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Spatio-Temporal Representation with Deep Neural
Recurrent Network in MIMO CSI Feedback

Xiangyi Li and Huaming Wu, Member, IEEE

Abstract—In multiple-input multiple-output (MIMO) systems,
it is crucial of utilizing the available channel state information
(CSI) at the transmitter for precoding to improve the performance
of frequency division duplex (FDD) networks. One of the main
challenges is to compress a large amount of CSI in CSI feedback
transmission in massive MIMO systems. In this paper, we propose
a deep learning (DL)-based approach that uses a deep recurrent
neural network (RNN) to learn temporal correlation and adopts
depthwise separable convolution to shrink the model. The fea-
ture extraction module is also elaborately devised by studying
decoupled spatio-temporal feature representations in different
structures. Experimental results demonstrate that the proposed
approach outperforms existing DL-based methods in terms of
recovery quality and accuracy, which can also achieve remarkable
robustness at low compression ratio (CR).

Index Terms—MIMO, CSI Feedback, FDD, Recurrent Neural
Network, Spatio-Temporal Feature.

I. INTRODUCTION

THE technology of massive multiple-input multiple-output
(MIMO), which was first pointed out in the early twentieth

century, has become increasingly crucial in new generation
mobile wireless communications (5G or B5G). The system
uses multiple antennas as multiple transmitters at the base
station (BS) and receivers at user equipment (UE) to realize
the multipath transmitting, which can double the channel capac-
ity without increasing spectrum resources or antenna transmit
power. A growing number of studies [1]–[3] have shown the
significance of utilizing the channel state information (CSI)
feedback at the transmitter to gain the improvement of MIMO
systems. In a frequency division duplex (FDD) network [4], UE
can estimate the downlink CSI, which is then fed back to the
BS to perform precoding for the next signal.

In fact, the uplink CSI feedback process is not an easy
task in massive MIMO systems [5], due to a large number
of antennas at the BS, resulting in high CSI feedback and
huge computational complexity. In order to reduce the CSI
feedback overhead, many methods and technologies have been
proposed. Some compressive sensing (CS)-based approaches
may not fit in real world CSI feedback systems and perform
poorly in CSI compression due to the harsh preconditions.
Recent studies have shown that applying DL to address the
nonlinear problems or challenges in wireless communications
can boost the quality of CSI feedback compression [3]. Wen et

Y. Li and H. Wu are with the Center for Applied Mathematics, Tian-
jin University, Tianjin 300072, China (e-mail: xiangyi li@tju.edu.cn; wh-
ming@tju.edu.cn).

This work was supported by the National Key R & D Program of
China (2018YFC0809800), the National Natural Science Foundation of China
(61801325), and the Huawei Innovation Research Program (HO2018085138).
(Corresponding author: Huaming Wu.)

al. [6] proposed an autoencoder network called CsiNet, which
used several neural network (NN) layers as an encoder instead
of the CS model to compress CSI as well as a decoder to recover
the original CSI. Furthermore, they also put forward another
network called CsiNet-LSTM [2], which extended CsiNet with
three RNN layers to show the benefits of exploring temporal
channel correlation. Another paralleled work, called RecCsiNet
[7], applied RNN in both the encoder and decoder to reduce
errors in CSI compression and decompression. Both of them
can improve the performance of the CsiNet network to some
extent and outperform state-of-the-art CS methods.

In this paper, we design a new architecture of deep NN in
CSI feedback compression, which also takes advantage of RNN.
Based on the RecCsiNet architecture, we retain its structure of
feature compression and decompression modules, and further
improve the feature extraction by applying RNN and sepa-
rating feature extraction in the spatial and temporal domains.
In addition, motivated by MobileNet [8] that used depthwise
separable convolutions to build lightweight deep NN, which we
substitute them for standard convolutions to enhance the quality
of RefineNet [6]. The main contributions are summarized as
follows:

• We propose a novel and effective CSI sensing and recovery
mechanism in the FDD MIMO system, referred to as
ConvlstmCsiNet, which takes advantage of the memory
characteristic of RNN in modules of feature extraction,
compression and decompression, respectively. Moreover,
we adopt depthwise separable convolutions in feature
recovery to reduce the size of the model and interact
information between channels.

• We further refine ConvlstmCsiNet in the feature extraction
module by exploring the spatial-temporal feature represen-
tation that decouples a convolution in the spatial and tem-
poral domains. Experimental results demonstrate that the
improved ConvlstmCsiNet achieves the highest recovery
quality at different compression ratios (CRs) compared to
the state-of-the-art DL-based models.

II. CSI FEEDBACK SYSTEM

We consider an FDD massive MIMO downlink system with
Nt transmitting antennas at the BS and a single receiving
antenna at each UE, which is operated in OFDM with Ñc

subcarriers. The received signal carried by the nth (n =
1, 2, · · · , Ñc) subcarrier can be given as:

yn = h̃
H

n vnxn + zn (1)

where h̃n ∈ CNt , vn ∈ CNt , xn ∈ C and zn ∈ C denote
the instantaneous channel vector, the precoding vector, the
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Fig. 1: The architecture of ConvlstmCsiNet with P3D block

modulated transmit symbol and the additional noise at the nth

subcarrier, respectively. Then the CSI matrix can be denoted as:

H̃ = [h̃1, h̃2, · · · , h̃Ñc
] ∈ CNt×Ñc (2)

We assume that each UE can acquire the estimation of
channel response H̃, which is then fed back to the BS to help
the BS to generate the precoding vector vn. The process of
CSI feedback from the UE to the BS, involving the actual
required CSI compression, is the main goal of our research.
Before being transmitted to the BS, the CSI matrix requires
two pretreatments:

• H̃ is supposed to be sparse in the angular-delay domain
after undergoing a 2D discrete Fourier transform (DFT)
operation.

• In the delay domain, most of the elements in H̃ are zeros
except for the first few non-zero columns, because the time
delay between multipath arrivals around the straight path
lies within a small finite time period. Therefore, the first
Nc (Nc < Ñc) nonzero columns can be retained, while the
rest are removed, and the new Nt ×Nc sized CSI matrix
is represented as H.

According to [9], we assume that the channel matrix H
remains fixed for a given OFDM symbol and its associated
precoding vector, however, it varies from time to time based on
a state-space model. Denote that Ht = [h1,t,h2,t, · · · ,hNc,t] ∈
CNt×Nc is the instantaneous CSI at tth time step, and then
Ht+1 at next time step can be expressed as:

Ht+1 = F ·Ht + G · ut (3)

where ut ∈ CNt×Nc is the additive noise that each element
u
(i,j)
t ∼ N(0, σ2

u), and F,G ∈ CNt×Nt are the weight square
matrices, which are assumed to be available to the receiver. For
convenience, we set F = (1−α2)I and G = α2I by introducing
a new parameter α, which depicts the correlation between
adjacent CSI matrices. So this sequence of time-varying channel
matrix is defined as: {Ht}Tt=1 = {H1,H2, · · · ,HT }.

During transmission, {Ht}Tt=1 is separated into a real part
and an imaginary part to reduce the computational complexity,
where all elements in the matrix are turned into real numbers
and normalized within [0, 1]. With the help of DFT and trun-
cation operations, the number of feedback parameters should
be reduced from Ñ = 2 × Ñc × Nt to N = 2 × Nc × Nt,
which still remains a large number of parameters in massive
MIMO systems and information compression is required during
the transmission procedure. The model consists of an encoder at

the UE to convert a CSI matrix Ht of size N into a compressed
M -dimensional (M < N ) codeword st, as well as a decoder at
the BS to make the compressed vector st transform back to the
original CSI matrix. The data compression ratio is γ = M/N .
Once the BS completes the recovery of Ht, i.e., Ĥt, it outputs
the final matrix ˆ̃Ht by adding zero columns and performing
inverse DFT.

III. PROPOSED CONVLSTMCSINET WITH P3D BLOCKS

The proposed ConvlstmCsiNet is illustrated in Fig. 1. It
includes an encoder at the UE and a decoder at the BS. The
encoder is divided into two modules, i.e., feature extraction
and feature compression; and the decoder consists of feature
decompression and feature recovery modules, where RefineNet
unit is employed in the feature recovery module.

Different types of network layers are colored and each layer
has the output shape on the top, marked by T ×H ×W × C
or T ×L×C, where T , H , W , C and L denote the time step
of RNN, height, width, channel numbers of feature maps, and
codeword length, respectively. After the DFT and truncation
operations, the CSI matrix H is then fed into this CSI feedback
autoencoder with the input shape of T × 32 × 32 × 2 (H =
Nt = 32, W = Nc = 32), where two channels represent the
real and imaginary parts of H. The output remains the same
shape as the input.

A. ConvlstmCsiNet
1) RNN in Feature Extraction: On the basis of CsiNet [6], we

refine the feature extraction module by adding a convolutional
long short-term memory (ConvLSTM) [10] layer before the
convolution, and adopt the memory function of RNN to learn
the temporal correlation from the inputs of previous time steps
as well as compress the temporal redundancy. Therefore, it
can help the convolution to capture more useful temporal
information in feature extraction.

ConvLSTM is a variant of LSTM, which is proposed in RNN
to solve the problem of time sequence gradient disappearing
with the increase of calculation time. The main change is that
the weight calculation is switched from linear operation to
convolution operation, which helps it not only inherit the ability
of LSTM and capture the temporal correlation, but also depict
the detailed local information in image features like CNN,
simultaneously.

The main structure of ConvLSTM is shown in Fig. 2. It
has the ability to remove or add information to the cell state
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through three well-designed gates, i.e., forget gate, input gate
and output gate, including a sigmoid activation layer and a dot
multiplication operation. Since convolution operations require
fewer parameters than linear operations, ConvLSTM can help
to reduce the size of the model.

Fig. 2: The structure of three gates in ConvLSTM [10]

The symmetric feature compression and feature decompres-
sion modules refer to RecCsiNet [7], which has achieved higher
accuracy than PR-RecCsiNet [7] or CsiNet-LSTM [2]. It uses
two parallel row structures, i.e., the fully-connected (FC) layer
and the LSTM layer, to compress the reshaped N -length vector
into a M -length codeword, simultaneously. Then we put the
merged codeword as the output of the encoder, and decompress
it back to N -length with the symmetric structure, which will
be reshaped into two 32× 32 sized features, serving as a rough
estimation of the real and imaginary parts of H. During the
feedback transmission, the feedback channel is assumed to be
perfect enough to transmit the compressed codeword without
any damage or loss.

Although ConvLSTM has so many advantages, we retain
LSTM instead of completely replacing it with ConvLSTM
since LSTM can perform better in terms of overall information
interaction due to its FC operation in weight calculations, thus
is more suitable for feature compression, while ConvLSTM is
more adaptable for depicting local detailed information.

2) Depthwise Separable Convolution in Feature Recovery:
RefineNet in CsiNet [6] is adopted as the basic structure. Each
RefineNet block has three 3× 3× 3 Conv3D layers, which are
cascaded together one by one, outputting 8, 16 and 2 feature
maps, respectively. The feature recovery module helps to refine
the primary rough estimation of H with two RefineNet blocks
and the results in CsiNet have testified that two blocks are
sufficient to recover the CSI matrix and more blocks will lead
to parameter redundancy. After two RefineNet blocks follow a
3× 3× 3 Conv3D layer and a sigmoid activation layer, which
outputs the final result of the recovered H, including its real
and imaginary parts.

Fig. 3: Filters of depthwise separable convolution

While in this module, all standard convolutions in the feature
recovery module are replaced by a new type of convolutional
layer, i.e., depthwise separable convolution [8], referred to as
DS-Conv. This substitution not only reduces the number of
parameters, but also helps the RefineNet achieve better perfor-
mance and higher recovery accuracy. According to MobileNet,
it can be divided into two steps: depthwise convolution and
pointwise convolution, the kernels of which are shown in Fig. 3.

It is assumed that the original 3 × 3 × 3 Conv3D accepts
M input feature maps and outputs N feature maps. Depthwise
convolution is a set of convolutions, each of which is responsible
for one feature map separately, so there are M 3×3×3 1-depth
depthwise convolution filters to output M feature maps. While
pointwise convolution is a M -depth 1×1×1 convolution to deal
with M feature maps obtained from depthwise convolution and
outputs N feature maps. The first step is mainly responsible for
capturing features in each channel, while the second step is for
the dimensions of ascending and descending channels, as well
as for information integration and interaction across channels,
which helps the convolution to better understanding the correla-
tion between different channels. The parameter number of DS-
Conv3D is (M×33+M×N)/M×33×N time of the Conv3D,
so that DS-Conv3D can also help to reduce the parameter size
of the feature recovery module to a certain extent. In addition,
due to the large use of pointwise convolution, highly optimized
matrix multiplications, such as GEMM, can be used directly to
complete them without the pre-processing operation of im2col,
which greatly improves the operational efficiency.

B. Decoupled Spatial-Temporal Feature Extraction in Convl-
stmCsiNet

For further refinement of ConvlstmCsiNet, we focus on the
spatial-temporal feature representation in the feature extraction
module. Inspired by [11], we replace the convolutional layer
with Pseudo-3D (P3D) in ConvlstmCsiNet to perform feature
extraction. The key idea of P3D is to capture features in the
temporal and spatial domains, respectively. Suppose we have
3D convolutional filters of size Td × Sd × Sd (Td and Sd

denote temporal depth and spatial depth, respectively), which
can be naturally decoupled into 1×Sd×Sd convolutional filters
equivalent to 2D convolutions in spatial domain and Td× 1× 1
convolutional filters equivalent to 1D convolutions on temporal
domain. This block replaces the standard convolutional layer
with two filters in a cascaded or paralleled manner. In this way,
the number of parameters and computational complexity can be
reduced.

Fig. 4: Three designs of P3D block

Considering whether the temporal and spatial filters should
directly or indirectly influence each other or the final output,



IEEE WIRELESS COMMUNICATIONS LETTERS, VOL. , NO. , 2019 4

three designs of P3D blocks are proposed, which are shown in
Fig. 4. The skip connection structure of ResNet [12] is also used
here, which can directly pass the data flow to subsequent layers
and lead the model degenerating into a shallow network, thus
helping to ease the optimization and improve the robustness of
the NN by skipping those unnecessary layers. For regularization,
we adopt the idea of pre-activation structure [13] that the
batch normalization (BN) layer followed with an activation
layer of leaky ReLU is placed before all weighted layers (e.g.
convolutional layer), which has the impacts that the optimization
is further eased and the regularization of the model is improved.

Based on ConvlstmCsiNet, we name the three newly pro-
posed models as ConvlstmCsiNet-A, ConvlstmCsiNet-B and
ConvlstmCsiNet-C, where P3D-A, P3D-B or P3D-C blocks
replace the convolution in feature compression module, respec-
tively. Then ConvlstmCsiNet is used to highlight the effect of
P3D in feature extraction by comparing to those with P3D
blocks. Define the network as an autoencoder function of the
input Ht, then the output can be expressed as:

Ĥt := f({Hk}tk=1; Θ)

= fdec(fenc({Hk}tk=1; Θenc); Θdec)
(4)

where Θ is the whole parameters and f(·) represents the
function of the network. fdec, fenc, Θdec and Θenc denote the
maps and parameters of the decoder and encoder, respectively.

All networks are trained end-to-end by updating parameters
in the procedure of minimizing the mean squared error (MSE)
loss function using the ADAM algorithm, which can be given
as follows:

L(Θ) =
1

MT

M∑
m=1

T∑
t=1

‖f(Hm,t; Θ)−Hm,t‖22

=
1

MT

M∑
m=1

T∑
t=1

Nt∑
i=1

Nc∑
j=1

|f(H(i,j)
m,t ; Θ)−H(i,j)

m,t |
(5)

where ‖·‖2 is the Euclidean norm, T and M denote the number
of recurrent steps and the total number of examples in the
training data, respectively.

IV. EXPERIMENTS AND NUMERAL RESULTS

In this section, we illustrate the training process in details and
discuss the experimental results compared with several other
methods of CSI feedback compression networks.

Two metrics are introduced to evaluate the models:
• Normalized Mean Square Error (NMSE): it quantifies

the difference between the input {Ht}Tt=1 and the output
{Ĥt}Tt=1, which can be defined as:

NMSE = E
{

1

T

T∑
t=1

‖Ht − Ĥt‖22
‖Ht‖22

}
(6)

• Cosine Similarity ρ: it depicts the similarity between the
original CSI matrix H̃ and the recovered ˆ̃H by calculating
cosine similarity within the channel response h̃n,t (n =
1, · · · , Ñc) of each subcarrier, which is given as:

ρ = E
{

1

T

1

Ñc

T∑
t=1

Ñc∑
n=1

|ˆ̃hH
n,t · h̃n,t|

‖ˆ̃hn,t‖2‖h̃n,t‖2

}
(7)

The MIMO-OFDM feedback system is set to work with Ñc =
1, 024 subcarriers and uniform linear array (ULA) with Nt = 32
antennas at the BS. After the DFT and truncation operations,
only the first Nc = 32 columns in CSI feedback matrix H are
nonzero and remain unchanged, which turns H from a 1, 024×
32 shape to a new 32×32 shape. According to Eq. 3, we add tiny
white Gauss noise (σu = 10−3) and coloration index α between
each time step, and the 2D CSI feedback matrix can be extended
to a T -time sequence of time-varying CSI matrix, where T is
the recurrent time steps and is set to 4 for convenience.

All examples of H are generated based on the COST2100
[14] channel model. We use the indoor picocellular scenario at
the 5.3 GHz band, and all parameters follow the default setting
in [14]. During the training process of each model, we use
100,000 examples for training, 30,000 for validation and 20,000
for testing. The learning rate is set to 10−3 for the first 1,000
epochs, 5 × 10−4 for the middle 1, 000 − 1, 200 epochs and
10−4 for the last 1, 200− 1, 500 epochs.

TABLE I: NMSE and ρ in different CRs when α = 0.1

Indoor Scenario
CR 1/4 1/8 1/16 1/32

N
M

SE
CsiNet -17.5 -12.3 -9.93 -6.98
RecCsiNet -21.5 -18.8 -16.8 -13.4
ConvlstmCsiNet-A -28.4 -23.5 -20.7 -15.0
ConvlstmCsiNet-B -25.9 -20.7 -18.3 -14.0
ConvlstmCsiNet-C -26.5 -22.0 -19.0 -14.4
ConvlstmCsiNet -24.9 -23.0 -18.7 -13.5

ρ

CsiNet 95.1% 93.1% 90.4% 87.4%
RecCsiNet 95.7% 95.0% 94.7% 93.3%
ConvlstmCsiNet-A 95.8% 95.7% 95.5% 94.2%
ConvlstmCsiNet-B 95.8% 95.4% 95.0% 93.8%
ConvlstmCsiNet-C 95.8% 95.6% 95.3% 93.7%
ConvlstmCsiNet 95.7% 95.7% 95.2% 93.5%

Since the DL-based approaches are superior to the traditional
CS-based methods, we only compare our methods with the
DL-based approaches, such as CsiNet [6] and RecCsiNet [7]).
The corresponding NMSE and ρ of each network are given in
Table I, where the best results are marked in bold. The value
of NMSE is too small that we use log(NMSE) to represent it.
Obviously, our proposed model ConvlstmCsiNet-A can achieve
the best performance on both NMSE and ρ.

TABLE II: Percentage improvement of proposed networks compared
with CsiNet & RecCsiNet

CR 1/4 1/8 1/16 1/32

C
om

pa
re

to
C

si
N

et

N
M

SE

ConvlstmCsiNet-A 64.0% 91.1% 108.5% 114.9%
ConvlstmCsiNet-B 48.0% 68.3% 84.3% 100.6%
ConvlstmCsiNet-C 51.4% 78.9% 91.3% 106.3%
ConvlstmCsiNet 42.3% 87.0% 88.3% 93.4%

ρ

ConvlstmCsiNet-A 0.73% 2.8% 5.6% 7.8%
ConvlstmCsiNet-B 0.73% 2.5% 5.1% 7.3%
ConvlstmCsiNet-C 0.73% 2.7% 5.4% 7.2%
ConvlstmCsiNet 0.63% 2.8% 5.3% 7.0%

C
om

pa
re

to
R

ec
C

si
N

et

N
M

SE

ConvlstmCsiNet-A 32.1% 25.0% 23.2% 11.9%
ConvlstmCsiNet-B 20.5% 10.1% 8.93% 4.48%
ConvlstmCsiNet-C 23.3% 17.0% 13.1% 7.46%
ConvlstmCsiNet 15.8% 22.3% 11.3% 0.75%

ρ

ConvlstmCsiNet-A 0.10% 0.74% 0.84% 0.96%
ConvlstmCsiNet-B 0.10% 0.42% 0.32% 0.54%
ConvlstmCsiNet-C 0.10% 0.63% 0.63% 0.43%
ConvlstmCsiNet 0.00% 0.74% 0.53% 0.21%
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To show the contrast more intuitively, we give percent-
age improvements of the proposed network compared with
CsiNet and RecCsiNet in Tabel II. It demonstrates that all
four purposed models outperform CsiNet and RecCsiNet. In
the networks with P3D blocks, ConvlstmCsiNet-A achieves the
best performance while ConvlstmCsiNet-B achieves the worst,
indicating that the cascaded manner of temporal and spatial
filter performs better than the parallel fashion, which can also
be proved by the result that the performance of the combined
structure ConvlstmCsiNet-C is between ConvlstmCsiNet-A and
ConvlstmCsiNet-B.

When analyzing the functions of P3D blocks, all
ConvlstmCsiNet-A, ConvlstmCsiNet-B and ConvlstmCsiNet-C
have obtained much lower NMSE and higher cosine similarity
ρ than ConvlstmCsiNet, especially at high CRs, indicating that
the decoupling convolution structure (P3D block) does have
a positive impact on capturing features and improving the
performance of the network.

In Table II, we can find that in the first part (compared
with CsiNet) that the improvements of all four networks are
increasing as CR decreases due to a better and more complicated
devised architecture. However, the increase in improvement be-
comes slower when compared with RecCsiNet, which indicates
that the advantage of the ConvLSTM layer in feature extraction
module in our models becomes less noticeable compared with
RecCsiNet at low CRs. This is because the CR value only affects
the performance of feature compression and decompression,
where LSTM begins to play a major role in accelerating the
convergence of models, emphasizing the benefits of LSTM and
shrinking the advantage effects of feature extraction part.

Fig. 5: Absolute value of original (α = 0.1) and reconstructed CSI
images at different CRs

Figure 5 plots the reconstructed CSI images by CsiNet and
ConvlstmCsiNet-A (the best model we propose) in Pseudo-gray.
Obviously, ConvlstmCsiNet-A outperforms CsiNet, especially
at low CRs. Moreover, CsiNet may lose some feature informa-
tion while ConvlstmCsiNet-A does not.

Figure 6 demonstrates that the rise of α leads to a growth
of corresponding NMSE, indicating that a decrease in temporal
correlation may prevent the proposed networks from achieving
high performance in CSI recovery.

V. CONCLUSION

We proposed a novel network architecture of CSI feedback
by adopting RNN and depthwise separable convolution in
feature extraction and recovery modules, respectively. Further-
more, we also devised the feature extraction part by studying
the decoupled temporal-spacial convolutional representations,

Fig. 6: NMSE of the proposed NN at CR=1/4 in different correlation
parameter α

which proved to be better than standard Conv3D convolutions.
Experimental results demonstrate that our method can improve
the performance of RecCsiNet in terms of recovery robustness,
accuracy and quality. This architecture has the potential for
practical deployment on real MIMO systems.
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