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Weighted Sum-Rate Maximization for Multi-IRS

Aided Cooperative Transmission
Zhengfeng Li, Meng Hua, Qingxia Wang, Qingheng Song

Abstract—This paper investigates multiple intelligent reflecting
surfaces (IRSs) aided wireless network, where the IRSs are
deployed to cooperatively assist communications between a multi-
antenna base station (BS) and multiple single-antenna cell-edge
users. We aim at maximizing the weighted sum rate of all the cell-
edge users by jointly optimizing the BS’s transmit beamforming
and IRS’s phase shifts. Especially, the beamforming is optimally
solved by the Lagrangian method, and the phase shifts are
obtained based on the Riemannian manifold conjugate gradient
(RMCG) method. Numerical results show that a significant
throughput is improved with aid of multiple IRSs.

Index Terms—Intelligent reflecting surface, phase shift opti-
mization, Lagrangian method, Riemannian manifold.

I. INTRODUCTION

An intelligent reflecting surface (IRS) has emerged as a

promising technique to increase the throughput and spectral

efficiency of wireless networks. Specifically, the IRS has

a large number of reflective elements, each of which can

independently control the incident signal to change the signal

propagation. Since each reflective element is a passive element

consisted of some low-cost printed dipoles, it is a cost-effective

and low-power consumption way to install it on the room-

ceilings, at buildings, even on lamp posts in the future [1].

There have been many literatures paid attention on integrat-

ing the IRS into the cellular network. Two main aspects are

mostly be considered by the researchers, one is the channel

estimation and the other is the phase shift optimization. For the

first aspect, different from the traditional channel estimation

that the active device actively sends pilot signals estimated by

the terminal devices that can be capable of processing signal,

whereas the IRS is a passive device which cannot performing

signal processing [2], [3]. For the second aspect, since the IRS

reflects the combined signal simultaneously, the phase shift

matrix and BS transmit beamforming should be jointly opti-

mized to increase the users’ achievable rate [4]–[6]. Especially,

in [5], an IRS-aided multiuser multiple input single-output

system was considered, and the phase shift matrix and BS

transmit beamforming are jointly optimized by semidefinite

relaxation and alternating optimization techniques. In [6], the

authors studied a simultaneous wireless information and power

transfer system aided by an IRS, and a dual decomposition and

price-based method are used, which result in a low-complexity

iterative algorithm.
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Fig. 1. Multi-IRS aided Cooperative Transmission model

However, the above works consider only one IRS, the

multiple IRSs has not been exploited. Especially in the cell

edge region, the cell-edge users always suffer severe propa-

gation, which leads to a poor communication service. Due to

the limited IRS coverage, one IRS can not be satisfied with

the users’ high quality service requirements. To address this

issue, we consider multiple IRSs deployed in a small cell,

where the IRSs and BS are managed by a central processing

unit to coordinate transmission. Our goal is to maximize the

weighted sum rate (WSR) of all the cell-edge users by jointly

optimizing the BS’s transmit beamforming and each IRS’s

phase shifts, subject to the BS transmit power limit. Since the

resulting problem is a non-convex and unit-modulus constraint

optimization problem, there is no standard convex technique

to solve it. We equivalently transform the WSR problem into

a weighted sum mean-square error (WMSE) problem, and a

sub-optimal solution of the formulated problem is obtained

based on the Lagrangian method and Riemannian manifold

conjugate gradient (RMCG) method. Numerical results show

that a significant throughput is improved with aid of the IRSs

and also show that the proposed iterative algorithm converges

quite quickly.

Notations: Boldface lower-case and upper-case letter denote

column vector and matrix, respectively. Transpose, conjugate,

and transpose-conjugate operations are denoted by (·)T , (·)∗,

and (·)
H

, respectively. [Z]i,i represents the ith diagonal ele-

ment of matrix Z. Re (·) denotes the real part of a complex

number. ⊙ is a Hadamard product operator. E (·) is a expec-

tation operator.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a multi-IRS aided downlink network consisting

of one base station (BS), K single-antenna users, and L

intelligent reflecting surfaces (IRSs). We assume that the BS

is equipped with Nt transmit antennas, and each IRS consists

of M phase shifters. Let us denote the sets of users, phase

shifters, and IRSs as K, M and L, respectively. As shown in

http://arxiv.org/abs/2002.04900v1
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Fig. 1, each user not only receives the signals directly from the

BS, but also receives the reflective signals from multiple IRSs.

Note that the signal reflected by multiple IRSs is ignored due

to the severe propagation.

Mathematically, the transmitted signals by the BS can be

expressed as x =
K
∑

k=1

wksk, where sk denotes the desired

signal for user k satisfying E
{

sks
H
k

}

= 1 and E
{

sis
H
j

}

= 0
for i 6= j, and wk ∈ CNt×1 is BS transmit beamforming for

the user k. Let hH
k ∈ C

1×Nt , Gr,l ∈ C
M×Nt , and hH

l,k ∈

C1×M respectively denote the complex equivalent baseband

channel vector between the kth user and the BS, between the

BS and the l-th IRS, and between the l-th IRS and the k-th

user, ∀k ∈ K, ∀l ∈ L. The received signal at the kth user is

given by

yk = hH
k x+

L
∑

l=1

hH
l,kΦlGr,lx+ nk, (1)

where Φl = diag
{

ejθ
1
l , . . . , ejθ

M

l

}

is a diagonal matrix that

represents the adjustable phase shifts of the IRS l, wherein

θml (∀m ∈ M, ∀l ∈ L) is the m-th phase shifter at the l-th

IRS, and nk is the received additive white Gaussian noise by

the user k with mean zero and variance σ2. Note that here

we assume that the amplitude of the reflection coefficient is

maximized with 1. Substituting x into (1), we arrive at

yk = h̄H
k

K
∑

k=1

wksk + nk, (2)

where h̄H
k = hH

k +
L
∑

l=1

hH
l,kΦlGr,l. Accordingly, the achievable

data rate(nat/s/Hz) of the user k is given by

Rk = log











1 +

∣

∣h̄H
k wk

∣

∣

2

K
∑

i6=k

∣

∣h̄H
k wi

∣

∣

2
+ σ2











. (3)

In this paper, we aim at maximizing the WSR of all users

by jointly optimizing the BS transmit beamforming {wk, ∀k}
and phase shift matrix {Φl, ∀l}, subject to the BS transmit

power constraint. Define φm
l = ejθ

m

l , ∀l,m, we have Φl =
diag

{

φm
l , . . . , φM

l

}

. Then, the problem can be expressed as

follow

(P) max
wk,φ

m

l

K
∑

k=1

αkRk

s.t.

K
∑

k=1

‖wk‖
2

2
≤ Pmax, (4)

|φm
l | = 1, ∀l,m, (5)

where αk ≥ 0 is a weighting factor for the user k with a

higher value αk representing the higher priority for user k,

and Pmax is the BS power limit.

III. PROPOSED LOW-COMPLEXITY ALGORITHM

Problem (P) is challenging to solve since the non-convex

rate expression (3) in the objective function and unit-modulus

constraint in (5). In the following, we first transform prob-

lem (P) into an equivalent weighted sum mean-square error

(WMSE) problem, and then we decouple the WMSE problem

into several sub-problems and alternately optimize the beam-

forming and phase shift matrix.

Specifically, a decoder uk is applied at user k to decode the

desired signal sk, the estimated signal of the user k is given

by

ŝk = uH
k yk. (6)

Under the independence assumption of signal sk and noise

nk, the minimum MSE at user k is given by

Ek =Es,n

{

(ŝk − sk) (ŝk − sk)
H
}

=uH
k

(

h̄H
k

(

K
∑

k=1

wkw
H
k

)

h̄k + σ2

)

uk−

uH
k h̄H

k wk −wH
k h̄kuk + 1. (7)

Lemma 1: The weighted sum-rate maximization problem is

equivalent to the WMSE problem (P1), which is given by

(P1) max
uk,qk>0,wk,φ

m

l

K
∑

k=1

αk (log (qk)− qkEk + 1)

s.t. (4), (5).

Proof : A brief proof is given in Remark 1 in the later

Subsection, and the detailed proof can be referred to Theorem

1 in [7].

Despite (P1) introduces two additional variables {uk, ∀k}
and {qk, ∀k}, (P1) is much easier to solve by using the

alternating optimization method as follows.

A. Decoder uk optimization

In this subsection, we optimize {uk} while fixing {qk},

phase shift {φm
l }, and beamforming vector {wk}. The sim-

plified problem is given by

(P1.1)max
uk

K
∑

k=1

αk (log (qk)− qkEk + 1).

Define fk = log (qk) − qkEk + 1, and substitute (7) into fk,

we arrive at (8). It can be easily seen that (8) is concave with

respective to (w.r.t.) uk, which thus can be optimally solved

by setting the first-order derivative of fk w.r.t. uk to zero. We

thus have

u
opt
k =

h̄H
k wk

K
∑

j=1

∣

∣h̄H
k wj

∣

∣

2
+ σ2

. (9)
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fk = log (qk)− qk

(

uH
k

(

h̄H
k

(

K
∑

k=1

wkw
H
k

)

h̄k + σ2

)

uk − uH
k h̄H

k wk −wH
k h̄kuk + 1

)

+ 1. (8)

B. Optimal solution qk

For any given {uk}, phase shift {φm
l }, and beamforming

vector {wk}, the optimal solution qk can be obtained by

solving the following problem

(P1.2)max
qk>0

K
∑

k=1

αk (log (qk)− qkEk + 1).

We can also see that qk is concave w.r.t. fk in (P1.2), the

optimal solution qk can be easily solved by taking the first-

order derivative of (8) w.r.t. qk, we then have

q
opt
k = E−1

k . (10)

Remark 1: Based on the optimal solutions u
opt
k and q

opt
k

obtained from (III-A) and (III-B), substitute u
opt
k and q

opt
k into

(8), we arrive at

fk = log
(

E−1

k

)

= log











1 +

∣

∣h̄H
k wk

∣

∣

2

K
∑

i6=k

∣

∣h̄H
k wi

∣

∣

2
+ σ2











△
= Rk. (11)

This result shows the equivalence between problem (P) and

(P1).

C. Lagrangian method for beamforming optimization

In this subsection, the optimal beamforming vector {wk}
is obtained by applying the Lagrangian method [8]. With the

fixed variables {qk}, {uk} and phase shift {φm
l }, and drop

the irrelevant terms with wk, the beamforming optimization

problem can be simplified as

(P1.3)min
wk

K
∑

k=1

αkqkEk

s.t. (4).

It can be easily checked that the objective function and

constraint in (P1.3) are all convex, which can be efficiently

solved by the convex tools such CVX [9]. To reduce the

computational complexity generally solved by CVX, we obtain

a globally optimal solution to (P1.3) with a much lower

complexity based on the Lagrangian method. To this end, we

first introduce a non-negative slack variable λ associated with

constraint (4), the Lagrangian function of problem (P1.3) is

thus given by

L̂ (wk, λ) =

K
∑

k=1

αkqkEk + λ

(

K
∑

k=1

‖wk‖
2

2
− Pmax

)

. (12)

With any given λ, the optimal solution wk to minimize (12)

can be obtained by directly setting its first-order derivative of

L̂ (wk) w.r.t. wk to zero, we have

w
opt
k (λ) =





K
∑

j=1

αjqjh̄juju
H
j h̄H

j + λI





−1

αkqkh̄kuk,

(13)

where I ∈ CNt×Nt is an identity matrix. Define H =
K
∑

j=1

αjqjh̄juju
H
j h̄H

j . Since H is a positive semi-definite ma-

trix, we assume that the rank of H as N (N <= Nt), it thus

can be decomposed as

H = [F1 F2] diag (Σ1,Σ2) [F1 F2]
H
, (14)

where F1 is the first N singular vectors corresponding to the

N positive eigenvalues in diagonal matrix Σ1, and F2 is the

remaining Nt−N singular vectors corresponding to the Nt−N

zero eigenvalues in Σ2. We thus can simplify (14) as

H = F1Σ1F
H
1 . (15)

With (13) and (15), we have g (λ), which is expressed

in (16), where εi is the ith diagonal element in Σ1, and

Zk = FH
1 h̄kuku

H
k h̄H

k F1. The optimal λ must be chosen

for satisfying the complementary slackness condition for BS

power constraint as follow

λ (g (λ)− Pmax) = 0. (17)

As can be seen in (16), g (λ) is a decreasing function of λ.

As a consequence, if g(0) ≤ Pmax, the optimal beamforming

vector is w
opt
k (0) =

(

K
∑

j=1

αjqjh̄juju
H
j h̄H

j

)−1

αkqkh̄kuk.

Otherwise, if g(0) > Pmax, the optimal λopt can be found via

bisection based search method to ensure g (λopt)−Pmax = 0.

Then, the optimal beamforming vector can be obtained as

w
opt
k (λopt) =

(

K
∑

j=1

αjqjh̄juju
H
j h̄H

j + λoptI

)−1

αkqkh̄kuk.

To reduce the search range [λmin λmax], the initial lower

bound of λ is set as λmin = 0, and the initial upper bound of

λ is calculated as follow

g (λ) ≤
K
∑

k=1

|αk|
2|qk|

2

N
∑

i=1

[Zk]i,i
λ2
max

△
=Pmax,

⇒ λmax =

√

√

√

√

√

K
∑

k=1

|αk|
2
|qk|

2
N
∑

i=1

[Zk]i,i

Pmax

. (18)
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g (λ) =
K
∑

k=1

‖wk‖
2

2
=

K
∑

k=1

Tr
(

F1(Σ1 + λI)−1
F

H
1 αkqkh̄kuku

H
k h̄

H
k qkαkF1(Σ1 + λI)−1

F
H
1

)

=
K
∑

k=1

|αk|
2|qk|

2Tr
(

(Σ1 + λI)−2
F

H
1 h̄kuku

H
k h̄

H
k F1

)

=
K
∑

k=1

|αk|
2|qk|

2

N
∑

i=1

[Zk]i,i

(εi + λ)2
, (16)

D. RMCG method for phase shift optimization

In this subsection, with fixed {qk}, {uk}, and beamforming

vector {wk}, we consider the phase shift optimization prob-

lem, which is given by

(P1.4)min
φm

l

K
∑

k=1

αkqkEk

s.t. (5).

Problem (P1.4) is non-convex due to the unit-modulus con-
straint in (5), the globally optimal solution is hard to achieve
in general. In order to develop an efficient algorithm to solve
(P1.4), we develop a Riemannian manifold conjugate gradient
(RMCG) method, which guarantees at least a locally optimal
solution [10]. Substituting h̄H

k into Ek , we can rewrite Ek as

Ek =

L
∑

i=1

L
∑

j=1

Tr
(

Φ
H
i Ai,j,kΦjĒi,j

)

+

L
∑

l=1

Tr
(

Φ
H
l (Dl,k −Bl,k)

)

+
L
∑

l=1

Tr
(

Φl(Dl,k −Bl,k)
H
)

+ ck − ek − e
H
k + 1, (19)

where Ai,j,k = hi,kuku
H
k hH

j,k, Bl,k = hl,kukw
H
k GH

r,l,

Dl,k = hl,kuku
H
k hH

k

(

K
∑

k=1

wkw
H
k

)

GH
r,l,

Ēi,j = Gr,j

(

K
∑

k=1

wkw
H
k

)

GH
r,i, ck =

uH
k

(

hH
k

(

K
∑

k=1

wkw
H
k

)

hk + σ2

)

uk, and ek = wH
k hkuk.

Define vector vl =
[

φ1
l , . . . , φ

M
l

]T
for ∀l, by dropping the

constant terms ck and ek irrespective to variable φm
l in Ek,

(P1.4) can be equivalently written as

(

P̄1.4
)

min
φm

l

L
∑

i=1

L
∑

j=1

vH
i Ji,jvj +

L
∑

l=1

vH
l zl +

L
∑

l=1

zHl vl

s.t. (5).

where Ji,j =

(

K
∑

k=1

akqkAi,j,k

)

⊙ ĒT
i,j , zl =

[

K
∑

k=1

akqk[Dl,k −Bl,k]1,1, . . . ,
K
∑

k=1

akqk[Dl,k −Bl,k]M,M

]T

.

Define v̂ =
[

vT
1 , . . . ,v

T
L

]T
, z =

[

zT1 , . . . , z
T
L

]T
, and

Ĵ =







J1,1 · · · J1,L

... · · ·
...

JL,1 · · · JL,L






. We can equivalently rewrite

(

P̄1.4
)

in a more simplified form as follow
(

P̂1.4
)

min
v̂

f̂ (v̂) = v̂H
(

Ĵ+ ωI
)

v̂ + v̂Hz+ zH v̂

s.t. (5).

where ω is a auxiliary constant which can be used to speed

up the convergence of the proposed RMCG method [10], [11].

Note that v̂HωIv̂ = ωML, which indicates it will not change

the optimal solution to
(

P̄1.4
)

. We first define the manifold

space for constraint (5) in (P̂1.4) as

SML =
{

v̂ ∈ C
ML×1 :

∣

∣φ1
1

∣

∣ = · · · =
∣

∣φM
1

∣

∣ = · · ·
∣

∣φM
L

∣

∣ = 1
}

,

(20)

where S = {v̂lm ∈ C : |φm
l | = 1} is a complex circle, which

can be regarded as a sub-manifold of SML. Precisely, (P̂1.4)
can be solved iteratively by preforming the following steps at

each iteration r [12]: 1) We first find the gradient in Euclidean

space η
r = −∇φm

l
f̂ (v̂r) = −2

(

Ĵ+ ωI
)

v̂r − 2z. 2) We

then compute the Riemannian gradient of f̂ (v̂r) at point v̂r

via projecting onto the tangent space Tv̂rSML, the Riemannian

gradient is then given by Tv̂rSML = η
r−Re {ηr∗ ⊙ v̂r}⊙v̂r.

3) Then, update the current value of v̂r onto the Tv̂rSML, the

update is given by v̂r+1 = v̂r + ζTv̂rSML, where ζ is a

conjugate parameter. 4) We then map v̂r+1 into the manifold

space SML by performing retraction operator, which is given

by v̂r+1 = v̂r+1 ⊙ 1

|v̂r+1| .

E. Overall algorithm and complexity analysis

Based on the solutions to sub-problems, an iterative al-

gorithm is performed to alternately optimize the four sub-

problems until the fractional increase of the objective value

less than a predefined value. It should be pointed out that

the complexity of this iterative algorithm is very low. The

main complexity of proposed algorithm mainly lies in (III-C)

and (III-D). In (III-C), the main complexity includes three

parts. First, the complexity of decomposing H in (14) is

O
(

(Nt)
3
)

. Second, the complexity of searching optimal

λ is given by O
(

log2
(

λmax−λmin

τ

))

, where τ is a toler-

ant value. Last, the complexity of calculating optimal wk

involving inverse operator is O
(

(Nt)
3
)

. In (III-D), the

main complexity lies in calculating the Euclidean gradi-

ent η
r in step 1, which is given by O

(

(ML)2
)

. Then,

the total complexity of the proposed iterative algorithm is

O
(

κ1

(

κ2(ML)2 + (Nt)
3 + log2

(

λmax−λmin

τ

)

))

, where κ1

and κ2 respectively represent the number of iterations required

by the overall algorithm and RMCG method.
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IV. NUMERICAL RESULTS

In this section, numerical simulations are provided to eval-

uate the performance of the joint optimization of BS transmit

beamforming and IRSs’ phase shifts. The BS is located at

(0, 0) with radius 300m and height 10m. We consider 4

IRSs, which are respectively located at (300m, 0), (0, 300m),
(−300m, 0), and (0,−300m) with height 10m. There are 8

users, each two of them are uniformly and randomly placed

in a circle centered at each location of IRS with radius 30m.

The large-scale path is denoted as Lloss = L0

(

d
d0

)−β

, where

L0 denotes the channel gain at reference distance d0 = 1m, β

is the path loss exponent. We set the path loss exponents for

the BS-IRS link, IRS-user link, and BS-user link as βbr = 2.2,

βru = 2.2, and βbu = 3.6. We assume that the BS-user

link follows Rayleigh fading, and BS-IRS link and IRS-user

link follow Rician fading with Rician factor 10dB. Unless

otherwise specified, Nt = 8, M = 60, σ2 = −80dBm,

Pmax = 1W.

Before evaluating the system performance of our proposed

method, the convergence behaviors for different number of

phase shifters M are plotted in Fig. 2. It is observed that the

weighted sum rate monotonically increases with the number

of iterations and finally converges within a few iteration. Even

when the number of phase shifters reaches M = 60, the

proposed algorithm still has fast convergence behavior.

In Fig. 3, we show the transmit power versus WSR for

different schemes. First, it is observed that the WSR achieved

by all the schemes monotonically increases with the BS’s

power limit Pmax. Second, our proposed joint optimization of

beamforming and phase shifts scheme outperforms the other

benchmarks, especially when the BS’s transmit power limit

increases, the performance will be more pronounced. Third,

compare with no IRS aided communication, the random phase

scheme nearly has same performance. This results show that

the IRS’s phase shifters must be well tuned so as to improve

the system performance.

In Fig. 4, the impact of the number of phase shifters on the

WSR has been investigated. First, it can be seen that all the

schemes except ‘No IRS’ scheme increases with number of

phase shifters M . It is expected since more phase shifters will

aggregate more signal power to the users, thereby improving

the throughput. Additionally, it also can be seen that the

random phase scheme will not benefit from the number of

phase shifters, which again indicates that the important of the

optimization of phase shift matrix.

V. CONCLUSION

In this paper, we have studied multiple IRSs aided wireless

communications. We formulated the problem as a weighted

sum rate optimization problem, and a sub-optimal solution of

formulated problem was obtained based on the Lagrangian

method and Riemannian manifold conjugate gradient method.

Numerical results showed that our proposed joint optimization

of BS transmit beamforming and IRS’s phase shifts achieved

significantly higher throughput than the other benchmarks. In

addition, the proposed iterative algorithm was quite efficient,

which only requires a few number of iterations .
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