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Abstract—This article investigates beam alignment for multi-
user millimeter wave (mmWave) massive multi-input multi-
output system. Unlike the existing works using machine learning
(ML), an alignment method with partial beams using ML
(AMPBML) is proposed without any prior knowledge such as
user location information. The neural network (NN) for the
AMPBML is trained offline using simulated environments ac-
cording to the mmWave channel model and is then deployed on-
line to predict the beam distribution vector using partial beams.
Afterwards, the beams for all users are all aligned simultaneously
based on the indices of the dominant entries of the obtained
beam distribution vector. Simulation results demonstrate that
the AMPBML outperforms the existing methods, including the
adaptive compressed sensing, hierarchical search, and multi-path
decomposition and recovery, in terms of the total training time
slots and the spectral efficiency.

Index Terms—Beam alignment, machine learning, massive
MIMO, millimeter wave communications.

I. INTRODUCTION

Due to its abundant frequency spectrum resource, millimeter

wave (mmWave) communications have attracted broad atten-

tion and become an important technology in the future [1].

The mmWave signal experiences high path loss but can be

compensated by utilizing a massive multi-input multi-output

(MIMO) antenna array to achieve directional beam alignment

(BA) and data transmission. Its short wavelength enables large

antenna arrays to be packed into small form factors.

In multi-user multi-stream mmWave systems, the base sta-

tion (BS) simultaneously serves multiple users with multiple

beams. To align beams for different users, hierarchical code-

book based beam training is usually used. For examples, an

adaptive compressed sensing (ACS) method has been proposed

in [1], where a hierarchical codebook with multi-resolution

is designed to train beams for all users sequentially. Then

a hierarchical search (HS) method, which can be performed

much faster than the ACS method, has been developed in [2].

To combine the advantages of the HS and the ACS, a multi-

path decomposition and recovery (MDR) method has been

proposed in [3] . However, using hierarchical codebook based

This work was supported in part by National Natural Science Foundation
of China under Grant 61871119, by Natural Science Foundation of Jiangsu
Province under Grant BK20161428, and by the Fundamental Research Funds
for the Central Universities. (Corresponding author: Chenhao Qi)

Wenyan Ma and Chenhao Qi are with the School of Information Sci-
ence and Engineering, Southeast University, Nanjing 210096, China (Email:
qch@seu.edu.cn).

Geoffrey Ye Li is with the School of Electrical and Computer En-
gineering, Georgia Institute of Technology, Atlanta, GA, USA (Email:
liye@ece.gatech.edu).

beam training to align beams for multiple users is not trivial.

The BS has to align beams for all users sequentially during

the training stage, leading to huge overhead. Moreover, the

optimal codeword index must be fed back for each layer of the

hierarchical codebook, which is also time consuming. Other

work investigates the beam alignment in mmWave systems

equipped with automotive sensors or radars, where the BS

can obtain the user location information from these sensors

or radars and the directional beams can be designed. For

examples, a beam alignment solution is designed by extracting

useful information from radar signal [4], while the beams are

aligned based on the location information from automotive

sensors [5]. However, the equipped automotive sensors or

radars will incur additional hardware overhead.

Recently, machine learning (ML) has been applied to ad-

dress different issues in physical layer communications [6].

The application of ML to BA in mmWave systems has also

been investigated to take the advantages of ML in solving

complicated nonlinear problems. For examples, the ML tools

and situational awareness are combined to learn the beam

information including power and optimal beam index [7] while

the angles of arrival (AoAs) can be estimated and input to the

neural network (NN) for beam selection [8]. However, the

above two ML methods need the location information of the

users to train the NN, which incurs extra system overhead.

In this article, we propose an alignment method with partial

beams using ML (AMPBML) for the multi-user mmWave

massive MIMO system. The NN for the AMPBML is

trained offline using simulated environments according to the

mmWave channel model and is then deployed online to predict

the beam distribution vector using partial beams. Afterwards,

the beams for all users are aligned simultaneously based on the

obtained indices of the dominant entries of beam distribution

vector. Different from the existing works based on hierarchical

codebook, we align beams for all users simultaneously and

significantly save the total training time. Moreover, unlike the

existing works on BA using ML, we need no prior knowledge,

such as the user location information, to train the NN. It will

reduce the system overhead significantly.

Notations: Symbols for vectors (lower case) and matrices

(upper case) are in boldface. (·)T , (·)∗, (·)H , and (·)−1 denote

the transpose, conjugate, conjugate transpose, and inverse,

respectively. We use IL to represent identity matrix of size

L. The set of M ×N complex-valued matrices and integral-

valued matrices is denoted as CM×N and ZM×N , respectively.

We use E{·} to denote expectation. ‖ ·‖2 and ‖ ·‖F denote l2-

norm of a vector and Frobenius norm of a matrix, respectively.
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The nth entry of a is denoted as a[n]. We use ⌊·⌋ and ⌈·⌉
to denote floor and ceil operations, respectively. Complex

Gaussian distribution is denoted as CN .

II. SYSTEM MODEL AND PROBLEM FORMULATION

We first introduce the multi-user mmWave massive MIMO

system. Then we formulate the BA problem for multiple users.

A. System Model

We consider an uplink multi-user mmWave massive MIMO

communication system comprising a BS and U users. The BS

is equipped with a uniform linear array (ULA) [1]. Note that

the present method can be generalized to other array structures.

Hybrid combining is typically adopted, where the number of

antennas, NA, is much larger than that of RF chains, NR, i.e.,

NA ≫ NR.

For uplink transmission, hybrid combining at the BS con-

sists of baseband digital combining and RF analog combin-

ing [9]. Denote su to be the transmit signal. Then the received

signal vector at the BS can be expressed as

y = WH
BWH

R

U∑

u=1

husu +WH
BWH

Rn, (1)

where WB ∈ CNR×NR and WR ∈ CNA×NR are the digital

combining matrix and analog combining matrix, respectively,

and n ∈ CNA is the additive white Gaussian noise (AWGN)

vector satisfying n ∼ CN (0, σ2INA
). To normalize the power

of the hybrid combiner, we set ‖WH
BWH

R ‖2F = NR and

E{susu
∗} = 1.

There are different kinds of channel model in mmWave

systems, such as the clustered mmWave channel model [10],

[11] and the Saleh-Valenzuela mmWave channel model [1].

We choose the Saleh-Valenzuela mmWave channel model

in our paper. For the Saleh-Valenzuela mmWave channel

model [1], the channel vector hu ∈ CNA between the uth

user and the BS can be represented by

hu =

√
NA

Lu

Lu∑

i=1

hu,i =

√
NA

Lu

Lu∑

i=1

gu,iα(NA, θu,i), (2)

where hu,i, Lu, and gu,i are denoted as the channel vector,

number of multiple channel paths, and complex gain of the ith
path, respectively, and the steering vector α(N, θ) in (2) can

be expressed as α(N, θ) = 1√
N

[
1, ejπθ, ..., ejπθ(N−1)

]T
[2],

[3]. Typically hu consists of one line-of-sight (LOS) path (the

1st channel path), and Lu− 1 non-line-of-sight (NLOS) paths

(the ith channel path for 2 ≤ i ≤ Lu).
The AoA of the ith path of the uth user ϑu,i is uniformly

distributed over [−π, π) [1]. Then θu,i , sinϑu,i in (2) if the

distance between adjacent antennas at the BS is with half-wave

length.

B. Problem Formulation

According to [9], each column of the analog combiner is a

codeword selected from a beam steering codebook, which con-

sists of NA equally spaced channel steering vectors pointing

at NA different directions. The codebook at the BS is denoted

by W , {w(1),w(2), . . . ,w(NA)}, where

w(n) = α(NA,−1 + (2n− 1)/NA). (3)

Our objective is to search U beams from the total NA

ones that align with the LOS paths of U users. Denote

C , [w(1),w(2), . . . ,w(NA)] ∈ CNA×NA and βu ,

CHα(NA, θu,1) ∈ CNA . Then the objective can be denoted

as

arg max
n=1,2,...,NA

∣∣∣βu[n]
∣∣∣, u = 1, 2, . . . , U. (4)

Denote b , [b1, b2, . . . , bu]
T ∈ Z

U as the U beam indices that

align with the LOS paths of U users, where bu can be denoted

as

bu =

⌊
NA(θu,1 + 1)

2

⌋
+ 1 ∈ {1, 2, . . . , NA}. (5)

Given θu,1, the objective U beam indices can be directly

calculated according to (5). However, θu,1 is unknown before

channel training. Exhaustive search to solve (4) for the best

analog combiner requires NAU/NR time slots. For example,

NAU/NR = 256 if NA = 256, U = 3, and NR = 3 [9]. The

exhaustive search requiring the full knowledge of βu is rather

time consuming if there are a large number of antennas. In

order to reduce the time slots, we use only part of total NA

beams to predict the optimal U beams. However, due to the

nonlinearity of βu, it is hard to directly calculate the optimal

beam based on partial entries of βu. Recently, ML has shown

advantages on dealing with nonlinear problems. Therefore we

will develop ML based BA based on partial entries of βu.

III. AMPBML

The major steps of the AMPBML is summarized in Algo-

rithm 1. During the uplink beam training, we use J different

analog combining matrices, denoted as W t
R ∈ CNA×NR . The

beam alignment chooses analog beams that best align with

the LOS path of each user, which is independent of the digital

combining matrix. Therefore we set WB = INR
at the BS.

For simplicity, each user transmits the same signal su = 1 for

all J slots. The channel is assumed to be time-invariant during

J time slots. The received signal vector at the BS at the tth
slot can be denoted as

yt = (W t
R)

H

U∑

u=1

hu + ñt, (6)

where ñt
, (W t

R)
Hnt ∈ CNR and nt ∈ CNA is the AWGN

vector, each entry of which is with independent complex

Gaussian distribution with zero mean and variance of σ2.

Denote M , JNR. We stack the J received signal vectors

together and have

r = (W )H
U∑

u=1

hu + ñ, (7)

where

r , [(y1)T , (y2)T , . . . , (yJ)T ]T ∈ C
M ,

W , [W 1
R,W

2
R, . . . ,W

J
R] ∈ C

NA×M ,

ñ , [(ñ1)T , (ñ2)T , . . . , (ñJ )T ]T ∈ C
M .

(8)
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Fig. 1. Illustration of the NN.

Algorithm 1 AMPBML

1: Input: yt, J .

2: Obtain r via (8).

3: Input r to the offline-trained NN to get q̂.

4: Obtain v by sorting the absolute value of q̂ in descending

order.

5: Calculate b̂ based on (11).

6: Output: b̂.

To obtain partial entries of βu, W is set as a submatrix

consisted of M columns of C. Since r is determined by hu

as shown in (7) while hu is related to the AoA of the LOS

path ϑu,1 as shown in (2), r contains the information of the

AoA of the LOS path, indicating that we do not require other

information except r to train the NN.

The BA for multiple users has two stages, the offline training

of the NN and online deployment. The NN is first trained

offline and then used to predict the U beam indices. As in

Fig. 1, the input of the NN is r. The beam distribution vector,

denoted by q ∈ ZNA , can be represented as

q[n] =

{
1, n = bu, u = 1, 2, . . . , U,

0, otherwise.
(9)

The indices of the nonzero entries of q represent the targeted

U beam indices. Note that the AoA is known only during the

offline training stage while it is unknown during the online

deployment stage. The output of the NN is denoted by q̂ and

is expected to be as close to q as possible.

As illustrated in Fig. 1, the adopted NN in this work consists

of three hidden layers and a fully connected (FC) layer. Since

the NN can only deal with the real number, the input of the NN

is a real-valued vector with the length of 2M composed by the

imaginary and real parts of r. Each hidden layer consists of a

convolutional (Conv) layer and a pooling (Pool) layer. We use

two NN parameter sets: NN parameter set (NPS) I and NPS II.

The strides of each Conv layer is set to be 1. The kernel size

of each Conv layer is set to be 5 and 10 in NPS I and NPS II,

respectively. The numbers of filters of these three Conv layers

are set as 16, 32, and 64, respectively, in NPS I and 32, 64,

and 128, respectively, in NPS II. The activation function of the

Conv layer is the ReLU function, that is fRe(x) = max(0, x).
Both the pool size and strides of each Pool layer are set to be

2.

During the offline training of the NN, we generate the

dataset of r and q based on the simulated mmWave channel

environment. With the beam distribution vector in (9) and the

received signals in (7), the training data of r and q can be

obtained. In fact, the process to obtain r and q involves the

following four steps.

i) Randomly generate a channel vector based on the

mmWave channel model in (2);

ii) obtain bu based on (5);

iii) enumerate the beam distribution vector q based on (9);

iv) compute the received signal vector r based on (7).

We divide the data set into the training set and the validation

set randomly, where the size of the training set is nine times

the size of the validation set. The output of the NN is q̂.

The training of the NN aims to minimize the difference

between q̂ and q, called the loss in ML. It can be calculated in

several ways. In our work, we formulate the beam alignment

problem as a multi-label classification problem and use the

cross-entropy loss with the sigmoid function as [7]

fLoss(q, q̂) =
1

NA

NA∑

n=1

max(q̂[n], 0)−q̂[n]q[n]+ln(1+e−|q̂[n]|).

(10)

The adaptive moment estimation (Adam) optimizer is used

to train the NN by TensorFlow. The NN is trained for 6,000

epochs, where 500 mini-batches are utilized in each epoch.

The learning rate is set to be a step function and decreases

with the increasing of training epochs. The learning rate is

initialized with the value of 0.01 and decreases 5-fold every

1,000 epochs.

During the online deployment of the NN, we obtain the real

measured r from practical mmWave channel environments,

which is then input to the offline-trained NN. The prediction

of q by the NN is q̂. Due to the mismatching channel

environment between the offline training stage and the online

deployment stage, q̂ may not have only U nonzero entries.

Therefore, we select U dominant entries of q̂ as the prediction

of the U beam indices that align with the LOS paths of U
users. Denote b̂ , [b̂1, b̂2, . . . , b̂U ]

T ∈ ZU as the prediction of

the U beam indices, which can be represented as

b̂u = v[u], (11)

for u = 1, 2, . . . , U .

IV. SIMULATION RESULTS

We consider an mmWave massive MIMO system with

a BS equipped with NA = 256 antennas and NR = 8
RF chains. The number of resolvable paths in the mmWave

channel is set to be Lu = 3, while gu,1 ∼ CN (0, 1) and

gu,i ∼ CN (0, 0.01) for i = 2, 3 [9]. We use J = 16
time slots to transmit signals for uplink channel estimation.

Then we have M = JNR = 128. W is set as a submatrix

consisted of M columns from C , with column indices denoted

as 1, 1 + ⌊NA/M⌋, . . . , 1 + (M − 1)⌊NA/M⌋ from C . We

compare the proposed AMPBML with the ACS [1], HS [2],

and MDR [3] beam training methods.

As shown in Fig. 2, we verify the convergence of the

training of the NN. Suppose there are U = 3, 4, 5 users,

respectively. It is seen that the loss in (10) decreases rapidly
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Fig. 3. Comparisons of spectral efficiency for different SNR.

as the number of epochs grows, and the less users lead to the

smaller loss. For U = 3, the loss is smaller than 0.1 when the

number of epochs is larger than 20, which means 20 epochs

is enough to achieve the loss smaller than 0.1.

In Fig. 3, we compare the spectral efficiency for different

BA methods. During the downlink data transmission, the

best analog beamforming vector for the uth user is w(b̂u)
. We use U RF chains to design the analog precoder at

the BS as W̃R =
[
w(b̂1),w(b̂2), . . . ,w(b̂U )

]
[9]. Then

the digital precoder is designed as W̃B =
(
W̃

H

RW̃R

)−1

to eliminate multi-user interference [9]. In order to satisfy

the total power constraint, each column of the designed

digital precoder, denoted as w̃B,u, should be normalized, i.e.,

w̃B,u = w̃B,u/
∥∥∥w̃H

B,uW̃
H

R

∥∥∥
2
, such that

∥∥∥w̃H
B,uW̃

H

R

∥∥∥
2

2
= 1,

u = 1, 2, . . . , U . Moreover, since the U beam indices that

align with the LOS paths of U users are predicted simultane-

ously, the user identifier should be transmitted to the BS to

determine the one-to-one correspondence of the predicted U

beam indices and U users after the hybrid precoder design.

Then the spectral efficiency is denoted as [9]

R =

U∑

u=1

log2


1 +

1
U

∣∣∣w̃H
B,uW̃

H

Rhu

∣∣∣
2

1
U

∑
i6=u

∣∣∣w̃H
B,iW̃

H

Rhu

∣∣∣
2

+ σ2


 . (12)

Fig. 3 shows that the proposed method achieves better per-

formance than the others when U = 3 and U = 7. At SNR

= 0 dB, the AMPBML with U = 3 and NPS I has 59.0%,

68.7%, and 257.0% performance improvement compared with

the ACS, MDR, and HS, respectively; while the AMPBML

with U = 7 and NPS I has 17.3%, 131.4%, and 376.5%

performance improvement compared with the ACS, MDR, and

HS, respectively. The reason for the better performance of the

AMPBML is that it can train the NN with the received signal

containing channel noise and is more effective at low SNR.

Moreover, the AMPBML with NPS II has slight performance

improvement over that with NPS I, since NPS II uses larger

kernel size and more filters in each Conv layer.

V. CONCLUSIONS

In this article, we have proposed an AMPBML for multi-

user mmWave massive MIMO systems. Simulation results

have verified the effectiveness of our work. The proposed

method can be used in mmWave communication systems to

align beams for multiple users simultaneously to reduce the

training slots.
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