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Abstract—Large intelligent surface (LIS) has emerged as a
promising new solution to improve the energy and spectrum ef-
ficiency of wireless networks. A LIS, composed of a large number
of low-cost and energy-efficient reconfigurable passive reflecting
elements, enhances wireless communications by reflecting imping-
ing electro-magnetic waves. In this paper, we propose a novel
passive beamforming and information transfer (PBIT) technique,
in which the LIS simultaneously enhances the primary communi-
cation and sends information to the receiver. We develop a passive
beamforming method to improve the average receive signal-to-
noise ratio (SNR). We also establish a two-step approach at the
receiver to retrieve the information from both the transmitter and
the LIS. Numerical results show that the proposed PBIT system,
especially with the optimized passive beamforming, significantly
outperforms the system without LIS enhancement. Furthermore,
a tradeoff between the passive-beamforming gain and the infor-
mation rate of the LIS has been demonstrated.

Index Terms—Passive beamforming and information transfer
(PBIT), large intelligent surface (LIS), intelligent reflecting sur-
face (IRS).

I. INTRODUCTION

Recent years have witnessed an explosive growth of wireless

data demands along with the popularity of smart terminals

and mobile devices [1]. Although the utilization of advanced

wireless technologies, such as millimetre wave (mmWave),

massive multiple-input multiple-output (MIMO), ultra-dense

deployments, etc., has greatly improved the spectral efficiency

of wireless networks [2], the resulting energy consumption and

hardware cost problems have become a bottleneck restricting

the practical implementation of these technologies [3]. To re-

duce the energy consumption and improve the energy efficiency

of wireless networks, large intelligent surface (LIS) [4], a.k.a.

intelligent reflecting surface (IRS) [5] has been envisioned as

a promising new hardware solution to enhance future wireless

communication systems. A LIS is composed of a large number

of low-cost and energy-efficient reconfigurable reflecting ele-

ments that can reflect impinging electromagnetic waves with

a controllable phase shift via the help of a smart controller.

It is worth noting that passive reflecting surfaces have various

applications in radar and satellite communications, but has been

rarely used in terrestrial wireless communications. The reason

is that traditional reflecting surfaces only have fixed phase

shifters and cannot adapt to the time-varying environment in

terrestrial communications. However, with the recent develop-

ments in metasurfaces, reconfiguration of reflecting surfaces is

now made possible via controlling the phase shifters in real
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Fig. 1. A PBIT-enhanced wireless system based on LIS.

time [6], [7]. As such, passive beamforming, in which the

phase shifts of the reflecting elements of a LIS are intelligently

adjusted to achieve coherent superposition of the reflected

signals at a desired receiver, has been studied in [4], [5],

[8] to substantially enhance the energy efficiency of wireless

communications.

In this paper, we propose a novel passive beamforming and

information transfer (PBIT) enhanced wireless system, where

a signal-antenna user communicates with a multi-antenna base

station (BS) through the help of a LIS, as illustrated in Fig. 1.

Compared to the work in [4], [5], [8], a major difference of the

PBIT system is that, besides performing passive beamforming

to enhance the user-BS communication, the LIS is also required

to transmit data to the receiver. There are a variety of potential

sources for the LIS data, e.g., low-cost sensors implemented

in a smart building for collecting environmental data such as

temperature, humidity, tension, etc. The challenge then resides

in the design of the LIS operations to simultaneously transmit

data and enhance the user-BS communications via passive

beamforming, as well as the design of the receiver operations

to retrieve both the information from the transmitter and the

LIS.

The main contributions of this paper are as follows. First, we

propose to use spatial modulation [9] for LIS data, i.e., the LIS

information is carried by the on/off states of the LIS reflecting

elements1, while passive beamforming is achieved by adjusting

the phase shifts of the activated reflecting elements. Second,

in passive beamforming design, we formulate the problem of

maximizing the average receive signal-to-noise ratio (SNR),

1The state “off” of a reflecting element means that there is only structure-
mode reflection generated as if the element is a regular conductor. The
structure-mode reflection can be absorbed into the direct link channel in
channel modeling [10]. The state “on” means that there are both structure-
mode reflection and antenna-mode reflection, in which the load impedance
mismatches the antenna impedance [11].
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and use the semidefinite relaxation (SDR) technique to obtain

a suboptimal solution to the problem. Third, to retrieve both

the information from the transmitter and the LIS, we develop

an efficient two-step detection algorithm involving compressed

sensing and matrix factorization techniques. Substantial perfor-

mance gains have been demonstrated for the optimized PBIT

scheme. The tradeoff between the passive-beamforming gain

and the information rate of the LIS has also been demonstrated.

II. SYSTEM MODEL AND PROBLEM DESCRIPTION

A. System Model

Consider a PBIT enhanced wireless communication system,

as illustrated in Fig. 1. The system combines a single-input

multiple-output (SIMO) wireless communication system with

a PBIT module, where a single-antenna user communicates

with a base station (BS) equipped with M antennas. The PBIT

module consists of a LIS equipped with N passive reflecting

elements, a controller to adaptively adjust the on/off state and

the phase shift of each passive reflecting element, and a number

of sensors to collect the environmental data. The sensors send

their collected data to the controller through a wired link.

Then, the controller adjusts the on/off state of each passive

reflecting element according to the sensor data. Meanwhile, the

activated reflecting elements reflect the signals transmitted from

the user to enhance the user-BS communication. The phase

of the reflected signals can be adjusted by the controller to

optimize the system performance.

We ignore the signal power reflected by the LIS for two or

more times due to severe path loss. Denote by hd ∈ CM×1,

hr ∈ CN×1, and G ∈ CM×N the baseband equivalent chan-

nels of the user-BS link, the user-LIS link, and the LIS-BS link,

respectively, where Ca×b is the space of a× b complex-valued

matrices. We assume that all the channel links are quasi-static

and flat-fading. Let Θ = diag{θ} denote the diagonal phase-

shift matrix for the LIS, where θ = [θ1, θ2, . . . , θN ]T ∈ CN×1

and |θn| = 1. Define β ∈ [0, 1] as the amplitude reflection

coefficient. Let si be the state of ith passive reflecting element,

with si = 1 meaning that the state of ith element is “on” and

si = 0 otherwise. Denote by s = [s1, s2, . . . , sN ]T the state of

LIS that carries the information from the sensors. We assume

that each sn independently takes the value of 1 (“on”) with

probability ρ and the value of 0 (“off”) with probability 1 − ρ,

i.e.,

p(s) =

N
∏

n=1

p(sn) =

N
∏

n=1

(1 − ρ)1−snρsn . (1)

Then, each sn carries H(ρ) = −ρ log ρ− (1−ρ) log(1−ρ) bit

of information.

We assume block transmission with each transmission block

consisting of L time slots. The observed signal at the receiver

in the lth time slot is

yl = (βGΘShr + hd)xl +wl, (2)

where yl ∈ CM×1 is the observed signal vector, S =
diag{s} ∈ R

N×N is a diagonal matrix, xl ∈ C is the transmit

signal in the lth time slot, and wl ∈ CM×1 is an additive

white Gaussian noise (AWGN) with the elements indepen-

dently drawn from CN (0, σ2
w). We assume that the diagonal

matrix S remain fixed over each transmission block. Then,

the observed signal matrix of a transmission block, denoted by

Y = [y1, . . . ,yL], can be expressed as

Y = (βGΘShr + hd)x
T +W , (3)

where x = [x1, . . . , xL]
T and W = [w1, . . . ,wL].

Each entry of x is modulated by using a constellation C =
{c1, c2, . . . , c|C|}, where |C| is the cardinality of C. That is, xl

is uniformly drawn from C for ∀l, where xl is the lth entry of

x. Denote by P the power budget at the user, i.e., 1
Lx

Hx 6 P .

In this paper, we assume perfect channel state information

(CSI), i.e., the channel state {β,G,hr,hd} is perfectly known

by the BS. With the available CSI, the BS is able to determine

the optimal phase shifts Θ of the LIS in the sense of certain

design criteria specified in the next subsection. Then, the BS

sends the optimal Θ to the LIS through a control link. The

acquisition of the CSI can be done, e.g., by employing the

recently developed channel estimation techniques in [12] and

[13]. Details are omitted here due to space limitations.

B. Problem Description

In this paper, we aim to retrieve both the information from

the user and the sensors (i.e., x and s) at the receiver with the

help of the LIS. More specifically, given the information rate of

x and s, we need to design the phase-shift matrix Θ such that

the receiver is able to reliably recover x and s with a minimum

transmission power P .

From information theory, the sum capacity of the PBIT

system in (3) is given by the mutual information I(x, s;Y )
[14]. Then, our design problem can be decoupled into two

subproblems: one is the passive beamforming design, i.e., to

maximize I(x, s;Y ) over the phase shift matrix Θ; and the

other is the transceiver design, i.e., to design the signaling

of (x, s) and the receiver at the BS to achieve the obtained

maximum I(x, s;Y ).
We first consider the passive beamforming design.

I(x, s;Y ) is difficult to evaluate since (3) is a complicated

model. To avoid this difficulty, we propose a heuristic design

metric as follows. Note that the required rate of x is typically

much higher than that of s in a practical scenario. Then,

I(x, s;Y ) = I(x;Y |s) + I(s;Y ) (4a)

≈ I(x;Y |s) (4b)

= E log(1 + SNR(s)) (4c)

≤ log(1 + E[SNR(s)]) (4d)

= log

(

1 +
E‖GΘShr + hd‖22P

σ2
w

)

, (4e)

where (4a) follows from the chain rule of mutual information;

in (4c), SNR(s) , ‖GΘShr+hd‖
2
2P

σ2
w

with ‖ · ‖2 being the ℓ2-

norm, and the expectation E is taken over s; and (4d) follows

from the Jensen’s inequality and the concavity of the logarithm

function. Based on the above, we henceforth aim to maximize

E‖GΘShr + hd‖22 in the passive beamforming design.
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As for the transceiver design, we will focus on the design of

the receiver at the BS to reliably recover both s and x from the

received signal Y (for a given Θ). From information theory,

besides the receiver design, we also need to design signal

shaping and channel coding at the receiver, so as to approach

the channel capacity. These problems are, however, out of the

scope of this paper.

III. BEAMFORMING DESIGN

From (4) and the discussions therein, the optimization of the

phase shift θ at the LIS can be formulated as

max
θ

E‖GΘShr + hd‖
2
2 (5a)

s.t. |θn| = 1, for n = 1, . . . , N. (5b)

Let Dh = diag{hr}. Then,

E‖GΘShr + hd‖
2
2

= E
[

sHDH
hΘ

HGHGΘDhs+ 2Re(sHDH
hΘ

HGHhd)
]

= tr
(

GΘDhE
[

ssH
]

DH
hΘ

HGH
)

+ 2Re
(

E
[

sH
]

DH
hΘ

HGHhd

)

, (6)

where Re(a) denotes the real part of the complex number a.

Based on the probability distribution of s in (1), we obtain

E
[

ssH
]

= ρ21 · 1T + ρ(1− ρ)I and E
[

sH
]

= ρ1, (7)

where 1 is an N -dimension all-one vector, and I is the identity

matrix with an appropriate size. From the discussion below (1),

ρ is uniquely determined by the information rate of s. For a

given target rate r of s, we have ρ = H−1(r). Plugging (7) into

(6), we obtain

E‖GΘDhs+ hd‖
2
2

= ρ21HDH
hΘ

HGHGΘDh1 + 2ρRe(1HDH
hΘ

HGHhd)

+ ρ(1− ρ)tr
(

DH
hΘ

HGHGΘDh

)

= ρ2θHDH
hG

HGDhθ + 2ρRe(θHDH
hG

Hhd)

+ ρ(1− ρ)θHdiag{v}θ (8)

where v is the diagonal of DH
hG

HGDh. With (8), we see that

the problem in (5) is a non-convex quadratically constrained

quadratic program (QCQP). Following [5] and [15], we approx-

imate problem (5) as a semidefinite program (SDP). The details

are presented below.

We first reformulate the optimization problem as a homoge-

neous QCQP by introducing an auxiliary variable t, yielding

max
θ̄

θ̄H(R+ V )θ̄ (9a)

s.t. |θn| = 1, ∀n = 1, . . . , N, (9b)

where θ̄ =

[

θ

t

]

, R =

[

ρ2DH
hG

HGDh ρDH
hG

Hhd

ρhH
d GDh 0

]

, and

V =

[

ρ(1− ρ)diag{v} 0
0 0

]

. Note that θ̄H(R + V )θ̄ =

tr[(R + V )Q], where Q = θ̄θ̄H. Clearly, Q is a positive

semidefinite matrix, i.e., Q < 0, and rank(Q) = 1. By relaxing

the rank-one constraint on Q, we can convert (9) into

max
Q

tr((R+ V )Q)

s.t. Q < 0;Qn,n = 1, ∀n = 1, . . . , N + 1. (10)

The above problem is a standard SDP, and can be optimally

solved by existing convex optimization solvers such as CVX

[16]. The optimal Q of the SDP problem in (10) is not guaran-

teed to be rank-one in general. To obtain a suboptimal solution

of θ̄ from Q, we follow [17] to take the eigenvalue decompo-

sition of Q as Q = UΣUH, where U ∈ C(N+1)×(N+1) is a

unitary matrix and Σ ∈ C(N+1)×(N+1) is a diagonal matrix.

Then, we obtain a suboptimal solution of θ̄ as θ̄ = UΣ
1/2r,

where r ∈ C(N+1) is a random vector with each element

generated from the circularly symmetric complex Gaussian

(CSCG) distribution CN (0, 1). Then, the suboptimal solution

of θ in (5) is given by θ =
[θ̄]

(1:N)
/θ̄N+1

∥

∥

∥[θ̄]
(1:N)

/θ̄N+1

∥

∥

∥

2

, where [a](1:N)

denotes the vector that contains the first N elements of a.

IV. RECEIVER DESIGN

A. Problem Description

The receiver aims to retrieve both the information from the

user and sensors (i.e., x and s). More specifically, we rewrite

(2) as

Y = (As+ hd)x
T +W = zxT +W , (11)

where A = βGΘDh ∈ CM×N is a known coefficient matrix

and z = [z1, z2, . . . , zM ] with zm = aH
ms+hd,m and aH

m being

the m-th row of A. Given the algebraic structure between Y

and (x, s) in (3), we propose the following two-step approach

for the retrieval of x and s: First recover x and z from Y , and

then recover s from the recovered z.2The details are presented

in the following two subsections.

B. Recovery of x and z

The recovery of z and x from the observation matrix Y

can be regarded as a rank-1 matrix decomposition problem. We

propose two methods, namely the singular value decomposition

(SVD) method and the bilinear generalized approximate mes-

sage passing (BiG-AMP) [18] method, as detailed below.

• SVD method: Let the SVD of Y be Y = UΛV H, where

U = [u1,u2, . . . ,uM ] and V = [v1,v2, . . . ,vM ] are

both unitary matrixes, and Λ = diag{λ1, λ2, . . . , λM} is

a diagonal matrix with the elements in the diagonal sorted

in a descending order, i.e., λ1 > λ2 > . . . > λM . We

simply take the first column of V as an estimates of x.

That is, x̂ = v1. The corresponding estimate of z is given

by ẑ = λ1u1.

• BiG-AMP method: The BiG-AMP algorithm [18] can be

used to solve the factorization of x and z from Y . Note

that the BiG-AMP algorithm requires the prior distribu-

tions of z and x. We assume that the entries of x are

2We emphasize that the two-step approach presented here is not necessarily
optimal. However, we will show by numerical results that the performance loss
due to the suboptimality of this two-step approach is usually marginal.
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independently and uniformly distributed over C. As for

z, we approximate zm, ∀m as a CSCG random variable

with the mean and the variance given by ρaH
m1 + hd,m

and ρ(1 − ρ)‖aH
m‖22, respectively, where ‖a‖2 denotes

the ℓ2−norm of vector a. Similarly to the SVD method,

we denote the output estimates of z and x by ẑ and x̂,

respectively.

There exists a scalar offset γ in ẑ and x̂ since if (ẑ, x̂) is

a solution to (3), then (ẑ/γ, γx̂) is also a valid solution to

(3) [19]. The scalar offset can be eliminated by inserting a

reference symbol in the first position of x. With the knowledge

of the reference symbol x1, γ can be estimated by γ = x1/x̂1.

Then, the estimates of z and x are corrected as ẑ/γ and γx̂,

respectively. Finally, we map γx̂ to the constellation of x as

x̃i = argmin
c∈C

|c− γx̂i|
2, i = 1, . . . , N. (12)

C. Recovery of s from z

With x̃ from (12), we obtain an estimate of z as

z̃ =
1

LP
Y x̃∗ = As+ hd +w, (13)

where w ∈ CM×1 is a distortion term. Note that hd can

be precancelled from z̃ prior to the recovery of s. Also note

that w is an additive white Gaussian noise (AWGN) with the

elements independent and identically distributed drawn from

CN (0, σ2
w/P ) when x̃ = x. In general, x̃ may contain errors,

and so the actual power of w is slightly higher than σ2
w/P .

The recovery of s from z̃ can be done by noting that s is a

highly structured signal composed of only 0s and 1s. Structured

signal recovery algorithms, such as orthogonal matching pur-

suit (OMP) [20] and compressive sampling matching pursuit

(CoSaMP) [21], can be used to recovery of s from z in (13).

In order to make the best use of the prior knowledge of s, we

use the generalized approximate message passing (GAMP) al-

gorithm [22] for the recovery of s. The details of the algorithm

is omitted due to space limitation.

V. NUMERICAL RESULTS

In simulations, the entries of x are QPSK modulated with

Gray-mapping. Following [4], [5], [8], we generate the entries

of G, hr, and hd independently from the CSCG distribution

CN (0, 1). We set the amplitude reflection coefficient β = 0.5
and the transmission power at the user P = 1. The SNR is

defined as SNR = 1/σ2
w. The maximum numbers of BiG-AMP

and GAMP iterations are set to 200 and 50, respectively. The

simulation results presented in this paper are obtained by taking

average over 5000 random realizations. For the recovery of x,

we compare the approaches listed below.

• Without LIS: Recover x from Y without the enhancement

of LIS, i.e., s = 0

• SVD: The SVD based method proposed in this paper.

• BiG-AMP: The BiG-AMP based method proposed in this

paper.

• LB-x: The lower bound of x, in which x is estimated

under the perfect knowledge of s as x̃i = argminc∈C |c−
(zHY )i|2, for i = 1, . . . , N .
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Fig. 2. The average BER of x versus SNR for different approaches. M = 32,
N = 32, L = 100, and ρ = 0.5.
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N = 32, L = 100, and ρ = 0.5.

For the recovery of s, we compare the approaches listed below.

• SVD+GAMP: First recover z by using the SVD method,

and then recover s from the estimated z using the GAMP

algorithm.

• BiG-AMP+GAMP: First recover z by using the BiG-AMP

method, and then recover s from the estimated z using the

GAMP algorithm.

• BiG-AMP+OMP: First recover z by using the BiG-AMP

method, and then recover s from the estimated z using the

OMP algorithm.

• BiG-AMP+CoSaMP: First recover z by using the BiG-

AMP method, and then recover s from the estimated z

using the CoSaMP algorithm.

• LB-s: The lower bound of s, in which s is estimated by

the GAMP algorithm with perfectly known x.

Fig. 2 compares the average bit error rate (BER) of x versus

SNR for the GAMP algorithm without LIS, the SVD approach,

the BiG-AMP approach, and the lower bound LB-x. The dotted
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Fig. 4. The average BER of x and s versus SNR with ρ ∈
{0.5, 0.6, 0.7, 0.8, 0.9, 1}. M = 32, N = 32, L = 100.

lines are generated with random phase shift Θ; the solid lines

are generated with optimized phase shift Θ. The prefix “Opt-”

means that the corresponding curve is obtained by using opti-

mized phase shifts. The other settings are M = 32, N = 32,

L = 100, and ρ = 0.5. Fig. 2 shows that by optimization Θ,

the system achieves about 2 dB SNR improvement when the

antenna activity rate of the LIS is ρ = 0.5. From Fig. 2, we see

that with the enhance of the LIS, the system performance can

be improved by about 5 dB to 9 dB at BER = 10−5 for the

various schemes under consideration. We also see that the BiG-

AMP method approaches the lower bound to within 0.5 dB at

BER = 10−5 and the SVD method has an SNR gap of about 2
dB SNR gap away from the BiG-AMP method.

Fig. 3 compares the average BER of s versus SNR for the

GAMP approach, the OMP approach, the CoSaMP approach,

and the lower bound LB-s. We see that the GAMP approach

achieves the lower bound at the SNR as low as −14 dB. We

also see that the BER of s for BiG-AMP+GAMP slightly

outperforms that of the SVD+GAMP. This is because the BiG-

AMP algorithm performs better than the SVD algorithm in the

recovery of z. By exploiting the prior information of s, the

GAMP algorithm significantly outperforms the OMP algorithm

and the CoSaMP algorithm.

Fig. 4 compares the average BER of x and s versus SNR

with ρ varying from 0.5 to 1. The other settings are M = 32,

N = 32, and L = 100. We see that with the increase of

ρ, both the BERs of x and s decrease due to the increase of

the receive SNR. However, the cost is the information rate of

s. Specifically, the information rate per entry of s is 1.0000,

0.9710, 0.8813, 0.7219, 0.4690, and 0 for ρ = 0.5, 0.6, 0.7, 0.8,

0.9, and 1, respectively. We see that the rate of s increase from 0
to 0.4690 by reducing ρ from 1 to 0.9, at the cost of only about

0.5 dB of SNR loss at BER of x = 10−5. This demonstrates an

attractive tradeoff between the recovery performance and the

information rate of the LIS.

VI. CONCLUSIONS

In this paper, we proposed a PBIT enhanced wireless system,

in which a LIS simultaneously enhances the user-BS commu-

nication (by adjusting the phases of reflected electro-magnetic

waves on the activated reflecting elements of the LIS) and

transmits information to the receiver (by modulating the on-

off states of the reflecting elements of the LIS). We further

proposed to optimize the phase shift vector θ to maximize the

average receiver SNR. An efficient algorithm was developed to

approximately solve the problem. We also proposed a two-step

approach to the retrieval of the LIS signal s and the user signal

x. Substantial performance gains have been demonstrated for

our proposed design.
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