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Intelligent Reflecting Surfaces:
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Özgecan Özdogan, Student Member, IEEE, Emil Björnson, Senior Member, IEEE, Erik G. Larsson, Fellow, IEEE

Abstract—Intelligent reflecting surfaces can improve the com-
munication between a source and a destination. The surface
contains metamaterial that is configured to “reflect” the incident
wave from the source towards the destination. Two incompatible
pathloss models have been used in prior work. In this letter,
we derive the far-field pathloss using physical optics techniques
and explain why the surface consists of many elements that
individually act as diffuse scatterers but can jointly beamform
the signal in a desired direction with a certain beamwidth. We
disprove one of the previously conjectured pathloss models.

Index Terms—Intelligent reflecting surface, pathloss model.

I. INTRODUCTION

Conventional wireless communication systems consist of
a transmitter sending information-bearing electromagnetic
waves to a receiver via an uncontrollable propagation environ-
ment. When searching for beyond 5G network architectures,
there is a growing interest in creating real-time reconfigurable
propagation environments [1]–[4]. This can potentially be
achieved by deploying special surfaces, known as intelligent
reflecting surfaces (IRS) [1], software-controlled metasurfaces
[2]–[4], and reconfigurable intelligent surfaces [5], [6], that
can control how the waves that reach them are reflected. In
this context, the word “reflection” has a wide meaning [7],
including diffuse reflection (e.g., scattering by rough material)
and ideal specular reflection (e.g., from an infinite mirror).

While the design of reconfigurable surfaces has a long his-
tory in the electromagnetic literature [8], the communication
analysis is in its infancy. There is no consensus on the basic
propagation modeling, but two incompatible pathloss models
have been conjectured without derivation from physical princi-
ples: surfaces consisting of many scattering elements [9], [10]
and surfaces consisting of many ideal mirrors [5]. In this letter,
we fill this gap by first explaining in Section II how a passive
metallic surface scatters an incident wave and then derive in
Section III how an IRS must be designed to mimic such a
surface while also controlling the directivity of the scattered
wave. This results in a rigorous pathloss model and a way to
build system models that can be used for further research.

II. PRELIMINARIES: PASSIVE METALLIC SURFACE

In this section, we review preliminaries on the field strength
and beamwidth of the waveform scattered by a “passive”
metallic (perfectly conducting) plate of finite size. The results
will later be used to explain the ideal operation of an IRS.
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Fig. 1: An incident wave is scattered by a a× b metal plate.

We consider a rectangular, perfectly conducting plate of size
a× b, and negligible thickness, located in the horizontal plane
(spanned by ex, ey). A point source far away, at distance di, is
radiating a linearly polarized electromagnetic wave with wave
number k = 2π

λ where λ is the wavelength. We assume, for
the sake of argument, that the polarization of the source is
such that the E-field is parallel to ex and the H-field lies in
the plane spanned by ey and ez . Let θi ∈ [0, π2 ] denote the
angle of incidence, that is, the angle between the Poynting
vector of the wave and ez . This setup is illustrated in Fig. 1.

We further assume that di is sufficiently large relative to
a and b (i.e., the source is in the far-field) that the curvature
of the wavefront, over the dimensions of the plate, can be
neglected. Hence, the impinging wavefield is approximated as
a plane wave with some magnitude Ei. To determine when
this approximation holds, we compute the phase differential
between a spherical wave and its plane-wave approximation
between the center and the edges of the plate. For the sake of
argument, suppose the plate is oriented such that the Poynting
vector enters with θi = 0 at the plate center; however the
analysis can be generalized to arbitrary incidence angles.
With the plane-wave approximation, the wave from the source
travels a distance of di to any point on the plate, but the wave
is actually spherical and at the edges of the plate it has traveled
the distance

√
d2i +

b2

4 . The phase discrepancy is

k

(√
d2i +

b2

4
− di

)
≈ π

4

b2

λdi
(1)

With e.g., b = 1m, di = 100m, λ = 0.1m, this is less than
five degrees and should have a minor impact. The incident
plane wave has the electric and magnetic field distributions

Ei = Eie
−jk(sin(θi)y−cos(θi)z)ex, (2)

Hi=−
Ei
η

(cos(θi)ey + sin(θi)ez) e
−jk(sin(θi)y−cos(θi)z), (3)
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where η is the characteristic impedance of the medium.
The E-field will induce motion of electrons in the plate. The

electrons will move in the direction of ex, but not in ey (since
the E-field is orthogonal to ey) and also not in the ez-direction
since the plate is assumed thin. The moving electrons induce
electromagnetic radiation, resulting in a scattered wave.

Lemma 1. The squared magnitude of the scattered field, in the
ey, ez plane and at an arbitrary observation angle θs ∈ [0, π2 ]
(measured against ez) is

S(r, θs)=

(
ab

λ

)2
E2
i

r2
cos2(θi)

(
sin
(
πb
λ (sin(θs)−sin(θi))

)
πb
λ (sin(θs)−sin(θi))

)2

(4)

at a far-field observation distance r ≥ 2max(a2,b2)
λ .

Proof: This result follows from standard physical optics
techniques (which neglect edge effects) as in [11, Example
11-3].

The expression in (4) for the magnitude of the scattered field
in the far-field has several intuitive properties; for example, it
is proportional to the area (ab)2 of the plate and to E2

i ∝
1/d2i , since the impinging wave from a point source in line-
of-sight (LoS) has a field strength inversely proportional to
d2i . As expected from Snell’s law, for the polarization that
we consider, S(r, θs) attains its maximum for the observation
angle θs = θi, which is the specular direction, for which the
last parenthesis in (4) is unity.1

A. Beamwidth of the Scattered Wave

The expression S(r, θs) reveals that the scattered field looks
like a beam that tapers off as θs is moved away from θi. The
3-dB beamwidth equals twice the deviation |θs − θi| required
to make the square of the second parenthesis in (4) equal to
1/2. Using the Taylor expansion cos(x) = 1 + O(x2) and
standard trigonometric identities, we have

sin(θs)− sin(θi) = sin(θi + θs − θi)− sin(θi)

= sin(θi) cos(θs − θi) + cos(θi) sin(θs − θi)− sin(θi)

= cos(θi)(θs − θi) +O
(
(θs − θi)2

)
. (5)

From (5) and using the Taylor expansions sin(x)
x = 1− x2

6 +

O(x3) and ( sin(x)x )2 = 1− x2

3 +O(x3), we obtain the following
second-order approximation of (4):

S(r, θs)=

(
ab

λ

)2
E2
i

r2
cos2(θi)

(
1− π2b2

λ2
cos2(θi)(θs − θi)2

3

)
+O

(
(θs − θi)3

)
. (6)

Hence, the 3-dB beamwidth is approximately twice the devi-
ation |θs − θi| required to make π2b2

λ2

cos2(θi)(θs−θi)2
3 = 1

2 :

|θs − θi| <

√
1

2

3λ2

π2b2 cos2(θi)
=

√
3

2

λ

πb cos(θi)
. (7)

1For other incident wave polarizations, this is true only approximately.
However, the observation angle that maximizes S(r, θs) approaches θi as
the size of the plate increases.
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Fig. 2: Normalized squared magnitude of the scattered field
as a function of the angle θs where θi = 30◦.

This inequality shows that the 3-dB beamwidth is inversely
proportional to the plate width b. The beamwidth is also
proportional to the wavelength λ, thus a fixed-size plate
can provide an extremely narrow beamwidth in the visible
spectrum (i.e., an almost perfect specular reflection), but 4-
5 orders-of-magnitude wider beamwidths in the typical radio
spectrum bands.2

The plate acts as a mirror in the sense that the diffusely
reflected or, more accurately, the scattered field has a 3-dB
beamwidth inversely proportional to b. Hence, it becomes very
small if b is large relative to λ. This scaling is no surprise: if
we think of the plate as an antenna, it is just the usual relation
that beamwidth is inversely proportional to antenna aperture.

Fig. 2 shows the squared magnitude S(r, θs) as a function of
θs. It is normalized by multiplying with r2

E2
i

, and we consider
θi = 30◦. When a and b are smaller or equal to the wavelength,
the scattered field is almost equally strong in all observation
angles. It is first when the plate is substantially larger than λ
that the beamwidth becomes small. The 3-dB beamwidth is
≈ 5.7◦ for a plate with a = b = 10λ where the second-order
approximation in (7) gives ≈ 5.2◦.

Corollary 1. A receiving antenna of effective electrical size
λ
v ×

λ
v , located at distance r � b/v from the plate with angle

θs to the antenna center will receive the signal power

S(r, θs)

(
λ

v

)2

. (8)

Proof: The antenna will see the plate through an angular
window of λ

vr radians. As long as λ
vr �

λ
b cos(θi)

, i.e., approx-
imately, r � b/v, the field strength will be approximately
constant over the antenna and (8) is obtained.

Since E2
i ∝ 1/d2i in LoS, Corollary 1 proves that the

received power is proportional to (ab)2/(dir)
2, where the pro-

portionality constant depends on the wavelength and angles.
If θs = θi, the received power increases monotonically with
a and b, because more energy is induced into the plate and
then radiated in a gradually narrower beam. Even when the

2Comparing radio signals at 6 GHz with green visible light at 600 THz,
the former has a 105 larger wavelength and thus needs a 105 wider plate to
give a reflection with the same beamwidth as for green light.
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beamwidth is small in absolute terms, it can be large relative to
λ/r and, thus, most of the energy of the scattered field anyway
misses the receiver antenna aperture. This is why the received
power in (8) is proportional to 1/r2. As a and b are increased
without bound, eventually the plane-wave approximation of
the incident field breaks down and the results in this section
become inaccurate. In the asymptotic limit, geometric optics
can be used instead to model a perfect mirror.

B. Multiple Adjacent Metallic Surfaces

Since the plate has a finite size, we can deploy multiple
adjacent plates. If the gaps in between are sufficiently large
then coupling effects can be neglected and superposition ap-
plies. When the scattered fields from these plates are received
at a given location, the relative phase shifts will lead to con-
structive or destructive interference. Under ideal constructive
interference, the squared field strength from N plates will be(

N
√
S(r, θs)

)2
= N2S(r, θs). (9)

The variables N , a, and b only appear in (9) as a joint term
(Nab)2, where Nab is the total area of the N plates. Hence, it
does not matter if the total area is made up by many small or
a few large plates, the maximum received power is the same.

III. SYSTEM MODEL FOR INTELLIGENT METASURFACES

If the incident angle θi from the transmitter to the surface
equals the observation angle θs leading to the receiver, then
the passive surface considered in Section II represents the ideal
case. Since the angles are generally different when one of the
devices is mobile, the main purpose of an IRS is to achieve
“anomalous reflection” [7], which means shaping the scattered
field so that the main beam is directed towards the receiver.

We now consider an IRS consisting of a metasurface of the
same dimensions as in Fig. 1 and the same impinging plane
wave. The goal of an IRS is to achieve total reflection with
its main beam pointing in a desired direction that we denote
as θr. Hence, the surface must be designed to redirect the
incident plane wave (Ei,Hi) in (2) and obtain the following
ideal field distributions of the reflected/scattered wave:

Er = Ere
−jk(sin(θr)y+cos(θr)z)ex, (10)

Hr=−
Er
η

(sin(θr)ez− cos(θr)ey) e
−jk(sin(θr)y+cos(θr)z). (11)

A widely used approach in the literature that designs reflec-
tive metasurfaces is based on the generalized Snell’s law of
reflection [12]. Using this method, the required surface phase
profile to transform the incident wave (Ei,Hi) into (Er,Hr)
is obtained by tailoring the surface impedance. At the surface
(z = 0), the superposition of the incident and reflected E-field
can be written as [13]

Et = Eie
−jk sin(θi)yex + Ere

−jk sin(θr)yex. (12)

Then, the desired phase of the desired reflection coefficient is

φr(y) = ∠

(
Ere

−jk sin(θr)y

Eie−jk sin(θi)y

)
= −k sin(θr)y + k sin(θi)y,

(13)
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Fig. 3: Local surface phase that is required to redirect the
incident wave with θi = 30◦ in a desired direction θr.

and differentiating it with respect to y gives the gradient of
the reflection coefficient in the generalized Snell’s law:

k(sin(θi)− sin(θr)) =
dφr(y)

dy
, (14)

which gives the relation between θi, θr and the local surface
phase φr(y). By altering the surface impedance, φr(y) is
obtained at each point of the surface and the output wave’s
desired phase −k sin(θi)y+φr(y) = −k sin(θr)y is achieved.

Fig. 3 shows the required local surface phase profile to
redirect (Ei,Hi) with θi = 30◦ into (Er,Hr) for different
values of θr. Fig. 3 shows that it is easier to implement a
surface when the desired θr is close to θi since the required
phase profile varies more slowly over the surface (i.e., (14)
is closer to zero). In practical implementations, the desired
local phase shift in the metasurface is discretized by dividing
the surface into sub-λ-sized elements, each having a constant
phase shift. The smaller the elements are, the more closely
the local phase shift can be approximated. In [14], the phase
distribution is discretized/quantized with a step size of λ/5, to
represent the finite number of resonators used in practice. In
[15], the surface is discretized by λ/8 as also shown in Fig. 4.

Small high-precision elements require sophisticated design
and expensive hardware, and also lead to coupling issues. On
the other hand, if the elements are too large (relative to λ)
then the required local phase will be coarsely quantized. This
will lead to a mismatch between the desired reflection angle
and the surface response. In this paper, we neglect the errors
due to quantization.

A. Propagation and Pathloss Model

In contrast to a metallic surface, for which it does not matter
if it consists of one or multiple plates (see Section II-B),
an IRS must consist of many small elements to reconfigure
the local phases with high resolution and thereby achieves a
main beam with the desired angle θr. This has no negative
impact on the maximum magnitude of the scattered field and
the beamwidth will not be narrower than in the ideal case
of a passive metallic surface. As discussed in Section II, the
incoming wave’s E-field in (2) induces an electric surface
current in the direction of ex. This current is adjusted in the
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Fig. 4: The quantized local surface phase that is required to
redirect the incident wave with θi = 0◦ to θr = 75◦.
IRS by tuning the surface impedance in each element to obtain
a surface phase profile that approximates that required by the
generalized Snell’s law. This operation results in a scattered
wave with maximum amplitude towards θr instead of θi.

Lemma 2. When using an IRS to reflect a signal in the
direction θr, the squared magnitude of the scattered field at
an arbitrary observation angle θs ∈ [−π2 ,

π
2 ] is

SIRS(r, θs, E
2
i )

=

(
ab

λ

)2
E2
i cos

2(θi)

r2

(
sin
(
πb
λ (sin(θs)− sin(θr))

)
πb
λ (sin(θs)− sin(θr))

)2

(15)

at a far-field distance r ≥ 2max(a2,b2)
λ .

Proof: The negligible thickness of the surface allows us to
write the electric current density on the surface (z = 0, y = y′)
approximately as Jx = 2Ei

η cos(θi)e
−jk sin(θr)y

′
[11, Eq. (7-

54)] assuming the surface is lossless, i.e., E2
i cos(θi) =

E2
r cos(θr). Then, we use the same steps as in Lemma 1.
The intercepted power by the IRS is the same as for the

perfectly conducting plate in Section II, but the maximum of
SIRS(r, θs, E

2
i ) is achieved at θs = θr instead of θs = θi.

Suppose the transmit power is Pt and the transmitter has
antenna gain Gt. Then the relation between Ei and Pt is

E2
i

2η
=
PtGt
4πd2i

, (16)

where Ei has unit Volt/m and η ≈ 377Ohm. Furthermore,
assume that the effective area of the receiver antenna is λ2

4πGr,
where Gr is the antenna gain. Then, the received signal power
Pr for a receiver at far-field distance r in direction θs is

Pr(Pt, di, r, θs) =
1

2η
SIRS

(
r, θs,

PtGtη

2πd2i

)(
λ2

4π
Gr

)
. (17)

Corollary 2. When using an IRS to reflect a signal in the
direction θr, the pathloss at the far-field distance r is

βIRS(r, di, θs) =
Pr(Pt, di, r, θs)

Pt

=
GtGr
(4π)2

(
ab

dir

)2

cos2(θi)

(
sin
(
πb
λ (sin(θs)− sin(θr))

)
πb
λ (sin(θs)− sin(θr))

)2

(18)

-90 -75 -60 -45 -30 -15 0 15 30 45 60 75 90

-200

-150

-100

-50

Fig. 5: The pathloss of the reflected path. The angles are θi =
30◦ and θr = 60◦ where the antenna gains are Gt = Gr = 5
dB, the distances are di = 50 and r = 25 meters.

and in the ideal case when the receiver has θs = θr, the
pathloss expression simplifies to

βIRS(r, di, θr) =
GtGr
(4π)2

(
ab

dir

)2

cos2(θi). (19)

Remark 1. The derivations have assumed the incoming wave
and the desired scattered wave have E-fields that are both
parallel to ex, but the analysis can be generalized. The end
result will still become the pathloss expression βIRS(r, di, θr)
that only depends on the total effective area ab cos(θi) of the
IRS as seen from the transmitter.

Fig. 5 shows the pathloss βIRS(r, di, θs) as a function of θs
for different sizes of the IRS and θr = 60◦. The maximum is
achieved at θs = θr and the main beamwidth gets narrower as
the IRS’s surface area increases. When the dimension is sub-
wavelength (≤ λ/2), the IRS almost acts as a diffuse scatterer.

B. Interpreting an IRS as an Array of Diffuse Scatterers

As noted above, an IRS of size a× b consists of many sub-
λ-sized surface elements. Suppose the IRS consists of Na×Nb
elements, each having the size a

Na
× b

Nb
, where a

Na
, b
Nb
≤ λ.

The pathloss between the transmitter and receiver through the
nth surface element (assuming the others are removed) is

βsIRS(r, di, θr) =
GtGr
(4π)2

(
ab

NaNbdir

)2

cos2(θi) (20)

since the last term in (18) is approximately unity for an ele-
ment of this size (as shown in Fig. 5). Note that βsIRS(r, di, θr)

is the same for all n since we have assumed r ≥ 2max(a2,b2)
λ .

Let φn denote the local surface phase of the nth element. If
it is selected to achieve constructive interference from all N =
NaNb surface elements at the receiver, the pathloss between
the transmitter and receiver through the whole IRS is(

N
√
βsIRS(r, di, θr)

)2

= βIRS(r, di, θs). (21)

Hence, we can interpret an IRS as an array of diffuse scatterers
(each sub-λ-sized) that phase-align their reflected signals at the
receiver and thereby achieve “anomalous” reflection.
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C. System Model for IRS-Supported Communications

To exemplify how one can derive a physically correct
system model for IRS-supported communication, we consider
an LoS setup where

√
βsde

jφsd is the direct channel between
the single-antenna source and destination. When including the
reflected path from the IRS, we get the received signal

y =
(√

βsIRShT

srΦhrd +
√
βsde

jφsd

)
x+ w, (22)

where hsr = [ejψ
sr
1 , . . . , ejψ

sr
n , . . . , ejψ

sr
N ]T and hrd =

[ejψ
rd
1 , . . . , ejψ

rd
n , . . . , ejψ

rd
N ]T are the normalized LoS chan-

nels between the source and IRS and the IRS and receiver,
respectively. The signal x has power Pt, w ∼ NC(0, σ

2) is
additive noise, and the surface phases of each surface element
are stacked in Φ = diag

(
ejφ1 , . . . , ejφn , . . . , ejφN

)
, which is

a diagonal matrix. An equivalent way to write (22) is

y =
√
βsIRS

N∑
n=1

ej(ψ
sr
n +ψrd

n +φn)x+
√
βsde

jφsdx+ w. (23)

The IRS can select Φ to maximize the received signal power
[9]. If we select φn=φsd−ψsr

n −ψrd
n to phase-align all the sig-

nal terms in (23), we obtain y = (N
√
βsIRS+

√
βsd)e

jφsdx+w
and the signal-to-noise ratio (SNR) is

SNR =

(
N
√
βsIRS +

√
βsd
)2
Pt

σ2
=

(√
βIRS +

√
βsd
)2
Pt

σ2
,

(24)

where the second equality follows from (21). Hence, the
considered phase-shifts coincide with those achieved by the
discretized generalized Snell’s law, with the extra condition
that not only the N terms in the sum in (23) are phase-aligned,
but that they are also phase-aligned with the LoS path.

If an IRS is used for “anomalous” reflection, there is no
need to take the detour via (22), but we use the IRS’s total
pathloss in (19) and directly write the received signal as y =√
βIRSe

jφIRSx+
√
βsde

jφsdx+w, where the phases of the IRS
elements have already been aligned. It then only remains to
select the common phase φIRS of all IRS elements to equal
φsd. However, there are other scenarios (e.g., with multiple
antennas) where one can start from a system model as (22).

IV. SUMMARY AND RELATION TO PRIOR WORK

We have used physical optics techniques to derive the
pathloss expression in (19) for an IRS that is configured to
reflect an incoming wave from a far-field source towards a
receiver in the far-field. Even if the incoming signal is a plane
wave, the reflected signal is a beam with beamwidth inversely
proportional to the size of the IRS. Importantly, the received
signal power is proportional to the square of the IRS area and
to 1/(dir)

2, where di is the distance between the transmitter
and IRS, and r is the distance between the IRS and receiver.
This disproves the conjecture in [5] that the received power
would be proportional to 1/(di + r)2. That conjecture might
hold for an infinitely large IRS acting or in the near-field, but

provably not in the far-field setup studied herein.3 In particular,
one cannot use multiple infinite-sized IRS as in [5]. However,
the system models used in [6], [9], [10] are essentially correct,
if the pathloss of each element are selected according to (20).

A practical IRS consists of N sub-wavelength-sized ele-
ments that scatter the incoming signals with unique phase-
shifts to achieve coherent beamforming in a direction of
interest. This is rather similar to a phased array, except that
the signal power comes from another place. The ideal phase-
shifts that create a single beam are given by the generalized
Snell’s law, but if a superposition of multiple beams should
be created, the phase-shifts must be explicitly optimized.
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