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Abstract—While intelligent reflecting surface (IRS) assisted
wireless communication has emerged as an important research
paradigm, channel state information (CSI) acquisition remains
a critical challenge to design the IRS phase-shifts and yield the
promised coherent beamforming gains. In this paper, we propose
an IRS-assisted opportunistic beamforming (OBF) scheme under
proportional fair scheduling, which does not require instanta-
neous CSI to design the IRS parameters. In a slow-fading envi-
ronment, we show that with only random rotations at the IRS, the
proposed scheme can capitalize on the multi-user (MU)-diversity
effect to approach the performance of coherent beamforming
as the number of users grows large. Next we study the sum-
rate scaling of IRS-assisted OBF in the correlated Rayleigh fast
fading environment under a deterministic beamforming scheme
that results in a considerable sum-rate improvement.

Index Terms—Intelligent reflecting surface (IRS), broadcast
channel (BC), multi-user (MU) diversity, sum-rate, scheduling.

I. INTRODUCTION

Intelligent reflecting surface (IRS) can help realize reconfig-
urable propagation channels between the base station (BS) and
the users. An IRS is abstracted as an array of passive reflecting
elements, each of which can independently introduce a phase-
shift onto the impinging electromagnetic waves to achieve
different communication goals, for example: maximize the
system’s energy efficiency [1] or minimize the transmit power
[2], [3] subject to quality of service constraints, and maximize
the minimum rate [4] subject to transmit power constraints.

Existing works yield coherent beamforming gains by opti-
mizing the IRS phase-shifts under the assumption of perfect
channel state information (CSI), which is highly impractical
given the radio limitations of the passive IRS. In fact, the
recently developed channel estimation protocols require the
training time to grow proportionally with the number of
IRS elements, thus hampering most of the expected reflect
beamforming gains [5], [6]. Moreover, optimizing IRS at the
coherence time-scale level increases the system complexity.

Motivated by these challenges, we study an IRS-assisted
single-input single-output (SISO) broadcast channel (BC), in
which the IRS elements introduce random or deterministic
phase rotations without requiring instantaneous CSI. The
average sum-rate capacity of the SISO BC is achieved by
opportunistic scheduling (OS), which schedules at one time
the user with the largest signal-to-noise ratio (SNR) [7], [8].
MU-diversity gains then arise because in a system with many
users whose channels fade independently, there is likely to be
a user at each time whose SNR is near its peak. However,

Q.-U.-A. Nadeem and A. Chaaban are with School of Engineering, The
University of British Columbia, Kelowna, Canada. (e-mail: {qurrat.nadeem,
anas.chaaban}@ubc.ca)
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these gains are severely limited when channels fade slowly
[8], [9]. For such scenarios, Viswanath et al. [8] proposed
an opportunistic beamforming (OBF) scheme, where multiple
BS antennas transmit weighted replicas of the same signal to
induce temporal channel variations and improve the sum-rate.

Instead of using multiple active BS antennas for OBF, we
propose to utilize a passive IRS in the SISO BC, where the
IRS elements induce time-varying random phase rotations.
Each user feeds back its downlink SNR and the BS employs
proportional fair (PF) scheduling, which captures most of the
MU-diversity gain promised by OS while maintaining user
fairness [8]. We present an asymptotic analysis of the sum-rate
under slow fading, which reveals that the IRS-assisted OBF
scheme can capitalize on the artificially induced MU-diversity
effect to approach the coherent beamforming performance
as the number of users increases. We also study the sum-
rate scaling for the correlated Rayleigh fast fading scenario
under a deterministic design for the IRS phase-shifts and show
significant sum-rate gains without requiring instantaneous CSI.

To this end, we point that the results in this work can be
extended in the future to the multi-antenna BC under random
beamforming [7], [10], where multiple orthonormal beams
are transmitted from the BS and on each beam the strongest
user is served, while the IRS elements induce random phase
rotations. We also remark that the only other works that study
the random rotations-based IRS scheme are [11] and [12],
where the former studies its impact on the outage probability
and energy efficiency of a point-to-point SISO system, while
the latter studies its effect on the sum-rate scaling of SISO
Rayleigh and Rician fading BCs. Random rotations-based IRS
scheme is also inspired from the rotate-and-forward protocol
in [13] that converts a slow-fading relay channel into a time-
varying channel using time-varying random rotations.

The rest of the paper is organized as follows. Sec. II
introduces IRS-assisted OBF, Sec. III presents the asymptotic
sum-rate analysis in slow and fast fading channels, Sec. IV
provides simulation results and Sec. V concludes the paper.

II. SYSTEM MODEL

A. Transmission Model

We consider the downlink communication between a single-
antenna BS and K single-antenna users over block-fading
channels, hk(t) ∈ C, which remain constant during a frame t
of length T symbols corresponding to the coherence interval.
The received signal yk(t) ∈ CT×1 at user k in frame t is

yk(t) = hk(t)s(t) + nk(t), (1)

where s(t) ∈ CT×1 is the vector of T transmitted symbols
from the BS in frame t and nk(t) ∈ CT×1 is the noise vector
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Fig. 1: IRS-assisted OBF system model.

at user k in frame t distributed as CN (0, σ2IT ), where σ2 is
the noise variance. We assume that the Tx power level, denoted
as P , is fixed at at all times and therefore the Tx signal vector
s(t) must satisfy the power constraint E[||s(t)||2] = PT .

In this SISO BC with only SNR CSI, the sum-capacity is
achieved by OS, wherein the BS transmits to the user with
the highest SNR [7], [8]. The scheduled user in frame t is
k̂(t) = arg max

k∈{1,...,K}
γk(t), where γk(t) = P |hk(t)|2

σ2 and Rk(t) =

log2(1+γk(t)) are the SNR and requested rate of user k. The
maximum SNR is γk̂(t)(t) and average sum-rate capacity is

R(K) = E[log2(1 + γk̂(t)(t))], (2)

where the expectation is over (h1(t), . . . , hK(t)).
When the users fading statistics are the same, OS maximizes

not only the sum-capacity but also the fairness among users.
In reality, the users will have different path losses resulting
in weak users to almost never be scheduled. To address this
issue while exploiting the MU-diversity gains promised by
OS, PF scheduling was proposed to keep track of the average
throughput of each user Tk(t) in a past window of length tc
frames and schedule the user in frame t as

k̂(t) = arg max
k∈{1,...,K}

Rk(t)/Tk(t). (3)

The average sum-rate is still expressed as (2) with k̂(t) given
in (3). When the channels undergo fast fading, R(K) increases
with K due to the MU-diversity effect while it stays constant
under slow-fading [8]. Next we propose IRS-assisted OBF that
yields MU-diversity gains under both slow and fast fading.

B. IRS-Assisted OBF

An IRS composed of N passive reflecting elements is
installed in the SISO BC to assist the BS in communicating
with the users as shown in Fig. 1. The IRS elements intro-
duce random phase shifts onto the incoming waves in each
coherence interval. The channel hk(t) in frame t is given as

hk(t) =
√
βr,kh1Θ(t)h2,k(t) +

√
βd,khd,k(t), (4)

=
√
βr,kv(t)T diag(h1)h2,k(t) +

√
βd,khd,k(t), (5)

where βr,k and βd,k are the signal attenuation factors for the
IRS-assisted and direct links respectively, h1 ∈ C1×N is the
BS-IRS channel vector, h2,k(t) ∈ CN×1 is the IRS-user k
channel vector and hd,k(t) ∈ C is the direct BS-user k chan-
nel. Moreover Θ(t) = αdiag{ejθ1(t), . . . , ejθN (t)} ∈ CN×N is

a diagonal matrix representing the response of the IRS, where
α ∈ [0, 1] is the fixed amplitude reflection coefficient and
θn(t) ∈ [0, 2π] is the phase shift applied by n-th element.
The specific way the θn’s are generated is studied in the next
section and will not require instantaneous CSI. The second
reformulation in (5) has v(t) = α[ejθ1(t), . . . , ejθN (t)]T .

We assume the BS-IRS channel to be LoS similar to many
other works on this subject [4]–[6]. The assumption is practical
because both the BS and IRS are generally elevated high
and will therefore have a very few ground structures around
to block or reflect the electromagnetic waves. Moreover, any
NLoS paths in the BS-IRS channel are expected to experience
a much higher path loss in next generation communication
systems and can therefore be neglected as compared to the LoS
path [6]. The n-th component of h1 is given as h1,n = ejϑh1,n ,
where ϑh1,n = 2π(n− 1)d sinϑn [4], ϑn is the LoS angle to
IRS element n, and d is the inter-element separation.

As outlined in Sec. II-A, the users feedback their SNRs
γk(t), and the BS schedules the user with the largest Rk(t)

Tk(t)
in frame t. The only feedback required from each user under
the IRS-assisted OBF scheme is therefore just its SNR value,
while no instantaneous CSI is needed to tune the IRS phase
shifts as we will show in the next section. Next we will study
the average sum-rate in (2) under this scheme for both slow-
fading and correlated Rayleigh fast fading channels.

III. ASYMPTOTIC ANALYSIS OF THE SUM-RATE

We consider the large K regime in our analysis, which is
very relevant given the massive connectivity promised by 5G.

A. Slow Fading

We first consider the case of slow fading where the channel
gains of each user remain constant, i.e. h2,k(t) = h2,k,
hd,k(t) = hd,k, ∀t (practically this means for all t over the
latency time scale of interest). The received SNR at each user
will remain constant if no IRS is used and no MU-diversity
gain will be exploited. Under the proposed scheme, however,
the overall channel hk(t) in (4) still varies over time due to
Θ(t) and the sum-rate can be improved through MU-diversity.

First, we present the maximum achievable rate for each user
under coherent beamforming at the IRS with full perfect CSI,
which will serve as a benchmark for comparison.

Theorem 1: The maximum rate achieved by user k under
coherent beamforming at the IRS is

RBFk = log2

(
1 +

P

σ2
‖α
√
βr,k

N∑
n=1

|h1,n||h2,k,n|

× exp(j∠hd,k) +
√
βd,khd,k‖2

)
, (6)

where h1,n and h2,k,n are the nth elements of h1 and h2,k

respectively. This is achieved when θn(t) is set as

θBFn,k = ∠hd,k − ∠(h1,n + h2,k,n), n = 1, . . . , N. (7)

Proof: The proof follows from ex-
pressing hk(t) in (4) as hk(t) =
α
√
βr,k

∑N
n=1 exp(jθn(t))|h1,n||h2,k,n| exp(j∠(h1,n +

h2,k,n)) +
√
βd,k|hd,k| exp(j∠hd,k) and noting that |hk(t)|2

is maximized using the beamforming configuration in (7).
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To achieve coherent beamforming to a user, the BS will
require full CSI of hd,k and h2,k, the latter being extremely
difficult to obtain given the IRS is passive [5]. In the following,
we show that as the number of users increases, the average
rate of each user where the users just feedback the overall
SNR and the IRS phases are randomly varied from a specified
distribution, approaches that under coherent beamforming.

Denote by T
(K)
k the long-term average rate of user k in a

system with K users when PF scheduling with infinite window
(tc = ∞) is used. We obtain the following results for T (K)

k

and R(K) under IRS-assisted OBF as K grows large.
Theorem 2: Suppose the slow fading states of users are

i.i.d. and discrete, and the joint stationary ergodic distribution
of (θ1(t), . . . , θN (t)) is the same as that of

(θBF1,k , . . . , θ
BF
N,k), (8)

for the slow fading state of any individual user k, where θBFn,k
is defined in (7). Then, almost surely, we have

lim
K→∞

KT
(K)
k = RBFk , ∀k, (9)

where RBFk is the rate under coherent beamforming in (6).
Proof: See Appendix A.

Corollary 1: An asymptotic approximation of the average
sum-rate in (2) under the setting of Theorem 2 is obtained as

lim
K→∞

R(K) =
1

K

K∑
k=1

RBFk . (10)

Proof: The average sum-rate R(K) =
∑K
k=1 T

(K)
k for PF

scheduling with infinite window and use (9).
This result implies that for large K, with high probability

the PF algorithm always schedules the users when they are in
their beamforming configurations. Moreover, it allocates equal
amount of time to each user as signified by the 1

K factor in
(10). The sum-rate performance increases with K despite the
slow-fading nature of channels due to the artificially intro-
duced channel fluctuations through the IRS and approaches the
coherent beamforming performance. This is done using only
random IRS phase shifts drawn from the stationary distribution
specified by (8), without requiring instantaneous CSI.
B. Correlated Rayleigh Fading

While IRS-assisted OBF increases the rate of channel vari-
ation in slow fading channels, it will not have the same effect
under fast fading. However, better MU-diversity gains can still
be exploited if IRS increases the dynamic range of distribution
of hk(t) in (4). To study this, we analyze the asymptotic
behaviour of (2) for the scenario where hd,k ∼ CN (0, 1) and

h2,k(t) = R
1
2

k bk(t), (11)

where bk(t) ∼ CN (0, IN ) and Rk is the N ×N correlation
matrix at the IRS with trace(Rk) = N . For this fading model,
we rely on tools from extreme value theory to study the
asymptotic scaling of max

k
γk in (2) in the limit of a large

number of users, under the assumption that the fading statistics
of all users are identical, i.e. Rk = R, βr,k = βr, βd,k = βd
∀k1[7], [8], [10]. Under this setting, PF scheduling reduces to

1This assumption is for analytical tractability since it will make the users’
channels (and SNRs) i.i.d., enabling the application of results from extreme
value theory. However, one could argue as [8], [10] that similar multi-user
diversity gains will be observed when the fading statistics are non-identical.

OS, i.e. transmit to user with highest |hk(t)|2 during frame t.
The overall channel hk(t) in (4) is given as

hk(t) =
√
βrv(t)T h̄k(t) +

√
βdhd,k(t), where

h̄k(t) = diag(h1)h2,k(t) and is distributed as CN (0, R̄) with
R̄ = diag(h1)Rdiag(hH1 ) and trace(R̄) = N . Dropping the
time-index for simplicity, the sum-capacity in (2) is given as

R(K) = max
f(v)

Ev[Eh1,...,hK |v[log2(1 + max
k
γk)]], (12)

where Ex|y is the conditional expectation of x given y. Note
that the channel hk for given v is distributed as

hk|v ∼ CN (0, βrv̄
HR̄v̄ + βd), (13)

where v̄ = (vT )H . The sum-rate scaling for this setting under
a deterministic beamforming scheme is provided below.

Theorem 3: For correlated Rayleigh fading, the sum-rate in
(12) under IRS-assisted OBF scales as

R(K) = log2(1 +
P

σ2
(βrα

2ζ + βd) logK), (14)

as K grows large, where ζ =
N−1∑
j=1

λj |(ej∠uN )Huj |2 +

λN |
∑N
i=1 |uN (i)||2, λ1 < · · · < λN are the eigenvalues of

R̄ and uj , j = 1, . . . , N are the associated eigenvectors. This
scaling is achieved by a deterministic design for v satisfying
|vn| = α ∀n, given as

v̄ = αej∠uN . (15)

Proof: See Appendix B.
The result yields the following important corollaries.

Corollary 2: Under independent Rayleigh fading, i.e. R =
IN , the sum-capacity for any v scales as

R(K) = log2(1 +
P

σ2
(βrα

2N + βd) logK). (16)

Proof: The proof follows from (21) using v̄H v̄ = α2N .
It also follows from (14) by noting that λj = 1, ∀j and using
the standard basis vectors as the eigenvectors.

Therefore IRS-assisted OBF yields Nα2 βr
βd

+ 1 gain in the
SNR of strongest user as compared to the system without IRS.

Corollary 3: Under completely correlated Rayleigh fading,
i.e. R = aaH where a is the array response vector, the sum-
rate in (14) under the design in (15) scales as

R(K) = log2(1 +
P

σ2
(βrα

2N2 + βd) logK). (17)

Proof: The proof follows from writing v̄HR̄v̄ = v̄H(h1◦
a)(h1 ◦a)H v̄. The only non-zero eigenvalue λN = N and the
associated eigenvector is uN = 1√

N
h1 ◦ a.

The sum-rate in (14) therefore lies in the interval log2(1 +
P
σ2 (βrα

2N + βd) logK) ≤ R(K) ≤ log2(1 + P
σ2 (βrα

2N2 +
βd) logK). Interestingly, we see that by exploiting the eigen-
value decomposition of R̄ to design v, IRS-assisted OBF
performs better under correlated Rayleigh fading than it does
under independent Rayleigh fading, with approximately a
factor of N gain in the SNR of the strongest user under
completely correlated fading. The deterministic design in (15)
depends only on the IRS correlation matrix, which is well-
known to vary very slowly as compared to the fast fading
process and can be computed after several coherence intervals



4

using only statistical information. Therefore the IRS does not
require instantaneous CSI to achieve the sum-rate in (14).

Remark 1: The results in this paper can be extended to
the multiple-input single-output (MISO) BC under the random
beamforming (RBF) scheme discussed in [7], [10], where
the BS sends multiple random orthonormal beams in each
coherence interval and on each beam schedules the user
with the highest signal-to-interference-plus-noise ratio (SINR),
thereby exploiting the MU-diversity effect. Under RBF at the
BS, we can study the effect of introducing an IRS employing
random phase rotations on the MU-diversity gain and sum-
rate scaling of the MISO BC. This paper provides important
fundamental analysis to make this extension in future works.

IV. SIMULATIONS

Using (x, y) coordinates (in meters), the BS and IRS are de-
ployed at (0, 0) and (0, 50) respectively, and the users are uni-
formly distributed in the region (x, y) ∈ [−30, 30]× [50, 130].
We set P = 1W , σ2 = −80dBm, α = 1 and assume 5dBi
elements at the BS and IRS. The path loss in the IRS-assisted
link βr,k is the product of the path loss in BS-IRS link and
the path loss in IRS-user link with path loss exponents 2.2
and 2.8 respectively, while that for hd,k is 3.5 [2]. Penetration
loss of 10dB is assumed for the direct link.

In the first result, the slow fading realizations of h2,k

and hd,k are generated as i.i.d. Rayleigh distributed and stay
constant over the latency time-scale. We verify Theorem 2
in Fig. 2 by plotting the average sum-rate in (2) against
K for N = 4 and N = 8, with the IRS phases drawn
randomly from the distribution specified by (8) for IRS-
assisted OBF. The performance under coherent beamforming
(the eventual limit in (10)) is also plotted. We see the average
sum-rate increase with K under IRS-assisted OBF while it
stays constant when there is no IRS. For N = 4, the sum-rate
of the proposed IRS-assisted OBF scheme almost approaches
the coherent beamforming performance (that requires full CSI)
for K = 128 users. The convergence slows down for large
N because the probability of mismatch between the random
phase-shifts and beamforming configuration of the scheduled
user in (8) increases [9]. However, the sum-rate gap reduces
as K grows large and the sum-rate under IRS-assisted OBF
will eventually approach the limit as stated in Theorem 2.

The number of passive IRS elements required to outperform
BS-assisted OBF scheme from [8], that uses an M -antenna
BS to yield MU-diversity gains, is higher to overcome the
double path loss. However, IRS-assisted OBF relies on a
single-antenna BS, making it an energy-efficient alternative.

In addition to coherent beamforming under perfect CSI, we
also consider coherent beamforming under the more practical
imperfect CSI scenario as the second benchmark. We use the
imperfect CSI model ĥ2,k =

√
1− ε2h2,k+εk∆k, where ĥ2,k

is the estimated channel (also constant over latency time-scale)
and ∆k is the channel error vector. The maximum achievable
rate of each user is determined by solving max

|vn|=1
|ĥk|2 to find

v similar to (6). The resulting performance is plotted in Fig.
2 for εk = 0.2. We see that for N = 4 and N = 8, OBF
outperforms coherent beamforming under imperfect CSI for
K > 32 and K > 256 users respectively and eventually
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achieves the coherent beamforming under perfect CSI upper
bound. Moreover, it is important to remark that in contrast to
OBF, coherent and robust beamforming [3] schemes require
the IRS phase shifts to be computed based on the knowledge
of ĥ2,k [3].

In practice the IRS elements can implement a finite number
of phase-shifts depending on the the number of bits b repre-
senting their resolution. We show the performance loss caused
by quantizing the continuous phase shifts in (7) and (8) to the
nearest discrete values for N = 4 in Fig. 2. While there is a
performance loss, the convergence in Theorem 2 still holds.

In Fig. 3, we study the average sum-rate performance
in (2) under independent and correlated Rayleigh fading
channels. The covariance matrix is set as [R]i,j = η|i−j|,
i, j = 1, . . . , N . Under independent Rayleigh fading with
uniformly distributed IRS phases, we see a sum-rate gain of
approximately log2(Nα2 βr

βd
+ 1) as compared to the system

without IRS, in line with Corollary 2, which is also plotted.
Under correlated Rayleigh fading and deterministic (Det.)

design for v in (15), we plot both (2) as well as the theoretical
scaling law in Theorem 3 and show a good match. Note that
the match will become more accurate for larger K as promised
by Theorem 3. The performance improves as η increases
from 0 to 1, confirming that with the design in (15) that
only depends on the channel covariance matrix, IRS-assisted
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OBF performs better under correlated Rayleigh fading than
under independent Rayleigh fading with the sum-rate gain
becoming log2(N2α2 βr

βd
+ 1) over a system without the IRS

as η approaches 1. Finally, we observe that having multiple
antennas at the BS under BS-assisted OBF [8] yields no gain
under independent Rayleigh fading.

V. CONCLUSION

We have proposed an IRS-assisted OBF scheme for a SISO
BC, in which the IRS elements employ either random or
deterministic phase rotations to increase the MU-diversity
gains while the BS employs PF scheduling. Without requiring
instantaneous CSI to design the IRS phases, we show the
average sum-rate under the proposed scheme in the slow-
fading environment to approach coherent beamforming per-
formance as the number of users increases. Further, we show
this technique to improve the sum-rate gain in independent
and correlated Rayleigh fast-fading environments as well.

APPENDIX A
PROOF OF THEOREM 2

Denote the discrete slow fading states of h2,k and hd,k as
h2,p, p ∈ P = {1, . . . , P} and hd,q , q ∈ Q = {1, . . . , Q}
respectively and the discrete state pairs as (h2,pp∈P , hd,qq∈Q)j ,
j = 1, . . . ,M where M = PQ. Also denote the probability
of user being in state j as pj . A discrete number of fading
states is assumed to minimize the technicality of the proof
[8]. The maximum achievable rate in state j is RBFj given in
(6). The theorem implies that the joint stationary distribution
of IRS phase variation process also has probability pj on state
(θBF1,j , . . . , θ

BF
N,j), and by ergodicity, this is the long-term frac-

tion of time the process spends in this state. Denote the fraction
of users in class j as c(K)

j . We will have
∑M
j=1 c

(K)
j = 1 and

lim
K→∞

c
(K)
j = pj , j = 1, . . . ,M. (18)

The proof follows by developing lower and upper bound
on the average throughput of the users. The lower bound is
obtained using a simple scheduling algorithm that schedules a
user in class j only when the IRS phases are in the beamform-
ing configuration (θBF1,j , . . . , θ

BF
N,j). Such a user exists almost

surely when K is large. This way, the long-term average rate
of a user in class j is

pjR
BF
j

c
(K)
j K

. Using [8, Lemma 4] that PF

algorithm maximizes
∑K
k=1 log T

(K)
k almost surely among the

class of all schedulers, we obtain
K∑
k=1

log T
(K)
k ≥

M∑
j=1

c
(K)
j K log

(
pjR

BF
j

c
(K)
j K

)
. (19)

Now consider the PF algorithm and denote by d
(K)
j the

fraction of time it schedules users in state j. We have the
following upper bound:

K∑
k=1

log T
(K)
k ≤

M∑
j=1

c
(K)
j K log

(
d

(K)
j RBFj

c
(K)
j K

)
(20)

The proof then follows from combining (19) and (20) and
using (18) to prove that lim

K→∞
d

(K)
j = pj . Using this result in

(20), the average throughput of any user k in class j under PF
scheduling will satisfy lim inf

K→∞
KT

(K)
k ≤ RBFj . Combining this

with the lower bound in (19) and using (18), we can complete
the proof (more details in [8] that studies BS-assisted OBF).

APPENDIX B
PROOF OF THEOREM 3

The derivation will utilize [8, Lemma 2], which states that
the maximum of K i.i.d. RVs with pdf fX(x) and cdf FX(x)

grows like lK as K → ∞ if lim
x→∞

g(x) = 1−FX(x)
fX(x) = c > 0,

where lK is obtained as the solution of FX(lK) = 1− 1
K .

Given v and using (13), γk will follow exponential distribu-
tion with parameter σ2

P (βrv̄HR̄v̄+βd)
, resulting in Fγ(x) = 1−

e
− σ2x

P (βr v̄H R̄v̄+βd) and fγ(x) = σ2

P (v̄HR̄v̄βr+βd)
e
− σ2x

P (v̄H R̄v̄βr+βd) .

We now obtain g(x) =
1−Fγ(x)
fγ(x) = P

σ2 (βrv̄
HR̄v̄ +

βd) > 0, satisfying the condition. Solving for lK , we have

e
− σ2lK
P (βr v̄H R̄v̄+βd) = 1

K and therefore lK = P
σ2 (βrv̄

HR̄v̄ +
βd) logK. Substituting lK for max

k
γk in (12), we obtain

R(K) = max
f(v̄)

Ev̄[log2(1 +
P

σ2
(βrv̄

HR̄v̄ + βd) logK)]. (21)

Consider a deterministic OBF scheme, where v̄ is fixed
over all t. Then (21) can be written as R(K) = log2(1 +
P
σ2 (max

v̄
v̄HUΛUH v̄βR + βd) logK), where UΛUH is the

eigenvalue decomposition of R̄. To solve this maximization,
we first relax the constraint |v̄n| = α as ‖ṽ‖2 = α2N .
The maximum value of ṽHUΛUH ṽ is achieved when ṽ =√
NαuN , where uN is the eigen-vector corresponding to the

maximum eigenvalue λN of R̄. The corresponding v̄ satisfy-
ing |v̄n| = α, ∀n is obtained as the solution of min

v̄
|v̄ − ṽ|2

and is given by (15) [2]. Plugging (15) in (21) yields (14).
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