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Abstract—This letter proposes a modified non-orthogonal
multiple-access (NOMA) scheme for systems with a multi-
antenna base station (BS) and two single-antenna users, where
NOMA transmissions are conducted only when the absolute
correlation coefficient (CC) between the user channels exceeds a
threshold and the BS uses matched-filter (MF) precoding along
the user with the stronger average channel gain. We derive
the average minimal transmit power to guarantee the signal-to-
interference-plus-noise-ratio (SINR) levels of both users. Our re-
sults show that the average minimal power grows logarithmically
in the reciprocal of the CC threshold and a non-zero threshold
is necessary for the modified NOMA scheme to have finite
average minimal transmit power. Further, for the massive MIMO
scenario, we derive the scaling laws of the average transmit power
and outage probability with respect to the antenna numbers, as
well as their tradeoff law. Simulation results are shown to validate
our theoretical results.

Index Terms—Non-orthogonal multiple access (NOMA), min-
imal transmit power, channel correlation, power scaling law,
outage probability.

I. INTRODUCTION

NON-ORTHOGONAL multiple-access (NOMA) is a po-

tential technique for the next generation mobile commu-

nications. With superposition coding at the transmitting base

station (BS) and successive interference cancellation (SIC) at

the receiving users [1], NOMA can provide improved spectral

efficiency via the extra degree-of-freedom in the power domain

compared to traditional orthogonal multiple-access (OMA)

schemes [2].

Early works on NOMA considered the single-input-single-

output (SISO) case, where the BS is equipped with a single-

antenna, e.g., [3]–[5]. For NOMA with multiple uniformly

distributed users, in [3], expressions were derived for both the

sum-rate and the outage probability of each individual user. It

was shown that NOMA has higher sum-rate than OMA; while

for the outage probability, the choices of user rates and power

coefficients are critical. In [4], the sum-rate superiority of

NOMA to OMA was shown for the two-user cluster case and

fixed power allocation. The significance of user-pairing based

on channel norm difference was also demonstrated. Further,

the outage probability of the stronger user was analyzed given

quality-of-service (QoS) guarantee of the weak user. In [5], for

multiple users, the sum-rate optimization over power allocation

with fairness consideration were studied for both OMA and

NOMA systems and the optimized sum-rate of NOMA was

shown to be higher.
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There are also results on multi-input-multi-output (MIMO)

NOMA, where the BS is equipped with multiple antennas,

e.g., [6]–[8]. The work in [6] proved that for 2-user case,

an upper bound of the sum-rate in OMA systems also serves

as a lower bound of the sum-rate in NOMA systems when

applying the same precoding and postcoding to OMA and

NOMA. The work was generalized to multiple-user case in [7].

In [8], for a massive MIMO scenario, the sum-rate achieved

by NOMA with two-user clusters was studied and compared

to the multi-user beamforming scheme. A hybrid of NOMA

and multi-user beamforming scheme was also proposed for

sum-rate improvement.

Different from existing works, we study the power con-

sumption and the tradeoff between power consumption and

outage probability for MIMO-NOMA systems with a two-

user cluster and matched-filter (MF) precoding according to

the channel of the stronger user. Considering the signifi-

cance of channel correlation coefficient (CC) [8], we propose

a modified correlation-based NOMA (CB-NOMA) scheme,

where NOMA is used only when the absolute CC of the

user channels is above a threshold. A tight approximation

is derived for the average minimal transmit power of CB-

NOMA to guarantee QoS for both users. The result reveals

the behaviour of the average minimum transmit power with

respect to the correlation-threshold and shows the superiority

of CB-NOMA to the original NOMA in power saving. Further,

for the massive MIMO scenario, the scaling laws of the power

consumption and outage probability are derived to guide the

threshold design.

II. NOMA SCHEME WITH CORRELATION THRESHOLD

We consider the downlink transmissions in a multi-user

system with an M -antenna BS and 2 single-antenna users. The

channel vector for User k can be modeled as: gk =
√
βkhk,

for k = 1, 2, where βk is the large-scale fading coefficient

and hk ∈ CM×1 represents the small-scale fading effect

with independent and identically distributed (i.i.d.) elements

following the Rayleigh distribution, i.e., hk ∼ CN (0, IM ) for

k = 1, 2. Let ρ be the absolute CC between h1 and h2, which

is given by:

ρ ,

∣
∣hH

1 h2

∣
∣

‖h1‖‖h2‖
. (1)

In other words, ρ = | cos θ|, where θ is the angle between the

two channel vectors. We assume perfect CSI at the transmitter.

Without loss of generality, we assume that β1 ≥ β2.

To save transmit power and achieve a balance between

transmit power and the QoS performance, we propose a
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modified CB-NOMA scheme in which the BS transmits to

both users with a common time-frequency resource block

as well as common beamformer only when ρ, the absolute

correlation coefficient, exceeds a threshold ρth. Otherwise the

BS keeps silent to save power. The design of ρth and its

effects on the performance will be analyzed in later sections.

If ρth = 0, the scheme is the same as the original NOMA.

When the BS serves both users, the BS data symbols are

superposition-coded as [2]:

s =
√

P1s1 +
√

P2s2, (2)

where s1, s2 ∼ CN (0, 1) are the data symbols for the users

and P1, P2 are the power allocated to the users, respectively.

The total BS transmit power is thus P = P1 + P2.

Let b be the BS beamformer. Thus, the transmit vector from

the BS is bs and the signal received by users is given by:

yk = bHgks+ nk, k = 1, 2, (3)

where nk ∼ CN (0, 1) is received noise. Since β1 ≥ β2,

User 1 has is the stronger user with a higher average channel

gain. According to the principle of successive interference

cancellation (SIC), User 2 decodes s2 from y2 treating s1 as

noise. User 1 firstly decodes s2 from y1 treating s1 as noise,

then cancels the component of s2 from y1, and after that

decodes s1 without interference. The signal-to-interference-

plus-noise-ratios (SINRs) for User k to decode sl are thus

given by:

SINR1,s1 = P1β1
∣
∣bHh1

∣
∣
2
, (4)

SINRk,s2 =
P2βk

∣
∣bHhk

∣
∣
2

1 + P1β1 |bHhk|2
, k = 1, 2. (5)

It is noteworthy that the decoding order of our CB-

NOMA scheme depends on user path-loss coefficients only,

equivalently, depends on the average channel gains. This is

different from the NOMA schemes in [6] and [7], where the

decoding order depends on the instantaneous channel gains,

i.e., depends on both βk’s and hk’s. The latter requires extra

communications between the BS and the users about the

instantaneous CSI.

III. AVERAGE MINIMAL TRANSMIT POWER WITH SINR

GUARANTEE

In this section, the average minimal transmit power for

the CB-NOMA scheme to guarantee QoS of both users are

studied. Denote γ1 and γ2 as the SINR requirements for the

users. Since s2 needs to be decoded successfully by both users

while s1 only needs to be decoded by User 1, to guarantee

the QoS requirements, we need:

min (SINR1,s2 , SINR2,s2) ≥ γ2, (6)

and SINR1,s1 ≥ γ1 (7)

By using P1 = P − P2 and (5) into (6), we have

P2 ≥ γ2
1 + γ2




1

min
(

β1 |bHh1|2 , β2 |bHh2|2
) + P



 . (8)

By using (8) into (4) and P1 = P − P2, it can be shown

that

SINR1,s1 ≤ 1

1 + γ2
Pβ1

∣
∣bHh1

∣
∣
2 −

γ2
1 + γ2

· β1
∣
∣bHh1

∣
∣
2

min
(

β1 |bHh1|2 , β2 |bHh2|2
) .

(9)

Finally, substituting (9) into (7), we can obtain

P ≥ Pmin ,
γ1(1 + γ2)

β1 |bHh1|2
+

γ2

min
(

β1 |bHh1|2 , β2 |bHh2|2
) ,

(10)

with equality if and only if (8) takes equality. Pmin defined

in (10) is the achievable lower bound on the instantaneous

transmit power to guarantee the SINR constraints for both

users. The condition in (10) is only a necessary condition

since γ1 and γ2 may not be achieved even when P ≥ Pmin

with a non-optimal power allocation. On the other hand, if

the optimum power allocation is used, the condition is both

necessary and sufficient, that is, γ1 and γ2 are guaranteed for

the two users if and only if P ≥ Pmin.

We consider the matched filter (MF) beamforming based on

channel vector of the stronger user, i.e.,

b =
h1

‖h1‖
. (11)

The minimal transmit power can be rewritten as:

Pmin =
γ1(1 + γ2)

β1‖h1‖2
+

γ2
min (β1‖h1‖2, β2‖h2‖2ρ2)

. (12)

The following theorem is proved for the average value of Pmin.

Theorem 1: Define

P̃lo ,
γ1(1 + γ2)

(M − 1)β1
+

γ2
(M − 1)β2ρ2th

F (1, 1;M ; 1− ρ−2
th ),

(13)

where F (·, ·; ·; ·) is the hypergeometric function and ρth is the

CC threshold. The average minimal transmit power for CB-

NOMA to guarantee SINR levels of both users, γ1 and γ2,

has the following lower and upper bounds:

P̃lo ≤ E [Pmin] ≤ P̃lo

(

1 + min

{
β2
β1
,
γ2
γ1

})

. (14)

Proof See Appendix A.

Theorem 1 provides a lower and an upper bound on the

minimal average transit power. It is the foundation of our

analysis on the average minimal transmit power. In what

follows, we provide several corollaries based on Theorem 1

for more insights.

Corollary 1: limρth→0 E[Pmin] = ∞ and E[Pmin] <∞ for

any ρth > 0, γ1 > 0, γ2 > 0.

This result means that if ρth = 0, i.e., no constraint on the

CC for using NOMA, any user SINR constraints cannot be

guaranteed with finite average transmit power. This is prob-

lematic in energy efficiency. (19) shows that the unbounded

average power is caused by the scenario when ρth is in

the vicinity of zero, i.e., the two channel vectors are close-

to-orthogonal. Naturally, a beam cannot serve the user with
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channel vector orthogonal to the beam, (which is the weaker

user as the beamformer is based on the channel of the stronger

user). Thus the SINR constraint of that user γ2 > 0 can

never be achieved. This motivates the proposed CB-NOMA

scheme with a non-zero threshold on the channel correlation

coefficient.

Corollary 2: When γ1 ≫ γ2 or β1 ≫ β2, the average

minimal power of CB-NOMA can be tightly approximated

as P̃lo, i.e., E[Pmin] ≈ P̃lo.

The result can be obtained directly from (14). The ap-

plication scenario for NOMA is to serve both users at the

same time-frequency block when one user has a significantly

stronger channel [2] and a large difference on large scale

fading coefficients, i.e., β1 ≫ β2 is beneficial to NOMA

systems [4]. Given the difference in the average channel gains,

it is also reasonable to expect a significantly better service to

the stronger user, i.e., γ1 ≫ γ2. For these scenarios, Corollary

2 provides a tight approximation on the average minimal

transmit power for any SINR constraints.

The approximation P̃lo given in (13) shows the behaviour of

the average minimal transmit power with respect to the SINR

constraints and other network parameters. For example, P̃lo

increases with γ1 and γ2 while decreases with ρth, β1, β2 and

M . To further explore the behavior of E[Pmin] with respect to

M and ρth, we introduce the following asymptotic result.

Corollary 3: When γ1 ≫ γ2 or β1 ≫ β2, for any fixed M ,

when ρth → 0,

E[Pmin] ≈
γ1(1 + γ2)

(M − 1)β1
− γ2
β2

ln ρ2th+ψ(M−1)+C

(1− ρ2th)
M−1

, (15)

where ψ(·) is the di-gamma function and C ≈ 0.5772 is the

Euler-Mascheroni constant.

Proof See Appendix B.

(15) provides a closed-form expression for the average

power when ρth is close to zero. It shows that the average

power to guarantee SINR constraints increases as ln (1/ρ2th)
for small threshold.

Next, we consider massive MIMO where M ≫ 1 and study

the asymptotic behaviour with respect to the scaling of both

M and ρth jointly. Both the average transmit power and the

outage probability are considered to see the tradeoff. With the

proposed CB-NOMA, the users are in outage if and only if the

BS is silent, i.e., the absolute CC is smaller than the threshold,

the outage probability is thus,

Pout = P [ρ < ρth] = 1−
(
1− ρ2th

)M−1
, (16)

which is an increase function of M and ρth.

(16) shows that with a fixed M , the outage probability

increases as ρth increases; at the same time, the power con-

sumption decreases. Thus we can adjust the balance between

power consumption and outage performance via the design of

ρth. Notice that with a fixed ρth value, the outage probability

increases as M increases, though the power consumption

reduces. Thus for massive MIMO systems, a threshold design

where ρth decreases with M is desirable. For this matter, we

have the following results.
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Fig. 1. Average minimal power versus ρ2
th

where M = 8 and 16, β1 = 0dB,
β2 = −10dB, γ1 = 10dB, γ2 = 0dB.

Corollary 4: When M → ∞ and ρ2th = λ/M τ for a

constant λ > 0, the following results on the average transmit

power and the outage probability can be obtained:

• when τ > 1, Pout → 0 and P̃lo → ∞;

• when τ < 1, Pout → 1 and P̃lo → 0;

• when τ = 1, Pout → 1− e−λ and P̃lo → γ2

β2
eλE1(λ),

where E1(·) is the exponential integral function.

Proof See Appendix C.

Corollary 4 shows the limits of E[Pmin] and Pout. The

two performance measures naturally compete with each other

since a higher outage probability means less transmissions and

less power consumption realized with a higher ρth. The most

interesting threshold design is when τ = 1, meaning that the

square of threshold decreases linearly in M , i.e., ρ2th = λ/M
for a fixed λ. In this case, both E[Pmin] and Pout have non-

trivial bounded limits and by adjusting the value of λ, we can

achieve a continuous tradeoff curve for the power consumption

and outage probability. Another observation is that the limits

are independent of γ1 and β1, the two parameters of the

stronger user. The outage probability limit is also independent

of the parameters of the weaker user, while the average power

consumption depends on γ2 and β2, meaning that the power

consumption of CB-NOMA in a massive MIMO scenario is

dominated by the weaker user.

IV. NUMERICAL RESULT

In this section, simulation results are demonstrated to show

the performance of the proposed CB-NOMA scheme, as well

as to verify the the accuracy of our analytical results.

In Fig. 1, the average minimal power of the CB-NOMA

scheme to guarantee the SINR requirements for the two users

is shown as a function of ρ2th, where β1 = 0dB, β2 = −10dB,

γ1 = 10dB, γ2 = 0dB. It can be seen that the average

minimal power decreases with ρ2th. Further, the figure also

shows that P̃lo is an accurate approximation for all parameter

values, while the result in (15) is tight for small ρ2th, e.g., when

ρ2th < 0.1. We can also see that the average minimal transmit
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power increases linearly in log(1/ρ2th) as ρ2th approaches 0,

which verifies the asymptotic behaviour in Corollary 3.

Fig. 2 depicts the average minimal power versus M with the

same values of γ1, γ2, β1, β2 as before. The accuracy of the

approximations in Corollary (13) and (15) is verified again.

The average minimal transmit power decreases as the number

of antennas M increases.

Fig. 3 shows the average minimal power and outage proba-

bility versus M where ρ2th = 1/M τ , while other parameter

values are the same as before. When τ = 1, the average

minimal power decreases with M and converges to a positive

constant, which matches perfectly with the asymptotic result;

when τ = 0.5 < 1, it decreases with M and approaches to

0; when τ = 2 > 1, it increases unbounded with M , which

validate the results in Corollary 4. And the behavior of the

outage probability also matches the results in Corollary 4.

V. CONCLUSION

A modified NOMA scheme based on the channel correlation

coefficient is proposed in this work for systems with multiple-

antennas at the BS and two single-antenna users. We derived

the average minimal transmit power with QoS guarantee for

both users and proved that a positive channel correlation

threshold is required for finite average transmit power. The

behaviour of the average transmit power with respect to the

threshold and the BS antenna number is shown. Moreover, to

balance the outage probability and average transmit power in

massive MIMO systems, we proposed to design the threshold

as a decreasing function with the number of BS antennas. The

scaling laws of the outage probability and average minimal

power as well as their tradeoff law are derived based on the

threshold design.

APPENDIX A

PROOF OF THEOREM 1

Since h1 and h2 are independent each following CN (0
¯
, I),

‖h1‖2 and ‖h2‖2 are independent following the Gamma

distribution with shape parameter M and scale parameter 1;

ρ2 follows the Beta distribution with parameters 1 and M − 1
[9]; and ‖h1‖2, ‖h2‖2, ρ2 are mutually independent.

From (12) we can find the following lower bound of Pmin:

Pmin ≥ Plo =
γ1(1 + γ2)

β1‖h1‖2
+

γ2
β2‖h2‖2ρ2

. (17)

Thus, by using the probability density functions (PDFs) of

Gamma distribution and Beta distribution, the following can

be derived:

E [Pmin] ≥
∫∫∫

V

f‖h1‖2(x)f‖h2‖2(y)fρ2(z)Pmin,lodxdydz

=
γ1(1 + γ2)

(M − 1)β1
︸ ︷︷ ︸

T0

+

∫∫∫

V

f‖h2‖2(y)fρ2(z)
γ2
β2yz

dxdydz

︸ ︷︷ ︸

T

(18)

=T0 +
γ2

(1− ρ2th)
M−1

β2

∫ 1

ρ2
th

(
1− ρ2

)M−2

ρ2
dρ2 = P̃lo, (19)

where V =
{
(x, y, z)|x ∈ (0,∞), y ∈ (0,∞), z ∈

[
ρ2th, 1

]}
,

fX(·) represents the PDF, and the last step can be obtained

from the definition of hypergeometric function with some

mathematical manipulations.

Next, we show the upper bound. First, define V1 ,
{(x, y, z)|β1x < β2yz} and V2 , {(x, y, z)|β1x ≥ β2yz}.

By noticing that V = V1 ∪ V2, we have from (18),

E [Pmin] =T0 +

∫∫∫

V1

f‖h1‖2(x)
γ2
β1x

dxdydz

︸ ︷︷ ︸

T1

+

∫∫∫

V2

f‖h2‖2(y)fρ2(z)
γ2
β2yz

dxdydz

︸ ︷︷ ︸

T2

.

(20)

Since V2 ⊆ V , we have T2 ≤ T and thus:

T0 + T2 ≤ T0 + T = P̃lo. (21)
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For T1, we have

T1 ≤
γ2
γ1

∫∫∫

V

f‖h1‖2(x)
γ1
β1x

dxdydz

≤ γ2
γ1

∫∫∫

V

f‖h1‖2(x)
γ1(1 + γ2)

β1x
dxdydz =

γ2
γ1
T0, (22)

and

T1 ≤
β2
β1

∫∫∫

V

f‖h2‖2(y)
γ2
β2y

dxdydz

≤ β2
β1

∫∫∫

V

f‖h2‖2(y)fρ2(z)
γ2
β2yz

dxdydz =
β2
β1
T. (23)

From (22) and (23) we can obtain:

T1 ≤ min

{
β2
β1
,
γ2
γ1

}

(T0 + T ) = min

{
β2
β1
,
γ2
γ1

}

P̃lo. (24)

By combining (20), (21) and (24), the upper bound of

E [Pmin] in (14) is proved.

APPENDIX B

PROOF OF COROLLARY 3

When γ1 ≫ γ2 or β1 ≫ β2, we have from Corollary

2 E[Pmin] ≈ P̃lo as defined in (13). In Appendix A, an

alternative form of P̃lo is derived in (19). The integral in (19)

can be further calculated as follows:

∫ 1

ρ2
th

(
1− ρ2

)M−2

ρ2
dρ2

=

M−2∑

k=0

(−1)
k

∫ 1

ρ2
th

(
M − 2

k

)

ρ2(k−1)dρ2

=
M−2∑

k=1

(−1)k

k

(
M − 2

k

)
(
1− ρ2kth

)
− ln ρ2th

=− ψ(M − 1)− C − ln ρ2th +O(ρ2th).

When ρ2th → 0, by ignoring the higher order terms of ρ2th,

(15) is obtained.

APPENDIX C

PROOF OF COROLLARY 4

The limits of Pout in Corollary 4 can be obtained by:

lim
M→∞

(

1− λ

M τ

)M−1

=







0 , τ < 1

e−λ , τ = 1

1 , τ > 1.

(25)

For the average transmit power, we consider the alternative

form of P̃lo given by (19). When ρ2th = λ
Mτ , the limit of P̃lo

is given by:

lim
M→∞

P̃lo = lim
M→∞

[

γ2
(
1− λ

Mτ

)M−1
β2
I

]

, (26)

where

I ,

∫ 1

λ
Mτ

(
1− ρ2

)M

ρ2
dρ2

y=Mρ2

======

∫ M

λM1−τ

(
1− y

M

)M

y
dy.

(27)

Now notice that (1 + y
M
)M < ey < (1 + y

M
)M+1 for any

M ≥ 1, thus

1 > (1− y2

M2
)M =(1 − y

M
)M [(1 +

y

M
)M+1]

M
M+1

>
(

1− y

M

)M

e
M

M+1
y,

(28)

(1− y2

M2
)M = (1− y

M
)M (1+

y

M
)M < (1− y

M
)Mey. (29)

These gives, for all M > 1,

(1− y2

M2 )
M

y
e−y 6

(1− y
M
)M

y
6

1

y
e−

y

2 . (30)

Consequently, when τ < 1, we have, as M → ∞,

I 6

∫ M

λM1−r

1

y
e−

y

2 dy 6
1

λ
M r−1

∫ ∞

0

e−
y

2 dy −→ 0. (31)

When τ > 1,

I >

∫ 1

λM1−r

(1− 1
M2 )

M

y
e−ydy −→ ∞. (32)

Finally when τ = 1, by (30), and (1 − y
M
)M −→ e−y for

every y, we have

I −→
∫ ∞

λ

e−y

y
dy (33)

through Lebesgue’s dominated convergence theorem. Thus

ends the proof.
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