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Abstract—This letter focuses on the problem of pilot assign-
ment in cell-free massive MIMO systems. Exploiting the well-
known Hungarian algorithms, two procedures are proposed, one
maximizing the system throughput, and the other one maximizing
the fairness across users. The algorithms operate based on the
knowledge of large-scale fading coefficients as a proxy for the
distances between users in the system, and take into account
both the uplink and downlink performance. Numerical results
show that the proposed pilot assignment algorithms are effective
and outperform the many competing alternatives available in the
literature.

Index Terms—cell-free, massive MIMO, pilot assignment, Hun-
garian algorithm, wireless networks, B5G, 6G

I. INTRODUCTION

Cell-free (CF) massive MIMO (mMIMO) is a wireless

network deployment architecture credited to be a possible

evolution of traditional multicell mMIMO systems [1], [2]. In

CF mMIMO, a very large number of distributed single-antenna

access-points (APs) serves several mobile stations (MSs) using

the same time-frequency resource. All APs are connected to

a central processing unit (CPU) and cooperate via a backhaul

network, and time-division duplex (TDD) protocol is used.

CF mMIMO systems have actually no cell boundaries and

benefit from large-scale fading (LSF) diversity. They are thus

able to ensure an improved level of fairness across users when

compared with multicell mMIMO systems [2]–[4].

Similarly to multicell mMIMO, the performance of CF

mMIMO systems is critically affected by the lack of a suf-

ficiently large number of orthogonal pilot sequences, which

prevents the possibility of acquiring channel state information

(CSI) with no interference. The use of properly designed

pilot assignment (PA) algorithms, thus, is crucial in order

to ensure good performance in highly loaded networks. The

problem of PA in CF mMIMO was firstly investigated in

[1], where, starting from a random PA (RPA), the authors

propose a greedy pilot assignment based on the knowledge

of the LSF channel coefficients that iteratively updates the

pilot of the worst performing MS in order to increase the

system fairness. The authors of [5], instead, propose to use the
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algorithm in [1] using as starting point an assignment based

on the location of the MSs. Similarly, patent [6] proposed an

iterative algorithm, based on consecutive updates of the pilots

for the worst and best performing MSs, again aiming at the

maximization of the system fairness. In [7] a PA algorithm

based on the knowledge of the MSs’ positions is proposed and

in [8] a similar procedure is considered taking into account the

LSF coefficients of the channels between MSs and APs.

The Hungarian algorithm [9], a popular combinatorial algo-

rithm used to solve weighted matching problems in a bipartite

graph with polynomial complexity, has been used to solve

the PA problem in traditional multicell mMIMO systems [10],

[11]; in these papers, however the number of orthogonal pilots

in each cell is assumed to be greater than the number of users,

i.e., there is no intra-cell pilot contamination.

The contribution of this paper is the development of a new

PA iterative procedure involving at each step the definition of a

proper bipartite graph such that the Hungarian algorithm can

be used to perform matching. Two new expressions for the

reward coefficients matrix are introduced, capable of jointly

taking into account the system performance on the uplink

(UL) and on the downlink (DL), and maximizing the system

throughput and the system fairness, respectively. The proposed

algorithms are useful when the number of orthogonal pilot

sequences is significantly lower than the number of active

users in the area, i.e., there is strong pilot contamination.

The proposed strategies exploit the knowledge of the LSF

coefficients between the APs and the MSs as a proxy of the

distances between the MSs.

The numerical results, provided in Section IV, will reveal

the superiority of the newly proposed solutions with respect

to competing alternatives.

II. SYSTEM MODEL AND PERFORMANCE MEASURES

We consider an area with K single-antenna MSs and M APs

each with NAP antennas connected, by means of a backhaul

network, to a CPU wherein data-decoding is performed. We

denote by Km and Mk the set of MSs served by the m-

th AP, and the set of APs serving the k-th MS, respectively.

The symbol gk,m denotes the NAP-dimensional vector rep-

resenting the channel between the k-th MS and the m-th

AP; we assume gk,m =
√
βk,mhk,m, with hk,m an NAP-

dimensional vector whose entries are i.i.d CN (0, 1) random

variables (RVs), modeling the fast fading, and βk,m the LSF

coefficient.

At each AP, a channel estimate of the channel gk,m, say

ĝk,m, is obtained through a linear minimum-mean-square-error
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(MMSE) processing as reported in [1], [2]. Denote by τp <
τc the length (in time-frequency samples) of the UL training

phase and by τc the length (in time-frequency samples) of

the coherence interval, and assume that the pilot sequences

transmitted by the MSs are chosen in a set of τp orthogonal

sequences Pτp =
{
ϕ1,ϕ2, . . . ,ϕτp

}
, where ϕi is the i-th unit

norm τp-dimensional pilot sequence.

On the DL, the APs treat the channel estimates as the true

channels and perform conjugate beamforming, while on the

UL, the generic m-th AP participates to the decoding of the

data sent by the MSs in Km, but data decoding takes place in

the CPU [2], [4].

As performance measures used for the testing of the pro-

posed PA algorithms we will consider the achievable rates in

DL and UL. Applying the use-and-then-forget (UatF) bound-

ing techniques in [12], a lower-bound to the k-th MS DL and

UL achievable rates is reported in Eqs. (1) and (2) at the top of

the next page, respectively. In these expressions, the following

notation has been used: W is the system bandwidth, τd and τu
are the lengths (in time-frequency samples) of the DL and UL

data transmission phases in each coherence interval; ηDL
k,m a

scalar coefficient controlling the power transmitted by the m-

th AP to the k-th MS; σ2
z is the AWGN noise variance at the

generic MS receiver; ηUL
k is the UL transmit power used by

the k-th MS in the data transmission phase; σ2
w is the AWGN

noise variance at the generic AP receiver; ηk is the power

employed by the k-th MS during the training phase, ϕk is the

τp-dimensional column pilot sequence transmitted by the k-th

MS and γk,m = E

[
ĝH
k,mĝk,m

]
. Details on the UatF bound

and on the derivations of Eqs. (1) and (2) can be found in [1],

[4], [12] and are here omitted due to the lack of space.

III. PILOT ASSIGNMENT ALGORITHM

We are now ready to illustrate the proposed PA procedures.

The schemes that we propose are iterative, have a common

structure, and start with a random PA. Basically, the steps of

the algorithms can be stated as follows:

1) Assign to each MS a pilot randomly picked from the set

Pτp of orthogonal pilots.

2) Consider the generic k-th MS; pick the τp − 1 MSs that

are closest to MS k. The set of these MSs, including

the k-th one, forms the set Sk, of cardinality τp. The

remaining K − τp MSs are grouped in the set Tk.

3) Assign pilots to the users in the set Sk considering the

PA of the users in the set Tk as fixed.

4) Repeat steps 2) and 3) for all values of k = 1, . . . ,K .

5) Repeat steps from 2) to 4) until the performance mea-

sures have reached convergence and/or the maximum

number of allowed iterations has been reached.

We now provide further details to better clarify the meaning

of the above steps.

A. Defining the set Sk

To execute the above step 2), the (τp − 1) MSs that are

closest to the k-th MS are to be selected. One simple way of

doing this is to rely on the knowledge of the MSs’ positions.

Indeed, if this knowledge is available at the CPU, the set Sk

can be readily defined.

If, instead, we want to avoid relying on MSs’ location in-

formation, knowledge of the LSF coefficients can be exploited

as indicators of the distance between MSs. Precisely, we are

not able to select the (τp − 1) MSs that are closest to the k-th

MS, but only the (τp−1) MSs that are closest to (i.e., have the

largest LSF coefficients to) the AP that is closest to MS k. The

two sets of course cannot be claimed to be coincident but with

high likelihood will have several common elements. Extensive

numerical experiments, not reported here for the sake of

brevity, have confirmed that using LSF coefficients instead

of true MSs positions leads to a practically imperceptible

performance loss, and this is why in this paper we just focus on

the exposition of the algorithms exploiting the LSF coefficients

knowledge. More precisely, the procedure works as follows.

For the k-th MS, the CPU first computes the index of its

nearest AP as m∗ = argmaxm βk,m. Then, consider

the set of the LSF coefficients Dk,m∗ = {βj,m∗}K
j=1,j 6=k

,

whose entries are sorted in decreasing order, and denote by

Um∗,k(ℓ) the MS index associated with the LSF coefficient

appearing in the ℓ-th position of the set Dk,m∗ . The set Sk

will thus contain the index (MS) k and the indexes (MSs)

associated to the (τp − 1) largest coefficients in Dk,m∗ , i.e.:

Sk = {k, Um∗,k(1), Um∗,k(2), . . . , Um∗,k(τp − 1)}.

B. Running the Hungarian algorithm

Once the sets Sk and Tk have been defined, the set of τp
available orthogonal pilots is to be assigned to the τp MSs in

Sk according to some optimality criterion. Denoting by a
(k)
ℓ,q

a scalar quantity measuring the reward (to be specified in the

following subsection) for the system if the q-th pilot in Pτp

is assigned to the ℓ-th MS in the set Sk, and letting x
(k)
ℓ,q be

a binary 0− 1 variable indicating that the q-th pilot sequence

is assigned to the ℓ-th MS, we are formally faced with the

following optimization problem:

max
x
(k)
ℓ,q

∈{0,1}

τp∑

ℓ=1

τp∑

q=1

x
(k)
ℓ,q a

(k)
ℓ,q (3a)

s.t.

τp∑

ℓ=1

x
(k)
ℓ,q = 1 ∀ q, and

τp∑

q=1

x
(k)
ℓ,q = 1 ∀ ℓ. (3b)

Problem (3) accepts as an input the coefficients a
(k)
ℓ,q , for all

ℓ and q, and solving it entails providing the values of the

optmization variables x
(k)
ℓ,q , for all ℓ and q.

The constraints in (3b) are needed to ensure that each pilot

is assigned to just one user and that all the pilots for the MSs

in Sk are used once, respectively. One way to solve the above

combinatorial optimization problem in polynomial time is to

resort to the Hungarian method [13, Algorithm 14.2.3]. A fast

and efficient implementation of the Hungarian algorithm was

introduced in [9]. We do not provide further details on this

algorithm for the sake of brevity.

C. Defining the reward coefficients

Let us now define how the coefficients a
(k)
ℓ,q are computed.

If the goal is to maximize the system throughput, then a
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RDL
k =

τd
τc
W log2




1 +

(
∑

m∈Mk

ηDL
k,mγk,m

)2

K∑

j=1

∑

m∈Mj

ηDL
j,mβk,mγj,m +

K∑

j=1
j 6=k


 ∑

m∈Mj

ηDL
j,m

√
ηk
ηj

γj,m
βk,m

βj,m




2

∣∣ϕH
k ϕj

∣∣2 + σ2
z




(1)

RUL
k =

τu
τc

W log2




1 +

ηUL
k

(
∑

m∈Mk

γk,m

)2

K∑

j=1

ηUL
j

∑

m∈Mk

βj,mγk,m +

K∑

j=1
j 6=k

ηUL
j

(
∑

m∈Mk

γk,m
βj,m

βk,m

)2 ∣∣ϕH
j ϕk

∣∣2 + σ2
w

∑

m∈Mk

γk,m




(2)

TABLE I: Average number of iterations needed to reach

convergence.

SHPA MHPA

K = 20 3.9 4.7

K = 40 4.1 6.6

K = 60 4.1 8.1

reasonable choice is to assume that a
(k)
ℓ,q is equal to the product

between the ℓ-th MS DL and UL rates when it is assigned the

q-th pilot, i.e. we have a
(k)
ℓ,q = RDL

ℓ ({xℓ,q = 1})RUL
ℓ ({xℓ,q =

1}), where Rx
ℓ ({xℓ,q = 1}) denotes the ℓ-th MS rate when it

is assigned the q-th pilot, where x can be DL or UL. Note that

the above quantity does not depend on the assignments that

have been done for the other MSs in Sk, since these MSs are

using orthogonal pilots; rather, it will depend on the locations

of the MSs in Tk that are assigned the same q-th pilot as the

MS k. We refer to this PA strategy as sum-rate maximizing

Hungarian PA (SHPA).

If, instead, the system designer goal is to maximize fairness

across users, a different strategy is in order. Denote by T̃k(q)
the set of MSs in Tk that are using the q-th pilot, and let

a
(k)
ℓ,q = min

j∈T̃k(q)∪{ℓ} R
DL
j ({xℓ,q = 1})RUL

j ({xℓ,q = 1}).

Otherwise stated, a
(k)
ℓ,q is the smallest product between the DL

and UL rates computed among all the MSs in the system that

are using the q-th pilot, including the ℓ-th MS. We refer to

this PA strategy as minimum-rate maximizing Hungarian PA

(MHPA).

IV. NUMERICAL RESULTS

In our simulation setup, we assume a communication band-

width W = 20 MHz centered over the carrier frequency

f0 = 1.9 GHz. The antenna height at the AP is 10 m and at the

MS is 1.65 m. The additive thermal noise is assumed to have a

power spectral density of −174 dBm/Hz, while the front-end

receiver at the APs and at the MSs is assumed to have a noise

figure of 9 dB. We consider M = 100, NAP = 4 K = 40 and

a MS-centric approach [2], [4], where each MS is served by

the N = 20 APs with the highest LSF coefficients and Km and

Mk are defined accordingly. The APs and MSs are deployed

at random positions on a square area of 1000× 1000 (square

meters). In order to avoid boundary effects, the square area is

wrapped around [1], [2]. The LSF coefficient βk,m is modelled

as in [14, Table B.1.2.2.1-1] and the shadow fading coefficients

from an AP to different MSs are correlated as in [14, Table

B.1.2.2.1-4]. The shadow fading correlation among MSs is

instead modeled as in [3]. The orthogonal pilot sequences in

Pτp have length τp = 8; the DL and UL data transmission

phases durations in samples are τu = τd =
τc−τp

2 , with

τc = 200. The UL transmit power for channel estimation

is ηk = τppk, with pk = 100 mW, ∀k = 1, . . . ,K .

Regarding power control, on the DL, the power coefficients

are set as ηDL
k,m = γk,mPDL

m /(
∑

k∈K(m) γk,m) for the case in

which PA aims at the sum-rate maximization, and as ηDL
k,m =

γ
−(αDL+1)
k,m PDL

m /(
∑

k∈K(m) γ
−αDL

k,m ), with αDL = −0.5, when

the PA aims at minimum-rate maximization. We also let

PDL
m = 200 mW, ∀ m = 1, . . . ,M . For the UL, instead,

we let ηUL
k = min

(
PUL
max, P0γ̄

−αUL

k

)
, ∀ k = 1, . . . ,K , with

P0 = −10 dBm, αDL = 0.5, γ̄k =
√∑

m∈Mk
γk,m and

PUL
max = 100 mW.

First of all, we evaluate the algorithms complexity. Steps

2) and 3) detailed at the beginning of Section III require K
runs of the Hungarian algorithm, each one having complexity

O
(
τ3p
)

[13, Algorithm 14.2.3]. The complexity of the steps

from 2) to 4) is thus O
(
Kτ3p

)
. Table I reports the number

of times that steps from 2) to 4) (i.e., the number of itera-

tions) are needed in order to reach convergence for different

number of users K . It is seen that the number of iterations is

weakly dependent on K; we can thus state that the proposed

algorithms complexity is approximately proportional to Kτ3p .

Next, we compare the performance of the proposed PA

algorithms with a RPA and with the solutions in [1], [5]–[8].

The reward coefficients are defined using the rate expressions

reported in Eqs. (1) and (2).

Figs. 1 and 2 report the sum-rate and min-rate cumulative

distribution functions (CDFs) for the DL and UL. Inspecting

the figures we can see that the proposed solutions outperform

competing alternatives both in terms of sum-rate and min-rate.

To have an insight into the values of the per-user rates, in



5

850 900 950 1000

DL sum-rate [Mbps]

0

0.2

0.4

0.6

0.8

1

C
D

F
RPA

SHPA

[1]

[5]

[6]

[7]

[8]

(a) .

650 700 750 800 850

UL sum-rate [Mbps]

0

0.2

0.4

0.6

0.8

1

C
D

F

RPA

SHPA

[1]

[5]

[6]

[7]

[8]

(b) .

Fig. 1: CDFs of DL and UL sum-rate. Parameters: M = 100,

NAP = 4, K = 40, τp = 8.

TABLE II: DL and UL 5%-rate. Parameters: M = 100,

NAP = 4, K = 40, τp = 8.

DL 5%-rate (MR/SR Max) UL 5%-rate (MR/SR Max)

RPA 9 Mbps / 6.3 Mbps 3.9 Mbps / 3.9 Mbps

Proposed 12 Mbps / 9.4 Mbps 5.1 Mbps / 5 Mbps

[1] 9.5 Mbps / 7 Mbps 4 Mbps / 4 Mbps

[5] 10.2 Mbps / 7.4 Mbps 4.1 Mbps / 4.1 Mbps

[6] 9.5 Mbps / 7 Mbps 4 Mbps/ 4 Mbps

[7] 10.4 Mbps / 8.4 Mbps 4.2 Mbps / 4.2 Mbps

[8] 10.3 Mbps / 7 Mbps 3.9 Mbps / 3.9 Mbps

Table II we report the 5%-rate performance obtained with the

different PA strategies. It is seen that there are improvements

in the order of 15% with respect to existing competing

alternative.

V. CONCLUSION

In this letter, the problem of PA in a CF mMIMO sys-

tem has been considered. An iterative procedure based on

the Hungarian algorithm has been proposed. The algorithm

parameters can be tuned so as to maximize either the sum-

rate or the fairness across users, and can be implemented based

on the knowledge of the LSF coefficients. Simulation results

have shown that the proposed procedures exhibit a significant

advantage over several competing alternatives.
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