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Backscatter then Forward: A Relaying Scheme for
Batteryless IoT Networks

Bin Lyu, Dinh Thai Hoang, and Zhenzhen Yang

Abstract—In this paper, we introduce a novel relaying scheme
together with a joint energy beamforming (EB) and time alloca-
tion optimization to meet requirements about energy efficiency
and hardware constraints of batteryless IoT networks. First,
we propose an intelligent relaying scheme using RF-powered
gateways as relay nodes to deliver information from batteryless
IoT devices to a hybrid access point (HAP). The HAP can also
transfer energy to the gateways and batteryless devices using
EB techniques. The energy from HAP will be then used to
supply power for gateways and as a communications means
to transmit data for batteryless devices. We then formulate
a sum-rate maximization problem by jointly optimizing the
EB vectors, time scheduling, and power allocation. Since the
optimization problem is non-convex, we exploit EB characteristics
for data backscattering and employ variable substitutions and
semidefinite relaxation techniques to transform it into a convex
one. After that, a low-complexity method is proposed to obtain
the optimal solution in a closed-form. Simulation results confirm
that the proposed scheme can achieve significant sum-rate gain.

Index Terms—Wireless power transfer, backscatter communi-
cation, relay transmission, energy beamforming.

I. INTRODUCTION

With the development of Internet-of-Things (IoT), wireless
devices have been deployed ubiquitously. However, the life-
times of wireless devices are limited since they are mostly
powered by their embedded energy sources, which is one of
the main challenges for the pervasive development of IoT.
Thus, batteryless IoT communications have been emerging
recently as a promising solution to address this issue. In a
batteryless IoT communication system, [oT devices transmit
data passively by reflecting the instantaneous incident signals
from the RF sources based on the backscatter communication
(BackCom) technology [l1]-[3]. However, as shown in [IL], [2]],
batteryless IoT devices are only appropriate for short-range
communications, e.g., in power-constrained wireless sensor
networks (WSNs). Hence, solutions to enhance communica-
tion ranges for batteryless IoT networks are urgent needs.

Relaying has been well known to be an effective scheme
to enhance communication ranges for power-constrained IoT
networks. Recently, the BackCom devices operating as re-
lay nodes have been considered [4]-[6]. In [4], a BackCom
device was employed as a relay node, which backscatters
the received signals from the source node to the destination
node to improve signal diversity. To further enhance network
performance, [S] employed multiple BackCom devices to work
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cooperatively for data forwarding (DF), where the joint design
of reflection coefficients for BackCom devices is investigated.
However, the main limitation of [4] and [5] is that BackCom
devices have limited communication ranges, and thus this
solution cannot meet the requirement of network coverage,
which is especially important for relay networks. In [6], a
multi-hop relaying scheme to extend the network coverage
was proposed. However, since each-hop relaying by BackCom
devices relies on the incident signals from the RF source, it is
not energy-efficient for IoT networks. Moreover, the distance
between two adjacent BackCom devices should be carefully
designed to enable DF, which may be intractable in practice.
In [7]] and [8], the relay nodes equipped with energy harvesting
(EH) circuits and BackCom circuits were used for DF in IoT
networks, which aims to exploit the advantages of both active
RF communication and BackCom. However, in practice, dual
mode devices require more complex integration circuits for
switching modes and consume much more power [3], and thus
it might not be appropriate to implement widely in power-
constrained IoT networks. More importantly, the ceiling of
these relays’ communication ranges is still limited by the
BackCom mode. As mentioned, wireless devices are expected
to be batteryless in the future IoT networks, and thus it places
some challenges (e.g., extending network coverage with higher
energy efficiency), and thus a more efficient relaying scheme
for batteryless IoT networks should be addressed.

In this paper, we first propose an energy-efficient
backscatter-then-forward framework for batteryless IoT net-
works, where wireless-powered gateways are used as relay
nodes to receive and deliver information from batteryless
devices to the HAP. In this framework, the data decoding
and forwarding processes are both uploaded to the gateways,
which enables the implementation of hardware-constrained
batteryless devices for IoT networks. Different from the
BackCom relay nodes considered in [4]]-[6], the gateways
can be randomly deployed around the batteryless devices but
significantly extend network coverage. Compared with the
hybrid relaying schemes in [7] and [8], the gateways are
more appropriate for power-constrained IoT networks and can
avoid the limitation of DF distances caused by BackCom. In
addition, the gateways can harvest sustainable energy from
the HAP and are thus free from the lifetime limitation. We
further exploit energy beamforming (EB) [9] at the HAP
to improve its energy transfer efficiency and thus improve
the achievable system rates. As a result, the coverage of
batteryless IoT networks can be extended with higher energy
and communication efficiency.

We then investigate the joint design of EB vectors, time
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Fig. 1: System model.

scheduling, and power allocation to maximize the system sum-
rate. To deal with the non-convex issue of the formulated
problem, we first design the EB vectors during the data
backscattering (DB) phase by exploiting the characteristics of
DB. Then, we employ variable substitutions and semidefinite
relaxation (SDR) techniques [10] to transform the non-convex
problem into an equivalent convex optimization problem. After
that, a low-complexity method is proposed to obtain the
optimal solution in the closed-form. The obtained results show
the characteristics of the design of EB vectors during the EH
phase, and reveal the insights of time scheduling and power
allocation.

II. SYSTEM MODEL

As shown in Fig. [I] we consider a batteryless IoT network
for practical applications, e.g., smart home and logistics [11].
There are N WSNs randomly deployed around an HAP. Each
WSN consists of a sensor (batteryless IoT device, denoted by
Ui =1,...,N) and a gateway (denoted by G;,i = 1, .. .,N)P_-]
The HAP with embedded energy sources supplies stable power
to all sensors and gateways. The HAP has M antennas and
the other devices are all with single antenna. The sensors
are hardware-constrained and can only support BackCom
circuits for data transmission. The gateways are equipped with
EH circuits to support the harvest-then-transmit mode [12],
following which they first harvest energy from the HAP and
then use the harvested energy for DB. Information decoders
are also equipped at the gateways to retrieve the received
signals from the sensors due to that the sensors’ reflected
signals have different power levels [S]. Since the gateway
each has only single antenna, they can only either harvest
energy or receive and decode backscattered signals at a time.
Considering the limited transmission functionality of sensors,
the gateways are employed to operate as relay nodes to assist
the data transmissions from the senors to the HAP.

A transmission block, normalized to be one, is divided into
three phases, i.e., EH phase, DB phase, and DF phase. In
the EH phase, all gateways harvest energy from the HAP
and store the harvested energy in their batteries, while all
sensors keep idle because the gateways can not receive and
decode the backscattered signals from the sensors when EH

I'This model can be easily extended to the case that each WSN has multiple
sensors, but it is beyond the scope of this paper due to the limited space.

is performed. Denote the transmit signal at the HAP in the
first phase as w(t) = VPyos(t), where /Py is the transmit
power of the HAP, @y € CM*! is the EB vector and satisfies
[lwo|)?> < 1, s(r) is a known sequence with unit power. The
received signal at G;, denoted by y;4(f), is expressed as
Yig(t) = VPuh[ os(t) + nig, where hg € CM*1 s the
complex channel vector between the HAP and G, and n;,
is the additive white Gaussian noise (AWGN) with zero-mean
and variance o-fg. The harvested energy by G;, denoted by E;,
is given by E; = nPHIhfguAJon, where b is the duration of
the first phase.

In the DB phase, the sensors utilize the signals from the
HAP to backscatter data to the gateways via time division
multiple access. Denote the duration of U; for DB as #;. The
HAP with beamforming aims to focus energy signals to a spec-
ified direction during #;, e.g., U;, to enhance energy and com-
munication efficiency. Hence, the energy transferred to other
sensors is negligible for harvesting. The received signal at U;,
denoted by u;(t), is expressed as u;(t) = \/ﬁhf’uwis(tﬂni,u,
where h;, is the complex channel vector between the HAP
and U;, W; is the normalized EB during ¢;, and n; ,, is the noise
at the antenna. The backscattered signal at U;, denoted by x;(t),
is then given by x;(¢) = \/Ehfuwis(t)aici(t) + niyaici(t),
where «; is the reflection coefficient of U; and satisfies
|;|? < 1, ¢;(¢) is U;’s own signal and satisfies E[|c(7)|*] = 1.
Since the sensors operating in the BackCom mode have very
limited communication ranges [L], we do not consider the
received signals from other sensors at G;. The received signal
at G;, denoted by J; (), is thus formulated as J;,(f) =
VP giuhi! is(aici(t) + giuniuici(t) + ﬁhfgwis(f) +
n¢, where g;, is the complex channel variable between U;
and G;, and n; 4 ~ CN(O, Ui%g) is the noise at G;. Note that
the power of g;.n;,;ci(t) is quite smaller than that of n;,
due to the path-loss and can be negligible. The third term of
Vi g(t) is the interference from the HAP, the power of which
is larger than that of the desired signal and can be removed
by the interference cancellation techniques. After interference
cancellation, the signal-noise-ratio (SNR) at G; is formulated
as Vig = Pulgiul’ 1A @il*|ai* /o7,

In the DF phase, the gateways forward the received signals
from the sensors to the HAP sequentially. G; decodes its re-
ceived signal and forwards its outcome ¢;(t) to the HAP during
7;. Denote the received signal from G; at the HAP during 7; as
Yin(t). yin(t) is expressed as y;n(1) = /Pi ¢gi,gc(t) + mp(0),
where P; ; is the transmit power at G; and satisfies P; o 7; < E;,
gi,¢ 1s the complex channel vector between G; and the HAP,
and ny,(¢) is the AWGN at the HAP, each element of which is
with zero-mean and variance 0'2. The SNR at the HAP during
7; is then given by yi; = Pigllgigll*/o7. Since the decode-
and-forward scheme is considered at G;, the achievable rate
from U; to the HAP, denoted by R;, is determined by the hop
with smaller transmission rate. Hence, R; is finally formulated

as R; = min{#; log, (1 + y; ¢), Ti logy (1 + vin)}.

III. SUM-RATE MAXIMIZATION

In this work, we investigate the system sum-rate maxi-
mization problem by jointly optimizing the EB designs, time



scheduling, and power allocation. The constraints for the
network are given as follows Cl: R; < t;log,(1 + y,',jg,),
C2: R, <71y 10g2(1 + 7i,h)a C3 : P,',gTi 77PH|h£Ing| b,

<
C b+ 3N i+ 3N 7 < 1,and C5: 0 < btyy7; < 1,0 =

1,..., N. The optimization problem is given by

N
max _ Ri, st Cl1-C5, (P1)

bt RW,P i=1
v&ihere t=|[t,....tn], T = [11,..., 78], R = [Ry,...,RN],
W = [, W1,...,WN], and P = [Pyg,...,Png]. Note

that P1 is non-convex and difficult to solve directly due to
the couples of EB vectors and time variables. Hence, in the
following, we introduce a low-complexity method to obtain the
optimal solution for P1 in a closed-form. First, we propose a
solution to transform P1 into a convex optimization problem.
In particular, the following lemma is hold.

Lemma 1. The optimal EB vector during t; is h;,/||Piull,
Vi.

Proof. Please see Appendix [A] m|

Then, we can transform P1 into a convex optimization
problem by applying the variable substitutions and SDR
techniques [10]. We first introduce some auxiliary vari-
ables for substitutions. Let W, = wowg’ b and ¢; =
Pig7i,i = 1,...,N. Based on Lemma [I| and the auxiliary
variables, the constraints C1-C3 are rewritten as C6: R; <
tilogy(1 + Prlgiul®llhiulPlail?/o?,), CT: Ry < wilogy(1 +
eillgigll*/(0;7), and C8: 0 < ¢; < nPuTi(high[l, Wy). To
guarantee that introducing the auxiliary variable W), does not
violate the constraints of P1, we add the following new con-
straints C9: Tr(Wj) < b, C10: Wy > 0, and C11: rank(W,)) =
1. With these new constraints, P1 is reformulated as

N
max R, st C4-Cl11, P2)

b,t,7,R,W)y,e i=1
where e = [ey,...,en]. Note that P2 is still non-convex

due to the rank-one constraint given in C11. However, in-
terestingly, the SDR technique can be applied to relax the
rank-one constraint such that P2 can be transformed into a
convex optimization problem [10]. Moreover, we can easily
prove that 7; logy (1 + Pr|giu*llhiul Plail* /o7 ) = 7ilogy (1 +
el-||gl-,g||2/(0'ﬁri)) in the optimal condition. Following this
condition, the objective function of P2 can be formulated
as YN 1ilogy(1 + e;l|gig|1*/(021;)) directly. In addition, C4
is recast as C12: b + Zf\il R-lir,- log,(1 + e,v||g,-,g||2/(0']fr,v)) +
N, 7 <1, where R; = log,(1 + PH|gi,u|2||hi,u||2|ai|2/0'fg)~
Then, by removing C11 following SDR, P2 is reformulated as
max

N . . . 2 2 .
ymax 3 wilogy(l+ eillgiglP/(@7m)

sit. C8 C9, C10, C12, 0<b<1,0<1; <1 -hVi.

(P3)

It can be proved that the objective function is concave follow-
ing the perspective operation [[13]]. Similarly, C12 is convex. In
addition, other constraints are all affine. Hence, P3 is a convex
optimization problem.

To solve P3 efficiently and show the insights about EB de-
sign and resource allocation, we propose a two-stage method.

First, we solve P3 with a given b. Then, we update b with
the one-dimensional search method. With a given b, P3 is
simplified as follows
N

Rum(B) = max_ )" wilogy(1 + eillgigl/(o7:))

st. C8 C9, C10, CI12, 0<7; <1-D,Vi.

(P4)

P4 can be solved efficiently by Lagrange duality method, the
Lagrangian of which is formulated as L(7, e, Wy, u;, p, {) =

S = Prnlony(1 + eillgigll?/(ohm) = T, piei +
pb = (b + ¢ = (YN o+ TH(VW,), where Vo 2
nPu Zﬁlﬂ;hi,ghfﬂg -pIm, i 2 0, p 2 0, and ¢ =

0 are the Lagrangian multipliers associated with C8, C9,
and C12, respectively. Then, the dual function is given by
G (i, p, {) = Maxw,>0,¢;20,0<r; <1-b L(T, € Wo, i, p, £), and
the dual problem is expressed as miny, »0,0>0,¢>0 G(Ui, P> {).
According to [[13]], solving P4 is equivalently to solving its
dual problem. Hence, we first achieve G(u;, p, {) with given
Ui, p, and £, and then minimize G(u;, p, {) by updating y;, p,
and Z.

Theorem 1. The optimal solution for P4 is given by

Wg = uAyluz’]b, (1)

ef = nPuTr(highl W(), i=1,...,N, 2)
2

Ti*:min{efM,l—b}, i=1,...N, 3)
h*i

where wa is the unit-norm eigenvector of A, which
corresponds to the maximum eigenvalue a1, A =
nPy Zf\il ,u,-hl-,ghi,, z; 2 0 is the unique solution of (1 -

Ii_—l)f(zl) = g*’ and f(Zi) = 10g2(1 +Zi)_ IMZ_)?W In addition,
u;>0,i=1,...,N, p* =241, and {* < R;.

Proof. Please see Appendix m|

It is obvious that W shown in (I) is a rank-one matrix,
which implies that applying SDR in P2 will not affect the
optimal EB design. In other words, the optimal solution
obtained from P4 is also a solution for P2 with a given b.
Moreover, we can straightforwardly obtain an optimal EB
vector in the EH phase from (I), which is given by

Wy = ua,l “4)

From (@), we observe that to maximize the amount of har-
vested energy of sensors, the best way is to multicast energy
signals to all sensors. From (Z) and (3), we observe that all
sensors are involved in data transmission and the gateways
will use all their harvested energy for DF. The amount of
time used for the gateways’ DF is mainly determined by
[1higIPl1giglP and Ry, ie., the larger [[h;g[*llgill® and R;
lead to a larger DF time, which coincides with the intuition
that more time should be allocated to the WSNs with better
channel conditions to maximize the sum-rate.

Then, we aim to update the Lagrange multipliers. Since
p* = Aa,1 is obtained in Theorem |l we only need to update
;i and ¢ via the sub-gradient method [13]], which are given
by #§l+l) _ (#El) —ﬁﬁl)(UPHTr(hi,ghfgW;) _ e:f))+, {(l+1) —
min{((V = ¢O(1 - SN, 7 /R logy(1 + €Xllgzal P/ (0777) -



b-3 =l Tf))+, R;}, where ﬁl(.l) and ¢ are the step sizes at
the Ith iteration, and (x)* = max{0, x}. An algorithm to solve
P4 is summarized in Algorithm [I} As shown in Algorithm
we first obtain the optimal solution shown in Theorem
with the given Lagrange multipliers (i.e., steps 3-4), and then
update the Lagrange multipliers by the sub-gradient method
(i.e., step 5). After iterations of the above steps (i.e., steps
3-5), we can obtain the optimal solution W, e;‘, and Ti* at
the optimal Lagrange multipliers u; and *. After that, the
optimal power allocation Pl* < and the optimal time for DB
t; are computed in step 7. The computational complexity of
Algorithm [T] is analyzed as follows. The complexity of step 3
is O(N), while that of step 4 is O(1). Since the sub-gradient
method is used, the complexity of step 5 is O(N) [13]]. Hence,
the overall complexity of Algorithm [I|is O(N).

Algorithm 1 The Algorithm for Solving P4.

1: Initialize: y; > 0,0 < ¢ < R;.

2: repeat

3. Compute e} and 7 by () and (3], respectively.
4: Compute W by (1), and then compute i by ().
5

6

7

Update y; and ¢ by the sub-gradient method.
: until y; and ¢ converge.

. Set P;

e = e;/tf and tf = 7] log,y(1 + P}

L8

gigll*/oP)/R;.

Based on Algorithm [T, we can obtain the optimal EB
vector for EH, time and power allocations with a given b.
We then proceed to find the optimal EH time b* via b* =
arg max;, Rym(b), where Rgym(b) is defined in P4. According
to [13l], Rwum(b) is a concave function with respect to b, which
can be efficiently solved by the golden search method (the
details of this method can be found in [14]). Finally, b* can
be obtained after log,(1/€) times of iterations, where € is
the tolerance. The total computational complexity of solving
P3 is thus O(Nlog,(1/€)). Note that P3 can also be solved
by CVX (http://cvxr.com/cvx/), the worst case computational
complexity of which is O(max{M, N}*M'/?log,(1/€)) [10].
Compared with using CVX, the computational complexity of
the proposed method can be significantly reduced.

IV. SIMULATION RESULTS

In the simulatio we consider that all channels follow
Rayleigh fading with distribution CN(0,d,,,), where dn
denotes the distance between two devices m and n (m,n €
{HAP, U;, G;}), « is the path-loss exponent and is set as
3. Without loss of generality, we assume dy, g, = 2 m,
N = 5, |oz,~|2 =1, n = 0.7 and o-iz,g = 0'5 = -70 dBm.
The number of antennas at the HAP are set as M = 5 and
M = 10, respectively. The scheme with random EB designs
and the scheme with equal time allocation are used as the
benchmarks |

Fig. [J(a) shows the effect of the HAP’s transmit power
on sum-rate with dyapg;, = 9 m and dyapy, = 10 m. It

2The simulation codes for our proposed scheme can be downloaded via
https://github.com/xinmiwuyou/Backscatter-then-Forward.git.

3Similar as the analysis of Algorithm 1, the computational complexities of
the benchmark schemes are both O(V).
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Fig. 2: Performance evaluation.

is observed that the sum-rates of all schemes are increasing
functions with respect to the transmit power. The proposed
scheme under the optimal solution can always achieve a much
larger sum-rate than that of the benchmark schemes, and the
performance of the scheme with random EB designs is worst.
The reason is that DB and DF are both based on the energy
from the HAP, and more energy can be transferred to the
gateways and the batteryless IoT devices when the optimal EB
vectors are designed. Moreover, adding the number of antennas
can further enhance the network performance. The reason is
that adding the number of antennas leads to a higher diversity,
which improves the efficiencies of EH and DB. Fig. [2(b)
investigates the sum-rate versus the distance between the HAP
and G; with Py = 20 dBm and dHAP,G,« + dUi,Gi = dHAP,U,«' It
can also be found that the sum-rate achieved by the proposed
scheme under the optimal solution is largest. As the distance
between the HAP and G; increases, the sum-rates of all
schemes reduce. It is due to that the increase of duap,g;
reduces the amount of energy harvested by G; and degrades the
data transmission efficiency of the hop between the HAP and
G;. In addition, an important observation is that the descent
rates of sum-rates for the proposed scheme and the scheme
with equal time allocation versus duap,g,; are slower than that
of the scheme with random EB designs. The reason is that the
optimal EB designs can partially compensate the performance
loss caused by the increase of dyap,g;-

V. CONCLUSION

In this paper, we have proposed an intelligent relaying
scheme for batteryless IoT networks. The energy-constrained
gateways are deployed close to the batteryless devices to assist
the communications between them and the HAP. The HAP
first beamforms energy signals to the gateways for EH and
enables the batteryless devices to backscatter data to their
gateways. Then, the gateways use the harvested energy to
forward the received signals to the HAP. To maximize the
system sum-rate, we have investigated the joint design of
EB vectors, time scheduling, and power allocation. Highly
effective techniques have been adopted to deal with the non-
convex issue of the formulated problem. A two-stage method
with low-complexity has been further proposed to find the
optimal solution, from which some interesting observations


http://cvxr.com/cvx/

have been revealed. Simulation results have confirmed the
superiority of the proposed scheme.

APPENDIX A
PROOF OF LEMMA

We prove Lemma |l] by contradiction. Denote the optimal

energy beamforming vector during #; as w; (i = 1,...,N),
where W # h;,/||hiyll. Tt is easy to obtain that the
maximizer of |hH w;|* is w; = hi,/||hiy||. Moreover,

tilogy(1 + Prlgi, ul |h wl| | |? /o- ) is an increasing func-
tion with respect to |h£’uwl|2. Hence, R obtained with @; =
h; . /||l yl| is not smaller than that obtained with ;. Hence,
w! # h;,/||hiull is not the optimal solution. This thus proves
Lemma [l

APPENDIX B
PROOF OF THEOREMI]

The Karush—-Kuhn-Tucker (KKT) conditions of P4 are
given as follows [12], [13]

0L § X
o _(1— 7))
¢ n %) :
a L _r—0 6
=% 1n(2)<1+e ||g,u|| g
i (e} = nPuTr(hi ghf W) =0, ©
BW; =0, )
PH(TH (W) — b) = 0, ®)

where B 2 A - p“Iy, and A £ nPy Zl e h,gh

Before we verify (I)-(3) based on the KKT condmons
we first prove ,ul. > 0,i = 1...,N by contradiction. If
y;‘ = 0, there exists a solution that e;.“ — oo, which leads
to G(ui, p,{) — oo. This contradicts with that G(u;, p, {) is
bounded. Hence, we obtain that u: > 0.

Similarly, we then prove p* = 14,1, where 14, is the
maximum eigenvalue of A. Note that B should be a negative
semidefinite matrix. The reason is that if B is not negative
semidefinite, there exists a solution that W = fup ug with
B — oo, where pup is the eigenvector of B corresponding to
the positive eigenvalue Ap, which leads to G(u;, p, {) — co.
This also contradicts with that G(u;, p, ) is bounded. Hence,
B is a negative semidefinite matrix, i.e., B does not have
positive eigenvalues. With loss of generality, the eigenvalue de-
composition of B can be denoted as B = Ua(Aa—p*Ip)Ua,
where Ua € CM*M s the eigenvector matrix of A, and
Aa = diag(lAl,...,ﬂAM) with Aa1 2 ... 2 Aam is the
eigenvalue matrix of A. Since y; > 0, it is obvious that
A is a positive semi-definite matrix, i.e., da;, i = 1,..., N,
is nonnegative. Note that 141 > O since the rank of A is
not smaller than one. Then, to guarantee that the eigenvalues
of B are not positive, it is straightforward to obtain that
p* = Aa1 > 0. Moreover, if p* > 141, B will be a full-
rank matrix. Then, to satisfy the constraint given in (7), we
have W = 0, which constricts with the constraint given in @)
due to the fact that p* > 0. Hence, we obtain that p* = 14;.

Since p* = 24,1, we have the following observation that
the null space of B is spanned by w4, where u 4 is the

unit-norm eigenvector associated with the maximum eigen-
value 141. According to (7), Wy can be thus expressed as
Wy = ua,1u’l B, where B > 0. Moreover, since Tr(W)) = b
according to (8), we further have § = b. Finally, we have
Wy =ua, 1“A1b as given in (I).

We proceed to verify (2) and (3). Since x > 0, it is obvious
that e = nPyTr(h;, th W) as shown in (2) according to
(©). @) can be reformulated as

(1- R?i)f(zi) =7, )

where f(zi) = log2(1 + Zi) m and Zi =
e:llgig 2/.(0'51';‘ 2 0. Due to tl}f: fact {* >0, to guarantee
that there is a solution z; > 0 satisfying (9), we have R; > {*.
Moreover, since f(z;) is an increasing function with respect
*Hglgll > 0 In

additlon, Tl. < 1-b, we finally obtain Tl. as shov&n in @
This thus proves Theorem [I]

to z;, z; is thus unique. Then, we have T =e;
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