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Energy Efficiency Optimization for Millimeter
Wave System with Resolution-Adaptive ADCs

Hualian Sheng, Xihan Chen, Xiongfei Zhai, An Liu, and Min-Jian Zhao

Abstract—This letter investigates the uplink of a multi-user
millimeter wave (mmWave) system, where the base station
(BS) is equipped with a massive multiple-input multiple-output
(MIMO) array and resolution-adaptive analog-to-digital convert-
ers (RADCs). Although employing massive MIMO at the BS can
significantly improve the spectral efficiency, it also leads to high
hardware complexity and huge power consumption. To overcome
these challenges, we seek to jointly optimize the beamspace
hybrid combiner and the ADC quantization bits allocation to
maximize the system energy efficiency (EE) under some practical
constraints. The formulated problem is non-convex due to the
non-linear fractional objective function and the non-convex
feasible set which is generally intractable. In order to handle
these difficulties, we first apply some fractional programming
(FP) techniques and introduce auxiliary variables to recast this
problem into an equivalent form amenable to optimization. Then,
we propose an efficient double-loop iterative algorithm based
on the penalty dual decomposition (PDD) and the majorization-
minimization (MM) methods to find local stationary solutions.
Simulation results reveal significant gain over the baselines.

Index Terms—MmWave systems, massive MIMO with RADCs,
fractional programming, penalty dual decomposition method,
majorization-minimization method.

I. INTRODUCTION

Millimeter wave (mmWave) communication has become a

key enabling technology to accommodate the ever increasing

data traffic in fifth generation (5G) systems. The shorter

wavelength of antenna components to be packed into physical

devices with small trade-off [1], which enables large spatial

multiplexing and highly directional combining. Nevertheless,

the traditional fully-digital combining scheme requires dedi-

cated radio frequency (RF) chain with power-demanding high-

resolution analog-to-digital converters (ADCs) per antenna

element, which leads to huge hardware cost and power con-

sumption at the base station (BS).

To address these limitations, the selection/optimization on

the number of RF chains is a potential solution for reducing

power consumption and hardware complexity [2]. Further-

more, the convergence of hybrid combining and low-resolution

ADCs (LADCs) is becoming an evident trend for future wire-

less network and has drawn considerable academic interests

in recent years. The authors of [3] characterized the trade-

off between the achievable rate and power consumption in

the hybrid combiner architecture with LADCs. By exploit-

ing the sparse nature of mmWave channels, the authors of

[4] invoked the beamspace massive multiple-input multiple-

output (MIMO) techniques to steer the arriving signals with
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different angle of arrivals to distinct array elements, which

significantly reduces the number of RF chains required and

further achieves cost-effective implementations. However, the

nonlinear distortion caused by LADCs would inevitably lead to

huge performance degradation in the high signal-to-noise ratio

(SNR) regime. To overcome this deficiency, the authors of [5]

suggested implementing a mixed-ADC architecture, in which a

combination of low- and high-resolution ADCs are used side-

by-side. To achieve more preferable energy-rate trade-off, the

authors of [6] proposed the hybrid MIMO receiver architecture

with resolution-adaptive ADCs (RADCs). In addition, two

heuristic ADC quantization bits allocation algorithms were

conceived to minimize the total quantization error under the

total ADC power consumption constraint.

The joint optimization has been considered for point-to-

point communication systems [7]. However, for the multi-user

uplink communication system, the existing works in [4]–[6]

only consider separate optimization. Besides, all the aforemen-

tioned schemes are based on heuristic or separate optimization

of beamspace hybrid combining and ADC quantization bits

allocation, which might suffer from significant performance

degradation. There is scope for further research on energy ef-

ficiency (EE) maximization for the beamspace massive MIMO

architecture with RADCs, despite its paramount importance to

practical implementation and performance improvement.

Contribution of this letter includes the algorithm design

for joint beamspace hybrid combining and ADC quantization

bits allocation (JBQA) scheme for the uplink transmission of

mmWave systems with RADCs, to maximize the system EE.

In particular, the resolution of each RADC can be dynamically

adjusted to mitigate the quantization error according to the

channel gain on the corresponding RF chain, leading in turn to

reduced power consumption and improved system throughput.

We propose a fractional majorization-minimization penalty

dual decomposition (FMP) algorithm to solve this joint opti-

mization problem. Simulation results verify the advantages of

the proposed JBQA scheme over the state-of-the-art baselines.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Network Architecture

This paper considers a multi-user beamspace mmWave

uplink system, where the BS serves K single-antenna users by

using a massive array of N antennas and M RF chains. We

consider an extended Saleh-Valenzuela geometric model for

mmWave channels [8]. Furthermore, the channel is considered

as block flat-fading due to the small delay spread of mmWave

channel. The channel between the BS and the k-th user is

denoted by hk ∈ CN , and the received signal at the BS can

be expressed as

http://arxiv.org/abs/2005.08592v1


y =

K
∑

k=1

√
p
k
hksk + n = HPs+ n, (1)

where H , [h1, · · · ,hK ], P , diag(
√
p1, · · · ,√pK) with

pk being the transmit power of user k, s , [s1, · · · , sK ]T

with sk ∼ CN (0, 1) being the data symbol of user k, and

n ∼ CN (0, σ2
wIN ) is the additive white Gaussian noise.

B. Proposed JBQA Scheme

In this paper, we devise a JBQA scheme to achieve large

spatial multiplexing and array gain while addressing the hard-

ware limitations. The received signal y is processed by a

beamspace hybrid combiner with RADCs. In this case, the

received signal at the BS is first combined via the beamspace

RF combiner Q , WG ∈ CN×M , where W ∈ CN×S is

the codebook of size S and G ∈ CS×M is the selection

matrix with binary entry gsm ∈ {0, 1} to choose codewords.

Using the above notations, the signal after the beamspace RF

combiner can be expressed as

ŷ = QHHPs+QHn, (3)

We consider that M pairs of RADCs are connected to

RF processors, enabling more flexible and refined control

on quantization bits allocation to mitigate the quantization

error. Assuming that the coefficients of automatic gain control

(AGC) are appropriately set, the linear additive quantization

noise model (AQNM) is adopted to approximate the quanti-

zation process [9], where each RADC quantizes either real or

imaginary component of ŷ. The resulting signal is given by

ỹ = F(ŷ) = Fαŷ + nq, (4)

where F(·) is the element-wise quantizer operator; Fα ,

diag(α1, · · · , αM ) ∈ CM×M is the quantization gain matrix

with αm , 1−βm , where βm , π
√
3

2 4−bm is the normalized

quantization error when the number of quantization bits is bm;

nq is the additive quantized noise distributed with zero mean

and the covariance matrix Aq , FαFβdiag(Q
HHP2HHQ+

σ2
wQ

HQ) with Fβ , diag(β1, · · · , βM ) ∈ C
M×M . Note that

nq is uncorrelated with ŷ [9].

Then, the quantized signal is combined by the baseband

combiner D ∈ CM×M to reduce the quantization loss and

combat the multi-user interference. Finally, the combined

signal is detected by linear receiver uk ∈ CM . Based on the

above procedure, the detected signal for user k is given by

ŝk=uH
k DHFαQ

HHP
1

2 s+ uH
k DHFαQ

Hn̂+ uH
k DHnq.

C. Achievable Rate and Power Consumption

For convenience, we define p , [p1, · · · , pK ]T , g ,

vec(G), d , vec(D), u , [uT
1 , · · · ,uT

K ]T , b ,

[b1, · · · , bM ]T , and z , [pT , gT ,dT ,uT , bT ]T . Using the

above notations, the achievable data rate of user k is

rk(z) = log(1 + θk(z)), (5)

where θk(z) , θαk (z)/θ
β
k (z) is the signal-to-interference-

plus-noise ratio (SINR), θαk (z) , pk|uH
k DHFαQ

Hhk|2
is the desired signal term, and θαk (z) ,
∑

l 6=k pl|uH
k DHFαQ

Hhl|2 + σ2
wu

H
k DHFαQ

HQFαDuk +

uH
k DHAqDuk is the interference-plus-noise term.

Moreover, the system power consumption is given by

PC(z) =

K
∑

k=1

pk +

M
∑

m=1

pAm(bm) + Po, (6)

where
∑K

k=1 pk is the total power consumed by users (i.e.,

the transmit power); Po , PB + M(PR + PS + PL), and

PB is the power consumption of the baseband combiner,

PR is the power consumed per RF chain, PS is the power

consumed per switch, PL is the power consumed per low noise

amplifier; pAm(bm) , ϕfs2
bm+1 is the power consumption of

the m-th pair of RADCs, where ϕ is the power consumed per

conversion procedure and fs is the Nyquist sampling rate.

D. Problem Formulation

Due to the ever-increasing number of mobile users, EE in

the mmWave uplink is of high priority as user terminals are

power-constrained [10]. Our interest in this letter lies in the

joint optimization of beamspace hybrid combiner and ADC

quantization bits allocation to maximize the system EE. The

resulting problem can be formulated as

max
z

∑K
k=1 rk(z)

PC(z)
, (7)

s.t. 0 ≤ pk ≤ Pmax
k , ∀k, (8)

S
∑

s=1

gsm = 1,

M
∑

m=1

gsm ≤ 1, gsm ∈ {0, 1}, ∀s,m, (9)

bmin
m ≤ bm ≤ bmax

m is an integer, ∀m, (10)

M
∑

m=1

bm ≤ Mb̄, (11)

where Pmax
k is the transmit power budget for user k, bmin

m and

bmax
m respectively are the minimum and maximum of the quan-

tization bits, and b̄ is the average quantization bits. Constraint

(9) is added to guarantee that each RF chain is associated with

only one codeword, and each codeword is selected for at the

most one RF chain. Constraint (10) represents the limitations

on the quantization bits for each RADC. Constraint (11) gives

a reference total ADC quantization bits for the above EE

optimization problem.

Solving problem (7) is difficult due to the following reasons.

First, both the selection matrix G and quantization bits vector

b are discrete, which makes the feasible set non-convex.

Second, the optimization variables are highly coupled in the

non-convex objective function and constraints. In a nutshell,

we are faced with a mixed-integer nonlinear programming

(MINP) problem, which is usually considered as NP-hard.

III. PROPOSED FMP ALGORITHM

In thus section, we first transform the original problem

(7) into a more tractable yet equivalent form by exploit-

ing some fractional programming (FP) techniques [11], [12].



Subsequently, we develop an efficient double-loop iterative

algorithm based on majorization-minimization (MM) [13] and

penalty dual decomposition (PDD) methods [14] to find its

local stationary solutions.

A. Problem Reformulation

With the aid of Dinkelbach method [11], we can transform
problem (7) into a more tractable yet equivalent form.

Lemma 1: Let Z = {z|(8) − (11)} denote the feasible set
of z in problem (7). Then, it is equivalent to the following

max
z∈Z,η

K
∑

k=1

rk(z) − ηPC(z) (12)

where η⋆ =
∑

K

k=1
rk(z

⋆)

PC(z⋆) is the optimal trade-off between the

sum rate and the power consumption.

We remark that
∑K

k=1 rk(z) is in the sum-ratio form, where
each ratio term is embedded in the log function. To tackle these
difficulties, we adopt Lagrangian dual transform and complex
quadratic transform methods [12] to reformulate problem (12).

Lemma 2: The optimal z⋆ is solved if and only if it solves

max
z∈Z,η,φ,λ

K
∑

k=1

r̂k(z, φk, λk)− ηPC(z) (13)

where r̂k(z, φk, λk) with γk(z) is defined in (14)-

(15) as displayed at the bottom of this page, λ⋆
k ,

√

pk(1 + φk)u
H
k DHFαQ

Hhk/γk(z) is the auxiliary vari-
able introduced for taking ratio terms out of log function, and

φ⋆ , θk(z) is the vector of auxiliary variable introduced for
linearizing each ratio term in rk.

It should be noteworthy that the numerator and denominator

in problem (12) are now decoupled in the reformulated prob-

lem (13). Furthermore, we relax discrete constraint (10) into

a closed connected subset of the real axis, i.e.,

bmin
m ≤ bm ≤ bmax

m , ∀m, (16)

Similar to [15], we round each bm as follows

b̄m(δ) =

{

⌊b⋆m⌋, if b⋆m − ⌊b⋆m⌋ ≤ δ

⌈b⋆m⌉, otherwise,
∀m, (17)

where 0 ≤ δ ≤ 1 is chosen such that
∑M

m=1 b̄m(δ) ≤ Mb̄.
To overcome the difficulty posed by discrete binary con-

straint (9), a suitable transformation is necessary. To this end,

we rewrite constraint (9) into the following equivalent form:

gT
s em = ĝsm,

S
∑

s=1

gT
s em = 1, gT

s em(1− ĝsm) = 0, (18)

gT
s 1M ≤ 1, 0 ≤ ĝsm ≤ 1, (19)

where gs , [gs1, · · · , gsM ]T is the s-th row of G, em is the

m-th column of identity matrix I, and 1M , [1, · · · , 1]T .

For clarity, we define Ẑ = {ẑ , [zT , ĝT ]T |(8), (11), (16)−
(19)} with ĝ , [ĝT

1 , · · · , ĝT
S ]

T , and ĝs , [ĝs1, · · · , ĝsM ]T . By

penalizing and dualizing constraint (18) into objective function

(13), we obtain the following augmented Lagrangian problem:

max
ẑ∈Z,η,φ,λ

J (ẑ, η,φ,λ), (20)

where

J (ẑ, η,φ,λ) =

K
∑

k=1

r̂k(z, φk, λk)− ηPC(z) −
1

2ρ

(

S
∑

s=1

M
∑

m=1

(

(gT
s em−ĝsm+ ρζsm)2+(gT

s em(1−ĝsm) + ρνsm)2
)

+

M
∑

m=1

(

S
∑

s=1

gT
s em − 1 + ρςm)2

)

,

{ζsm}, {ςm}, {νsm} are the Lagrange multipliers, and ρ is

penalty coefficient.

B. The proposed FMP Algorithm

In this subsection, we elaborate the implementation details

of the proposed FMP algorithm which exhibits a double-loop

structure: 1) optimization variables are updated in the inner

loop by iteratively solving problem (20); 2) dual variables and

penalty parameter are updated based on the constraint violation

indicator in the outer loop. Hereinafter, we introduce t as outer

iteration index and v as the inner iteration index. In particular,

the dual variables are updated as follows

ζt+1
sm = ζtsm + (gT

s em − ĝsm)/ρt, (21a)

ςt+1
m = ςtm + (

N
∑

s=1

gT
s em − 1)/ρt, (21b)

νt+1
sm = νtsm + gT

s em(1− ĝsm)/ρt, (21c)

The constraint violation indicator ǫ(ẑ) is given by

ǫ(ẑ) = max
s,m

{|gT
s em−ĝsm|, |

S
∑

s=1

gT
s em−1|, |gT

s em(1−ĝsm)|}.

Observe that constraints in problem (20) are separable, so

it allows us to decompose the original problem into nine

independent blocks. The corresponding subproblem for each

block can be efficiently solved with the others fixed. Given the

penalty parameter ρ and the dual variables {ζsm, ςm, νsm}, the

details of the inner iteration are elaborated below.

1) Optimization of p: It shows that subproblem w.r.t. p is

a linearly constrained concave optimization problem, which

can be efficiently solved by the Lagrangian multiplier method

r̂k(z, φk, λk) = log(1 + φk)− φk + 2Re{
√

pk(1 + φk)λ
H
k uH

k DHFαQ
Hhk} − λH

k λkγk(z), (14)

γk(z) =
K
∑

l=1

pl|uH
k DHFαQ

Hhl|2 + σ2
wu

H
k DHFαQ

HQFαDuk + uH
k DHAqDuk. (15)



[16]. Consequently, the optimal p⋆ is given by

p⋆k(σk) = (Re{
√

1 + φkλ
H
k uH

k DHFαQ
Hhk}/ϑk(σk))

2,
(22)

where ϑk(σk) , σk + η +
∑K

l=1 |λH
l uH

l DHFαQ
Hhk|2 +

∑K
l=1

∑M
m=1 |λl|2[FαFβ ]m|[QHH]mk|2|[Dul]m|2, σk is

chosen to be zero if pk(0) ≤ Pmax
k and chosen to satisfy

pk(σk) = Pmax
k otherwise. Note that [·]m is the operator to

take the m-th element of vector. [·]mk is the operator to take

the element in the m-th row and the k-th column of matrix.

2) Optimization of g, ĝ, u, d: All these subproblems w.r.t.

g, ĝ, u, d are unconstrained quadratic optimization problems,

which can be solved by checking the first-order optimality

condition. The details are omitted due to the space limited.

3) Optimization of b: Note that we cannot obtain the

optimal b by directly maximizing the subproblem w.r.t. b

because the subproblem w.r.t. b is non-concave. By preserving

the partial concavity of the original function and adding the

proximal regularization, the concave surrogate function gv(b)
for the v-th inner iteration is constructed as

gv(b) = J (bv) + (ω)T (b− bv) + ϑ||b− bv||2, (23)

where ϑ < 0 so that the surrogate function gv(b) is strongly

concave, and ω is the Jacobian matrix of the objective function

J (ẑ, η,φ,λ) with respect to b. Then, the optimal solution b is

obtained by solving the following strongly concave problem:

max
b

gv(b),

s.t. bmin
m ≤ bm ≤ bmax

m , ∀m, (24)

which has no closed-form solution due to multiple simultane-

ous constraints. It can be efficiently solved by toolbox CVX.

The proposed FMP algorithm is summarized in Algorithm

1. Here, we emphasize that every limit point, denoted as

z⋆, generated by Algorithm 1 strictly satisfies the equality

constraints (16) by adjusting the dual variables and penalty

coefficient in a specific manner. Then we can show that z⋆

is a stationary point of problem (7). The proof is similar to

that of [13], [14], and it is hence omitted due to the limited

space. Next, we compare the computational complexity of the

proposed FMP algorithm with the following baseline schemes.

• FDC: This scheme is implemented by fully digital com-

biner, aiming to maximize the system EE in [17].

• MMSQE-BA: This is a variation of MMSQE-BA in [6]

with the consideration of jointly optimizing the user

power allocation and digital combiner.

The overall computational complexity per iteration of the

proposed JBQA scheme is O(M6+K2M4+M3S+M2N+
KN2) floating point operations (FPOs). The proposed JBQA

scheme has much lower computational complexity than FDC

scheme, which is O(N6) FPOs. Although the MMSQE-BA

scheme provides a slightly lower computational complexity,

which is O(M6 + K2M4 + M2N + KN2) FPOs, its per-

formance is worse than that of our proposed JBQA scheme.

Consequently, our proposed JBQA scheme offers a better

trade-off between computational complexity and performance.
Remark 3.1: The proposed JBQA scheme can be easily

extended to the case with multiple RF chains at the users.
Specifically, we first transform the original problem into a

more tractable yet equivalent form by some multi-dimensional
FP techniques [11], [12] and subsequently develop an efficient
algorithm based on matrix MM [18] and PDD [14] methods.

Remark 3.2: The objective function (7) can be ex-
panded by a hyper parameter 0 ≤ κ ≤ 1 into the form

maxz∈Z
∑K

k=1 rk(z)/(PT (z))
κ, where κ represents the pri-

ority of EE as compared to the system throughput. Note that
more emphasis is given to the maximization of the system
throughput when κ = 0. When κ is relatively large, more
weight is given to the power consumption minimization. In
order to achieve a favorable trade-off between the system
throughput and EE, it may require judicious selection for
the κ. The resulting problem can be solved by the proposed
FMP algorithm with minor modification. For the nonconcavity
introduced by κ, it can be solved by the MM method.

Algorithm 1 Proposed FMP Algorithm for Problem (20)

Initialization: ẑ0 ∈ Ẑ, ρ0 > 0, η̂, {ζ0sm, ς0m, ν0
sm}, µ

0 > 0, 0 <
χ < 1, accuracy tolerance τ , the maximum inner iteration number
V , the maximum outer iteration number T , t = 0, v = 0.

Repeat

Repeat

- Update η = η⋆,φ = φ⋆,λ = λ⋆ as defined in Section III-A.

- Update p by (22).

- Update b by (24) .

- Update g, ĝ, u, d by checking the first-order optimality

condition in turns.

Until the value of (20) converges or reaching the max inner

iteration number V . Otherwise, let v ← v + 1.

- If ǫ(ẑt+1) ≤ µt, then update dual variables by (21),

- Else set ρt+1 = χρt end.

- Set µt+1 = χǫ(ẑt+1).

Until ǫ(ẑt+1) ≤ τ or t ≥ T . Otherwise, let t← t+ 1.

IV. SIMULATION RESULTS

Consider a single-cell system where K = 12 users are

uniformly distributed with a radius r = 200 m. We set

N = 64, S = 12, M = 8, b̄ = 3, Lp = 10, PB = 200 mW,

PR = 40 mW, PS = 5 mW, PL = 20 mW, ϕ = 9 × 10−12,

fs = 1 GHz, Pmax
k = 10 dBm, σ2

w = −100 dBm, SNR

= 10 dB, bmin = 1, and bmax = 8. The hyper-parameters

of Algorithm 1 are chosen as: ϑ = 10, ρ0 = 10, χ = 0.7,

τ = 10−4, V = 30 and T = 150. We adopt a discrete

Fourier transformation (DFT) matrix as the codebook. The

channel vector between the BS and the k-th user can be

expressed as hk =
√

PLkN
L

∑L
l=1 c

k
l a(φ

k
l ), ∀k ∈ K , where L

is the number of distinguishable paths, ckl ∼ CN (0, 1) and φk
l

respectively are the complex gain and angle of arrival for the l-
th path of user k, a(φ) = 1

N
[1, ejπsin(φ), . . . , ejπ(N−1)sin(φ)]

is the receive array response vector, and PLk[dB] = 72 +
29.2 log10 dk+ξ is the large-scale fading gain between the BS

and user k, where dk is the distance between the BS and user

k in meters, and ξ ∼ CN (0, 1) is the log-normal shadowing.

Besides the FDC and MMSQE-BA schemes, the following

three schemes with fixed number of quantization bits for each

ADC are also considered for comparison:

• RHC: This is codebook-based hybrid combining scheme

with random selected codewords for RF combiner, digital

combiner is optimized by maximizing the system EE.
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• PHC: This is the variation version of [19] implemented

by phase shifters with the consideration of jointly opti-

mizing the user power allocation and digital combiner.

• SHC: This is codebook-based hybrid combining scheme,

where the hybrid combiner is obtained by maximizing

the system EE.

Fig. 1 plots the system EE versus the SNR for different

schemes. It shows that the performance is monotonically in-

creasing with SNR. Furthermore, we can see that the proposed

JBQA scheme outperforms all the other competing schemes

in all SNR regime, especially for the more practical moderate

and low SNR regimes. The gap of performance becomes small

in the high SNR regime. This is due to following reasons: 1)

the hybrid combiner design based on the beamspace architec-

ture is implemented with fewer RF chains and the reduced

signal processing complexity as compared to the fully digital

combiner and the phase-shifter-based hybrid combiner, and yet

without notable performance degradation. 2) Unlike uniform

quantization bit allocation, the proposed JBQA scheme would

allocate more quantization bits to the ADC with a more

favorable effective channel (the product of the channel and the

RF combiner). However, when the allowed quantization bits is

small and SNR is high, the proposed JBQA scheme tends to

uniformly allocate all the quantization bits. In Fig. 2 and Fig.

3, we plot the system EE versus the number of antennas and

RF chains at the BS, respectively. As expected, the proposed

JBQA scheme achieves better EE over all the other competing

schemes. In a nutshell, our proposed JBQA scheme can strike

a better trade-off between the system throughput and power

consumption.

In Fig. 4, we plot the system EE versus the allowed average

quantization bits for different schemes. It is observed that

the system EE achieved by all the other competing schemes

increases first and then rapidly decreases after b̄ = 3, while

the proposed JBQA scheme keeps monotonically growing and

saturate. As the number of average quantization bits increases,

the power consumption of the RADCs increases exponentially.

When the number of average quantization bits is larger than 3

bits, the EE of the system gradually tends to be saturate. From

the perspective of maximizing the system EE, there is no need

to deploy too excessive quantization bits at the ADCs.

V. CONCLUSION

In this work, we consider a multi-user mmWave uplink

system, where the BS is equipped with a massive MIMO array

and RADCs. We advocate a JBQA scheme to achieve high

system throughput with the reduced hardware cost and power
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consumption. We formulate the optimization of the proposed

JBQA scheme as a system EE maximization problem subject

to some practical constraints. By adopting a series of transfor-

mations, we first recast this problem into a form amenable to

optimization and then develop an efficient iterative algorithm

for its solution based on PDD and MM methods. Simulations

verify that the proposed JBQA scheme achieves significant

gain over existing schemes.

REFERENCES

[1] S. Han et al., “Large-scale antenna systems with hybrid analog and digital
beamforming for millimeter wave 5G,” IEEE Commun. Mag., vol. 53, no.
1, pp. 186-194, Jan. 2015.

[2] A. Kaushik et al., Dynamic RF chain selection for energy efficient and
low complexity hybrid beamforming in millimeter wave MIMO systems,
IEEE Trans. on Green Commun. and Netw., vol. 3, no. 4, pp. 886-900,
Dec. 2019.

[3] J. Mo et al., “Hybrid architectures with few-bit ADC receivers: Achiev-
able rates and energy-rate tradeoffs,” IEEE Trans. Wireless Commun., vol.
16, no. 4, pp. 2274-2287, Apr. 2017.

[4] V. Raghavan et al., Beamforming tradeoffs for initial UE discovery in
millimeter-wave MIMO systems, IEEE J. Sel. Topics Signal Process.,
vol. 10, no. 3, pp. 543-559, Apr. 2016.

[5] J. Zhang et al., “Performance analysis of mixed-ADC massive MIMO
systems over Rician fading channels,” IEEE J. Sel. Areas Commun., vol.
35, no. 6, pp. 1327-1338, Jun. 2017.

[6] J. Choi et al., “Resolution-adaptive hybrid MIMO architectures for
millimeter wave communications,” IEEE Trans. Signal Process., vol. 65,
no. 23, pp. 6201-6216, Dec. 2017.

[7] A. Kaushik et.al., Energy efficient ADC bit allocation and hybrid com-
bining for millimeter wave MIMO systems, IEEE Global Commun. Conf.
(GLOBECOM), Waikoloa, HI, USA, pp. 1-6, 2019.

[8] Adel A. M. Saleh and Reinaldo A. Valenzuela. A statistical model for
indoor multipath propagation, IEEE J. Sel. Areas Commun., vol. 5, no.
2, pp. 128137, Feb. 1987.

[9] O. Orhan et al., “Low power analog-to-digital conversion in millimeter
wave systems: Impact of resolution and bandwidth on performance”,
Proc. Inf. Theory Appl. Workshop (ITA), pp. 191-198, Feb. 2015.

[10] M. Zeng et al., Energy-efficient power allocation in uplink
mmWave massive MIMO with NOMA, [Online]. Available:
https://arxiv.org/abs/1903.05758.

[11] W. Dinkelbach, “On nonlinear fractional programming,” Mgt. Sci., vol.
13, no. 7, pp. 492-498, Mar. 1967.

[12] K. Shen, and W. Yu, “Fractional programming for communication
systems-part II: uplink scheduling via matching,” IEEE Trans. Signal
Process., vol. 66, no. 10, pp. 2631-2644, Mar. 2018.

[13] D. R. Hunter and K. Lange, “A tutorial on MM algorithms,” The
American Statistician., vol. 58, no. 1, pp. 30-37, 2004.

[14] Q. Shi et al., “Penalty dual decomposition method for
nonsmooth nonconvex optimization.” [Online]. Available:
https://arxiv.org/abs/1712.04767.

[15] A. Liu et al., “Two-timescale hybrid compression and forward for
massive MIMO aided C-RAN,” IEEE Trans. Signal Process., vol. 67,
no. 9, pp. 2484-2498, Mar. 2019.

[16] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

[17] P. Gao et al., “Effect of quantization range limit for low-resolution
analog-to-digital converters in full-digital massive MIMO system,” IEEE
VTS Asia Pacific Wireless Commun. Symp. (APWCS), pp. 1-5, Aug. 2019.

[18] Y. Sun, P. Babu, and D. P. Palomar, Robust estimation of structured
covariance matrix for heavy-tailed elliptical distributions, IEEE Trans.
Signal Process., vol. 64, no. 14, pp. 35763590, 2016.

[19] A. Kaushik et al., “Energy efficiency maximization of millimeter wave
hybrid MIMO systems with low resolution DACs,” in Proc. IEEE Int.
Conf. Commun. (ICC), May 2019.


