {1, . . . , C}
and sets a back-off counter to the generated number, where C
is a fixed contention window size. After choosing the random
number, the back-off time counter of the sensor decrements
at the beginning of each slot. Thus, a slot represents the
time interval between two consecutive back-off counter states.
When there is no transmission by the other sensors, the
back-off counter state decrements after a fixed time interval
denoted by TF. When a transmission is detected, the counter
is frozen; when the channel is sensed idle for TDIFS, the
counter is reactivated. The sensor starts to transmit its data
when the counter reaches zero. After transmitting the data, the
transmitter senses the channel to detect the acknowledgment
(ACK) message from the destination. If the transmitter does
not receive ACK within a predetermined time, or it detects a
signal of other sensors in the channel, it reschedules the packet
transmission according to the random back-off rule. After a
successful transmission, if the sensor has a next packet in its
buffer, the transmission process is started from the random
back-off rule.

2) AoI: A status update packet of each sensor contains the
measured value of the monitored process and a time stamp
that represents the time when the sample was generated. If at
a time instant t, the most recently received status update packet
contains the time stamp U(t), AoI is defined as the random
process ∆(t) = t− U(t). In other words, the AoI measures
the time elapsed since the last received status update packet
was generated at the sensor. The most common metrics of the
AoI are average AoI and average peak AoI. The average AoI
of a sensor at the sink is the average of ∆(t), denoted by ∆.
The peak AoI of a sensor at the sink is defined as the value of
the AoI immediately before receiving a status update packet.
The average of the peak AoI is denoted by A.

The considered status update system for sensor m is iden-
tical to an M/G/1 queueing model. Let S denote the service
time. Then, the average AoI ∆ and the average peak AoI A
of sensor m is calculated by [7]

∆ = E[S] +
λE[S2]

2(1− λE[S])
+

1− λE[S]

λLS(λ)
, (1)

A =
1

λ
+

λE[S2]

2(1− λE[S])
+ E[S], (2)

where E[S] is the expectation of the service time, E[S2] is the
second moment of the service time, and LS(λ) = E[e−λS ] is
the Laplace transform of the probability distribution function
of the service time at the packet arrival rate λ.

In general, the calculation of (1) and (2) requires finding
closed-form expressions of the service time parameters E[S],
E[S2], and LS(λ) for the basic CSMA/CA-based system.
This, however, is intractable due to the intricate nature of the

contention mechanism which results in a dependency of the
transmissions of the different sensors. In this regard, we use
the approximations introduced in [3] as follows. We assume
that the probability of a collision in each slot for each sensor
has a fixed value which thus disregards the dependencies of
the transmission states of other sensors as well as the influence
of the number of retransmissions. It is worth noting that when
we are evaluating the system from the view point of sensor m,
the main analysis intrinsically focuses on the behavior of the
system when sensor m has a packet to transmit. On the other
hand, the other sensors always have a packet to transmit. Thus,
conditioned on the transmission stage of sensor m, each of the
M sensors in the network sees M−1 sensors that have a packet
to transmit. Moreover, we assume that a packet transmission
process is started by the random back-off rule and that the
ACK message is instantaneous and error-free.

III. WORST CASE AVERAGE AOI AND AVERAGE PEAK
AOI OF THE SIMPLIFIED CSMA/CA-BASED SYSTEM

To calculate the average AoI and average peak AoI in
(1) and (2), respectively, we next derive the three required
quantities E[S], E[S2], and LS(λ). Let K denote a discrete
random variable that represents the number of (channel access)
attempts sensor m uses to successfully transmit a data packet.
Let Sk denote a random variable that represents the service
time conditioned on the event that the number of attempts is
K = k, i.e., the first k − 1 attempts are failed and the kth

attempt is successful. Accordingly, we express Sk as

Sk =
∑k−1
j=1 ζj + ξk, (3)

where ζj is a random variable that represents the elapsed time
of an unsuccessful transmission of sensor m at the jth attempt
and ξk is a random variable that represents the elapsed time
of a successful transmission of sensor m at the kth attempt.

By using the law of iterated expectations, the expectation
E[S], second moment E[S2], and Laplace transform E[e−λS ]
are calculated as follows:

E[S] = EK
[
E[S|K]

]
=
∑∞
k=1 E[Sk]Pr(K = k),

E[S2] = EK
[
E[S2|K]

]
=
∑∞
k=1 E[S2

k]Pr(K = k), (4)

E[e−λS ] = EK
[
E[e−λS |K]

]
=
∑∞
k=1 E

[
e−λSk

]
Pr(K = k),

where Pr(K = k) is the probability of the event that k − 1
attempts are failed and the kth attempt is successful. We can
see from (4) that to calculate the expectations E[S], E[S2],
and E[e−λS ] we need to calculate the quantities E[Sk], E[S2

k],
E[e−λSk ], and Pr(K = k). These are derived in the following.

1) Calculation of E[Sk]: By using (3), E[Sk] in (4) is
written as follows:

E[Sk] =
∑k−1
j=1 E[ζj ] + E[ξk]. (5)

First, we derive E[ξk]. Let a discrete random variable W
represent the generated random number by sensor m in the
back-off rule. Let ξj,w denote the elapsed time of a successful
transmission of sensor m at the jth attempt conditioned on the
event that the generated number is W = w. Then, by using
the law of iterated expectations, E[ξj ] can be calculated as
follows:

E[ξj ] = EW
[
E[ξj |W ]

]
=
∑C
w=1 E[ξj,w]Pr(W = w) (6)
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(a)
=
∑C
w=1

E[ξj,w]

C
,

where equality (a) follows because the random number
W is selected according to the uniform distribution, i.e.,
Pr(W = w) = 1/C.

By the definition of a successful transmission, ξj,w in (6) is
equal to the summation of the elapsed time until the back-off
time counter reaches zero and the required time to transmit a
packet, i.e.,

ξj,w =
∑w
i=1 Tj,i + TP, (7)

where Tj,i is a random variable that represents the time interval
between two consecutive back-off counter states i and i− 1 at
the jth attempt and TP is the required time to transmit a data
packet (which is determined according to the channel rate,
data packet size etc.). By substituting (7) in (6), we have

E[ξj ] =
1

C

∑C
w=1

(∑w
i=1 E[Tj,i] + TP

)
. (8)

Similarly as for E[ξj ], we derive E[ζj ] by introducing a
random variable ζj,w to describe the elapsed time of an
unsuccessful transmission of sensor m at the jth attempt
conditioned on the event that the generated number in the
back-off rule is W = w. Thus, E[ζj ] can be calculated as
follows:

E[ζj ] = EW
[
E[ζj |W ]

]
=
∑C
w=1 E[ζj,w]Pr(W = w) (9)

=
∑C
w=1

E[ζj,w]

C
.

The random variable ζj,w is equal to the summation of the
elapsed time until the back-off time counter reaches zero and
the required time to transmit a packet, i.e.,

ζj,w =
∑w
i=1 Tj,i + TP. (10)

By substituting (10) in (9), we have

E[ζj ] =
1

C

∑C
w=1

(∑w
i=1 E[Tj,i] + TP

)
. (11)

To calculate E[ξj ] in (8) and E[ζj ] in (11), we need to
calculate E[Tj,i]. The random variable Tj,i can be defined
based on two events: 1) When there is no transmission
by the other sensors m′ ∈M \ {m} between two back-off
counter states i and i− 1, we have Tj,i = TF, where TF is the
maximum duration that the sensor persists to sense the idle
channel before decrementing the back-off counter; 2) When
there is at least one transmission (successful or unsuccessful)
of the other sensors m′ ∈M \ {m} between two consecutive
back-off counter states i and i− 1, the time between states i
and i− 1 is equal to the summation of the required time to
transmit a packet TP, the DIFS period TDIFS, and a fraction of
the slot size TF (i.e., the time interval between the time instant
that the back-off counter state is decremented to i and the time
instant that sensor m detects a transmission of other sensors).
However, similarly as in the analysis in [3], we neglect this
fraction of the slot size in computing Tj,i, and thus we have
Tj,i = TP + TDIFS. It is worth to note that in a CSMA/CA
based system, TF is significantly smaller than the time period
TP + TDIFS. For example, with the considered parameters in
our numerical results in Section IV, TF is less than 2% of

TP + TDIFS. Let P tr
j,i denote the probability of having at least

one transmission by the other sensors between two consecutive
back-off counter states i and i− 1 at jth attempt. Thus, E[Tj,i]
is given by

E[Tj,i] = P tr
j,i(TP + TDIFS) + (1− P tr

j,i)TF. (12)

Due to the considered assumptions, the probability of having
at least one transmission by the other sensors between each
two consecutive back-off counter states at each attempt has a
fixed value and we have [3]

P tr
j,i = P tr = 1−

(
C − 1

C + 1

)M−1
,∀i, j. (13)

Therefore, (12) becomes

E[Tj,i] = E[T ] = (1− P tr)TF + P tr(TP + TDIFS),∀i, j. (14)

Considering (14) and the expressions for E[ξj ] and E[ζj ] in
(8) and (11), respectively, we have:

E[ξj ] = E[ζj′ ] , ξ̄1, ∀j, j′, (15)

where, by substituting (14) in (8), ξ̄1 is calculated as

ξ̄1 =
(
(C + 1)E[T ]

)
/2 + TP. (16)

Finally, by using (15) in (5), we have

E[Sk] = kξ̄1. (17)

2) Calculation of E[S2
k]: By using (3), E[S2

k] in (4) is
calculated as follows:

E[S2
k] = E

[(∑k−1
j=1 ζj + ξk

)2]
= E

[∑k−1
j=1 ζ

2
j

]
(18)

+ 2E
[∑k−1

j=1

∑k−1
j′=1,j′ 6=j ζjζj′

]
+ E

[
ξ2k
]

+ 2E
[
ξk
∑k−1
j=1 ζj

]
.

Since the elapsed time of each channel access attempt is
independent of the elapsed time of the other attempts, we have

E[ζjζj′ ] = E[ζj ]E[ζj′ ],∀j, j′, j 6= j′

E[ζjξj′ ] = E[ζj ]E[ξj′ ],∀j, j′, j 6= j′. (19)

By means of (19), E[S2
k] in (18) can be presented as a

function of ξ̄1 in (16), E[ξ2k], and E[ζ2j ], j = {1, . . . , k − 1}.
By following steps similar to (6)-(15) for E[ξ2j ] and E[ζ2j ], it
is easy to show that

E[ξ2j ] = E[ζ2j′ ] , ξ̄2, ∀j, j′, (20)

where ξ̄2 is calculated using the steps similar as for ξ̄1,
resulting in

ξ̄2 =
1

C

∑C
w=1

(
2wE[T ]TP + T 2

P + wE[T 2] + w(w − 1)E[T ]2
)

(a)
= T 2

P + (C + 1)

[
(2E[T ]TP + E[T 2]− E[T ]2)

2
(21)

+
(2C + 1)E[T ]2

6

]
,

where equality (a) follows from the following feature of the
finite series [8, Sect. 1.5]∑U

u=1 u
2 =

(
U(U + 1)(2U + 1)

)
/6,
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E[T ] is calculated by (14), and E[T 2] is given by

E[T 2] = (1− P tr)T 2
F + P tr(TP + TDIFS)2. (22)

Finally, by applying (15), (19), and (20), (18) is written by

E[S2
k] = kξ̄2 + k(k − 1)ξ̄21 . (23)

3) Calculation of E[e−λSk ]: By substituting (3) in
E[e−λSk ], we have

E[e−λSk ] = E
[∏k−1

j=1 e
−λζje−λξk

]
. (24)

Due to the fact that elapsed time of different attempts are
independent of each other, we have

E[e−λζje−λζj′ ] = E[e−λζj ]E[e−λζj′ ],∀j, j′, j 6= j′

E[e−λζje−λξj′ ] = E[e−λζj ]E[e−λξj′ ],∀j, j′, j 6= j′. (25)

By applying (25), (24) is written as follows:

E[e−λSk ] =
∏k−1
j=1 E

[
e−λζj

]
E
[
e−λξk

]
. (26)

By following steps similar to (6)-(15) for E[e−λζj ] and
E[e−λξj ], it can be shown that

E[e−λζj ] = E[e−λξj′ ] , ξ̄3, ∀j, j′, (27)

where ξ̄3 is given as

ξ̄3 =
1

C

∑C
w=1

(
E[e−λT ]we−λTP

)
(28)

(a)
=

e−λTPE[e−λT ](1− E[e−λT ]C)

C(1− E[e−λT ])
,

where equality (a) follows from the following feature of

the finite series [8, Sect. 1.5],
∑U
u=1 α

u =
α(1− αU )

1− α
, and

E[e−λT ] is given by

E[e−λT ] = (1− P tr)e−λTF + P tre−λ(TP+TDIFS). (29)

Finally, using (27), E[e−λSk ] in (26) is written as

E[e−λSk ] = ξ̄k3 . (30)

4) Calculation of Pr(K = k): Due to the considered as-
sumptions, the probability of having a successful transmission
in each attempt has a fixed value which is denoted by PS.
Therefore, Pr(K = k) is given by

Pr(K = k) = PS(1− PS)k−1, (31)

where PS is given by [3]

PS =

(
C − 1

C + 1

)M−1
. (32)

5) Final expressions for E[S], E[S2], and LS(λ) in (4):
Substituting (17), (23), (30), and (31) in (4), we have

E[S] =
∑∞
k=1 kξ̄1PS(1− PS)k−1,

E[S2] =
∑∞
k=1

(
kξ̄2 + k(k − 1)ξ̄21

)
PS(1− PS)k−1,

E[e−λS ] =
∑∞
k=1 ξ̄

k
3PS(1− PS)k−1. (33)

According to the feature of the series, for each 0 ≤ α < 1, we
have [8, Sect. 8.6]∑∞

u=1 uα
u =

α

(1− α)2
,
∑∞
u=1 u

2αu =
α(1 + α)

(1− α)3
. (34)

Thus, by applying (34) in (33), E[S], E[S2], and E[e−λS ] are
calculated as follows:

E[S] =
ξ̄1
PS
, E[S2] =

ξ̄2
PS

+
ξ̄21(2− 2PS)

P 2
S

,

LS(λ) =


ξ̄3PS

1− ξ̄3 + ξ̄3PS
, ξ̄3(1− PS) < 1,

∞, Otherwise,
(35)

with ξ̄1, ξ̄2, and ξ̄3 given in (16), (21), and (28), respectively.
As the outcome, the expressions in (35) can be used to
calculate the average AoI in (1) and the average peak AoI
in (2) in the considered model.

IV. NUMERICAL RESULTS

In this section, we present numerical results to show the
behavior of the AoI for different system parameters. We set
TDIFS = 128µs, TF = 50µs, channel bit rate 1 Mbit/s, and
packet size 300 Bytes.

Figs. 1 and 2 depict the average AoI and average peak
AoI of sensor m as a function of the packet arrival rate λ
for different number of sensors with contention window sizes
C = {100, 800}, respectively. When the number of sensors M
increases, the average AoI and average peak AoI dramatically
increase because the probability of collisions in the system
increases. It is worth noting that, when M increases, the values
of the packet arrival rate λ that minimize the average AoI and
average peak AoI both decrease. In addition, the curvatures
demonstrate that the range of values of λ that result in near-
optimal AoI become narrower for the increasing values of M .
This emphasizes the importance of implementing an optimal
generation policy of status update packets in WSNs with a
shared-access channel.

Fig. 3 illustrates the average AoI of sensor m as a function
of λ for different contention window sizes with a fixed
number of sensors M = 100. According to this figure, naively
increasing (or decreasing) the contention window size does
not minimize the average AoI and average peak AoI. Namely,
C = 1000 leads to a smaller average AoI than both C = 500
and C = 1500. However, for all larger contention window
sizes C = {500, 1000, 1500}, the AoI is not very sensitive
to the packet arrival rate λ in the sense that a wide range of
values of λ result in relatively low values of the average AoI.

Fig 4 illustrates the optimal value of the contention window
size C as a function of the number of sensors M and the arrival
rate λ. According to this figure, when the number of sensors
increases, the optimal contention window size C increases.
This is because when C increases, the probability of a collision
decreases. In other words, increasing the size of the contention
window mitigates the effect of an increased number of sensors
on the probability of a collision. However, C can not be set by
an arbitrary large number because it results in a high value of
the average AoI. In addition, the curve shows that for the small
number of sensors, when the packet arrival rate λ increases, the
optimal C increases smoothly. Moreover, the figure illustrates
that for a large number of sensors, when λ increases, the
optimal C first increases and then decreases. This represents
the trade-off between the effect of the probability of a collision
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Fig. 1: The average AoI of sensor m as a function of λ for different
number of sensors with a fixed contention window size C = 100.

0 0.5 1 1.5

Packet arrival rate 

2

2.5

3

3.5

4

4.5

5

5.5

6

A
v
er

ag
e 

p
ea

k
 A

o
I 

(s
)

Fig. 2: The average peak AoI of sensor m as a function of λ for
different number of sensors with C = 80.

and the delay imposed by the contention window size on the
average AoI.
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Fig. 3: The average AoI of sensor m as a function of λ for different
contention window sizes with a fixed number of sensors M = 100.

V. CONCLUSION

In this paper, we analytically evaluated the worst case
average AoI and average peak AoI of a simplified CSMA/CA-
based system. The worst case analysis was carried out by
considering a scenario in which the probability of collisions
for one considered sensor has the highest value. According
to the numerical results, the number of contending sensors
significantly affects the AoI due to network congestion. The
experiments illustrated that optimizing the contention window
size and the packet arrival rate can significantly improve

Fig. 4: The optimal value of the contention window size C as a
function of the number of sensors M and arrival rate λ.

the freshness of status updates in the considered system.
The interesting future work would be to address a more
realistic setup, where all sensors have bursty arrivals instead of
saturated queues. However, due to the complex interactions of
queues, an exact analysis is most likely analytically intractable
even in a simplified homogeneous scenario, where all sensors
have equal packet arrival rates and thus, one may need to resort
on numerical simulations.
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