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Abstract—Intelligent entities such as self-driving vehicles, with
their data being processed by machine learning units (MLU),
are developing into an intertwined part of networks. These units
handle distorted input but their sensitivity to noisy observations
varies for different input attributes. Since blind transport of mas-
sive data burdens the system, identifying and delivering relevant
information to MLUs leads in improved system performance
and efficient resource utilization. Here, we study the integer
bit allocation problem for quantizing multiple correlated sources
providing input of a MLU with a bandwidth constraint.

Unlike conventional distance measures between original and
quantized input attributes, a new Kullback-Leibler divergence
based distortion measure is defined to account for accuracy of
MLU decisions. The proposed criterion is applicable to many
practical cases with no prior knowledge on data statistics and
independent of selected MLU instance. Here, we examine an
inverted pendulum on a cart with a neural network controller
assuming scalar quantization. Simulation results present a sig-
nificant performance gain, particularly for regions with smaller
available bandwidth. Furthermore, the pattern of successful rate
allocations demonstrates higher relevancy of some features for
the MLU and the need to quantize them with higher accuracy.

Index Terms—Bit allocation, distributed quantization, cor-
related multiple source, Kullback-Leibler divergence, relevant
information, machine learning.

I. INTRODUCTION

With increasing number of applications deploying con-

nected devices to perform complicated tasks, machine learning

based units (MLUs) become an integrated part of mobile

networks. Hence, considering functionality of these blocks

in design of communications systems is beneficial in order

to both enhancing system performance and utilizing radio

resources efficiently. MLU input space contains attributes with

different levels of relevance and redundancy regarding the

output. Accordingly, severity of performance loss in response

to corrupted inputs depends on relevancy of the features.

Explaining this behavior is complicated, especially in presence

of dependencies among input variables. To this end, we revisit

the rate allocation problem and suggest an automated way to

determine levels of distortion that MLU can tolerate while

reducing its prediction errors given a bandwidth constraint.

The tradeoff between compression and accuracy is a well-

known dilemma in lossy quantization. Due to the complex-

ity of distributed scenarios, achievable rate distortion (RD)

regions are derived for special cases. These studies can

be categorized into syntax and relevance based solutions.

The syntax based category presents approaches measuring

the distance between source sequences x and their decoded

versions x̂. The RD theory [1], Wyner-Ziv coding and its

network extension [2], [3], quadratic Gaussian multiterminal

source coding (MSC) [4] and MSC for two encoders under
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logarithmic loss [5] belong to this first group. These solutions

provide the basis for establishing reliable human to human

communications. However, exact reconstruction of transmitted

messages is not an optimal criterion when dealing with MLUs

in network. In these cases, achieving a high accuracy on final

outputs y determines the system performance.

In order to consider final machine learning (ML) predictions

in distortion measure, the second relevance based category of

solutions target to compress x while preserving the relevant

information for prediction of y. These methods are also tai-

lored for special cases assuming prior knowledge on statistical

relation among random variables (RVs) or their probability

distributions. Information bottleneck (IB) is a RD function

compressing one RV G in a single encoder-decoder system,

where mutual information between the quantized message and

another variable of interest H is the distortion measure [6], [7].

The objective function of this optimization problem has also

been used for quantization codebook design [8].

Several studies attempted to extend IB for distributed quan-

tization with multiple sources. Multivariate IB introduced in

[9] employs Bayesian networks (BN) for this purpose, where

the optimal assignment form is derived. However, the optimal-

ity of this proposal in terms of determining RD regions is not

discussed, and its cost function has not been used to select

number of clusters in literature. It should also be noted that

BN determination is generally far from trivial for ML tasks.

Authors of [10] characterize the RD region of distributed IB

for discrete and vector Gaussian sources assuming conditional

independence of observations given the main signal of interest

which does not hold in many learning problems.

The Chief Executive Officer (CEO) problem studies the es-

timation of a data sequence using its independently corrupted

versions observed by different agents [11]. These observations

are quantized and communicated to a single decoder. The gen-

eral formulation of CEO can be accounted as relevance based

compression, however, its RD region is only investigated for

special cases which are not applicable for learning paradigms.

The Gaussian CEO [12]–[14] addresses corruptions caused

by additive white Gaussian noise. This simple setup cannot

comply with complicated MLU models. [5] provides the RD

region of <-encoder CEO conveying information regarding

another RV under logarithmic loss. Aside from the specific

distortion measure having an important impact on making

this problem tractable, as in all CEO setups conditional

independence of observed sequences given the original data

is assumed. Considering the mentioned aspects, these CEO

studies have not been evaluated for learning tasks.

In addition, authors of [15] study the problem of 1-bit rate

allocation for localization in wireless sensor networks, while

the proposed cost function accounts for both decoding and

localization error.

http://arxiv.org/abs/2102.05389v2
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Fixed-rate quantization has three main aspects: rate alloca-

tion, codebook design, and assignment of RVs to codewords.

Here, we focus on integer-valued bit allocation for multiple

correlated sources performing scalar uniform quantization

with arbitrary distributions while MLU is treated as a black

box. This includes all non-adaptive ML blocks once trained

and executing tasks online in network, independent of their

hypothesis and learning paradigm such as supervised and

reinforcement learning, e.g., the proposed approach can be

applied on [16], [17] after the convergence. Thus, the provided

solution can be used in a wide variety of real-world scenarios.

In this paper, we propose a criterion using Kullback-Leibler

divergence (KLD) to measure quality of bit allocations. The

KLD approximation is performed and discussed for two non-

parametric approaches: histogram with smoothing and k-

nearest neighbor (kNN). Then performance of the proposed

method is investigated for a cart inverted pendulum with ML

based controller (MLC) which is a shallow neural network

(NN). The results are compared with those of equal bit sharing

and a mean square error (MSE) based approach inspired

by asymptotically optimal integer-valued bit allocation for

Gaussian distributed RVs from [18]. Simulation results show

significant gain in system performance for low bit rate region.

It can also be seen that a lower quantization noise can be

tolerated on two of the features compared to other RVs. 1

This paper is organized as follows. The system model is dis-

cussed in Section II. In Section III, the rate allocation approach

and KLD estimators are introduced. The simulation setup is

elaborated in Section IV, and numerical results are presented

in SectionV. Finally, conclusions are drawn in Section VI.

Notation: Linear-quadratic regulator (LQR) controller ma-

trices K,Q and vectors are typeset boldface. x = [G1, · · · , G# ]
and x̂ = [Ĝ1, · · · , Ĝ# ] are vectors of non-quantized and

quantized MLU input components, and y represents MLU

output. The 8th element of these vectors is denoted with

subscript 8 as in G8 . ?X̂,Y(x̂, y) also shown as ?, stands for the

joint input-output distribution of the MLU assuming a highly

accurate quantization. The joint MLU input-output distribution

for a given bit allocation R = {'8} is shown as @X̂,Y(x̂, y) or

simply @. Data set samples for estimation of KLD are indicated

as z 9 = [x̂ 9 , y 9 ]. Finally, ?̂(z 9 ) and @̂(z 9 ) are distribution

estimations for ?, @ with data set samples.

II. SYSTEM MODEL

A. General Description

As shown in Fig. 1, we study a multiple access channel

scenario in which # memoryless stationary sources provide

real-valued input attributes x for a MLU. In presence of

complex-valued attributes, the real and imaginary parts can

be separated and treated as different RVs. The system perfor-

mance is evaluated in terms of accuracy on predicting MLU

output values y. The scalar uniform quantization with '8 bits

for each symbol is performed on RV of 8th source which is

shown as ?-̂8 |-8
(Ĝ8 |G8). It is assumed that quantized vector

is received error-free at the receiver. Note that application of

1The proposed method has also shown significant gains for other use-
cases including a different setup for the inverted pendulum, indoor environ-
ment classification with real data and a synthetic data set. These simulations
are presented in an extended version of the paper on arXiv.
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Fig. 1. Block diagram of the system model.

the proposed method is not dependent on this assumption. To

remove it, x̂ should be redefined to capture the effect of factors

such as channel coefficient and receiver noise. Here, we seek to

build a system model that can be used in practice. So, with no

further assumptions, input attributes can be highly correlated

and have an arbitrary joint probability density function ?X(x)
with x ∈ X1 × X2 × · · · X# .

Given the available bandwidth � and signal to noise ratio

(SNR) W =
�1

#0�)1
, where �1, )1 and #0 are energy per bit,

bit interval and noise power spectral density, respectively, the

capacity of bandlimited channel is �� = � × log2(1 + W)
bits/sec. Thus, the constraint for allocating bandwidth �8 to 8th

source is
∑

8 �8 ≤ �. Assuming same SNR for all terminals,

W8 = W, and a given symbol interval )B , the constraint becomes∑
8 '8 ≤ 'sum, where '8 = �8 × log2(1 + W) × )B is the

number of bits quantizing each symbol of the 8th terminal, and

'sum = �� × )B bits for each symbol interval. '8 is assumed

to be integer-valued as usual in practical systems. The set of

feasible bit allocations meeting the constraint are shown by R.

To consider different SNR values, the corresponding possible

bit allocations should be added to the feasible set.

In many scenarios, training is performed independent of

communications system design and we are not able to modify

the MLU. Therefore, it is assumed that learning process is

done by non-quantized data and MLU parameters are fixed. In

this case,
∑

8 '8 >> 'sum and the joint probability distribution

on input and output of the MLU is ?X̂,Y (x̂, y) which is also

stated as ?X,Y(x, y) to simplify the notation. This distribution

is considered as the true distribution and is used as reference

to perform comparisons.

Since the MLU model is trained and fixed, and following

Markov chain of the system Y ↔ X ↔ X̂, we can write

@Y |X̂(y|x̂) =
∑

x′∈X# ?Y |X(y|x′)?x |x̂ (x′|x̂) or equivalently,

@Y |X̂(y|x̂) = 1
@X̂ (x̂)

∑
x′∈X# ?X(x′)?X̂ |X (x̂|x′)?Y |X(y|x′), where

?Y |X(y|x′) is the fixed distribution learned by ML, and

distribution of quantized data @X̂(x̂) and conditional

distributions on x and x̂ change for different rate allocations.

In order to compare our results with syntax based solutions,

a typical MSE based approach is considered. The selected bit

allocation using this method is

R∗
= argmin

R∈R

#∑

8=1

f2
8 , (1)

where f2
8

= EG8 {(G8 − Ĝ8)2} is the MSE between 8th input

feature and its quantized version which is calculated by

employing data sets. Expectation is denoted by E{·}.
Equal sharing is another method that we investigate to

provide a comparison baseline. In this case, '8 = ⌊'sum/#⌋
and ⌊·⌋ returns the greatest integer which is equal or less than



3

its input. This choice of '8 complies with our assumption on

no exchange of knowledge among sources and integer-valued

'8. Hence, '8 changes only if remainder of 'sum/# is zero.

B. Inverted Pendulum on Cart
In order to evaluate performance of bit allocations, we

investigate the control problem of inverted pendulum on a

cart. The controller is supposed to move the cart to position

A = 0.2 meter in less than 2 seconds while the pendulum is

in its equilibrium position, i.e., \ = 0, where \ is the angle of

pendulum with respect to vertical axis. The initial deviation

from vertical position is between −0.1 and 0.1 radians while

the pendulum is placed at A = 0. For a given bar length and

mass, steady state equations governing the plant are given by

¤xT
LQR =



0 0 1 0
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5 , (2)

where xLQR = [A, \, ¤A, ¤\], ¤xLQR is its derivative with respect

to time. 2 = (" + <)� + <";2 with " , < and ; being the

cart mass, pendulum mass and length to pendulum center of

mass, respectively. � = <;2/3 stands for the moment of inertia

for bar mass. 6 = 9.8 and 1 = 0.1 (N/m/sec) are assumed as

standard gravity and coefficient of friction for the cart. Finally,

5 is the force applied to the cart in horizontal direction.

To calculate the optimal force, LQR controller with precom-

pensation factor is used for different values of bar length and

mass. The cost function of LQR is
∫

xT
LQR

QxLQR + uT'LQRu,

where u = −KxLQR and K is the matrix of controller

coefficients. Q and 'LQR are controller parameters to balance

the relative importance of error and control effort, e.g., energy

consumption.

The system performance of this problem is evaluated in

terms of steady state errors. The error-bands for cart position

and angle of pendulum are 0.1 meters and 0.01 radians,

respectively. Thus, an error is counted when the deviation from

equilibrium position is outside of these intervals in the last

100 milliseconds, e.g., |\final | > 0.01. Considering steady state

error is a standard way of evaluating controllers in a predefined

period of time. A steady state error can occur while the system

becomes stable after the aforementioned 2 seconds.

III. KULLBACK-LEIBLER DIVERGENCE BASED BIT

ALLOCATION AND ITS ESTIMATION

The goal is to find the bit allocation set R∗ which minimizes

the following cost function

R∗
= argmin

R∈R
�KL

(
?X̂,Y(x̂, y) | |@X̂,Y(x̂, y)

)
, (3)

where �KL(·| |·) is the Kullback-Leibler divergence or relative

entropy measuring dissimilarity between two distributions. R
contains all the rate allocations satisfying

∑#
8=1 '8 ≤ 'sum,

where '8 > 0 is an integer-valued number. To solve this

optimization problem, we estimate the two distributions em-

pirically as explained in the following.

The quality and accuracy of solution provided by (3) is

highly dependent on KLD approximation accuracy. Here, we

estimate ? and @ using non-parametric methods, histogram

with smoothing and kNN. The histogram estimator is a simple

approach with the drawback of having many bins with zero

samples. In addition, number of its required bins increases

exponentially with data dimension. We also consider kNN

estimator to investigate the effect of DKL approximation ac-

curacy on system performance. kNN has been used for mixed

continuous-discrete setups, and a high accuracy for strongly

correlated data is not guaranteed for this estimator [19]. Let

each )1 and )2 be data sets containing � samples {z 9 ; 9 =

1, · · · , �} drawn from distributions ? and @, respectively. The

kNN estimation of ? is

?̂(z 9 ) =
:

�
× 1

E(z 9)
; z 9 ∈ )1, (4)

where E(z 9) =
c3/2

Γ(3/2+1) × 1
'? (z 9 )3 is the volume of a 3-

dimensional ball with radius '? (z 9 ). Γ(·) is the gamma

function and '? (z 9 ) stands for the euclidean distance between

z 9 and its :th neighbor in )1. The :th neighbor of z 9 is the

:th sample in the list of sorted samples of )1 from minimum

to maximum euclidean distance regarding z 9 . 3 is the sum of

# and dimension of ML outputs y. Similarly, an estimate of

@ can be calculated, where '@ (z 9 ) is the euclidean distance

between z 9 ∈ )1 and its :th neighbor in )2. Therefore, the

plugin estimator for KLD of (3) becomes

�KL(? | |@) ≈ Ez

{
log

( ?̂(z 9 )
@̂(z 9 )

)}
. (5)

A well-known difficulty with computing KLD is that to get

a finite value, the support set of true distribution should be

contained in support set of estimated distribution. While this

is reasonable in some applications, it is an extreme condition

for learning problems, particularly since distributions are only

approximated with limited number of samples. Therefore, data

smoothing can be used to overcome the problem. To deal with

this situation, the width of histogram bins are selected to be

larger than that provided by quantization. Thus for each sample

in support set of ?, we assume the existence of at least one

sample when approximating @. In this case, instead of @̂(z 9 ) =
=
�

, where = is the number of samples in histogram bin of z 9 ,

we have
@̂(z 9 ) =

= + U

� + `
, (6)

where ` is the number of bins in support of ? with zero

samples from )2. For = = 0, U = 1 and otherwise, U = 0. It is

worth mentioning that in this rate allocation setup, the relative

KLD values and their order are decisive, not absolute values.

The feasible set of this problem is non-convex due to the

integer-valued bit allocation assumption, however, it contains

a limited number of members. Thus for focusing on impact

of KLD approach and its approximation on MLU output,

estimations of (5) are substituted in (3) for members of R
and a brute-force search finds the optimal solution.

In a high dimensional space, large number of required

samples for meaningful estimations with a simple histogram

can be restrictive. kNN method can circumvent this problem.

The required kNN computations are theoretically expensive

for a large data set. However, the calculations for both KLD

approximations and solving (3) are performed only once and

offline. Once the bit allocations are determined for different

bandwidth constraints, one of them is picked for quantization

according to the available bandwidth. Therefore, dealing with

these computations is feasible in practice without affecting

applicability of the proposed approach.
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IV. SIMULATION SETUP

A. Training the MLC

As the MLC, we train a fully-connected shallow NN with

70 neurons. The input features for MLC are mass and length of

the bar pendulum, position A, velocity E = ¤A, angular position \

and angular velocity @ = ¤\, implying an input layer dimension

of 6. Hence, x = [<, ;, A, \, E, @], where values of < and ;

can be selected from the ranges 0.1 to 2 kg and 20 to 50 cm,

respectively. In addition, the output of MLC H is the horizontal

force applied to the cart which is shown as 5 in (2). The NN

is trained with a data set generated using LQR controllers

for different random values of bar mass and length, with the

following parameters: " = 0.5 kg, 'LQR = 0.1 and Q is

a 4 × 4 matrix with zero entries except for the first and third

diagonal elements being 5000 and 100, respectively. The LQR

parameters are selected based on a trial and error procedure

as elaborated in [20]. The sampling time is 0.01 seconds. The

training and test set contain 600 and 200 sequences, each of

length 200, respectively. Validation ratio is 1
3

2.

Here, we deal with a regression problem. Sigmoid and

linear activation functions are used in hidden and output

layer, respectively. MSE is the loss function for training and

NN weights are initialized with Xavier uniform initializer.

Batch gradient descent with batch size of 1000 is the search

algorithm. Furthermore, the learning rate is 0.01 with no decay

factor. Stop condition is getting no improvement in validation

loss for 50 epochs which occurred after 641 epochs. The final

MSE achieved on the test set is ≈ 0.23.

B. KLD Estimation and Rate Allocation

We use the MLC to generate data sets for estimation of

KLD. For the uniform quantization, minimum and maximum

values of each RV is taken from )1. Since < and ; are not

expected to change frequently, we assume that their values

are transmitted with 10 bits for each feature when needed.

Members of R are selected to satisfy 3 ≤ '8 ≤ 9 and
∑

8 '8 =

'sum, where we have 'sum − 20 bits to quantize the last four

attributes of vector x described in IV. This interval choice both

limits the search space and is sufficiently large considering the

range of RVs in this problem. For estimating ? and @, 40000

samples and the typical value of : =

√
� = 200 are used.

As explained in section II, we assume ?X(x) is fixed which

is the case for many non-adaptive learning problems. Thus,

data set )2 can be constructed directly from )1 by simply

quantizing its input samples for a given rate allocation and

feeding them into the MLU to compute corresponding outputs.

This procedure reduces computations significantly, because the

alternative is to run simulations for pendulum environment to

build a data set for each bit allocation.

On the other hand, for the specific problem of inverted

pendulum, very low quality quantization results in force deci-

sions with large distance from the true ones. And after feeding

back these force decisions to the plant, ?X(x) starts to diverge

from the assumed distribution and consequently, )1 must be

2The proposed approach attempts to preserve the performance level of
the given fixed MLU. Thus, common learning challenges such as having
a limited number of training samples can only worsen the induced MLU
performance which persists even in case of delivering nonquantized data. But
such degradation is caused by the MLU itself and not the selected quantization.
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Fig. 2. Steady state error probability in percentage vs. 'sum the total number
of quantization bits used in a symbol interval.

updated. In order to avoid this difficulty, distribution on x is

estimated for different sum rate constraints and bit allocations.

Then, KLD between distribution of these allocations and the

true distribution ?X(x) is calculated. These KLD estimations

show a small value for 'sum ≥ 42. Therefore, it is a valid

assumption that ?X(x) is almost fixed for sum rate constraints

larger than 42 bits.
V. NUMERICAL RESULT

In this section, the step response of cart inverted pendulum

is monitored for 10000 iterations while each iteration simulates

a period of 2 seconds. The steady state error probability %e

with confidence intervals derived by Wald method vs. total

number of quantization bits used in a symbol interval 'sum is

depicted in Fig. 2. Simulations are performed for the proposed

KLD based approach with histogram and kNN estimation,

equal bit sharing and MSE based rate allocation of (1). The

proposed method with histogram estimation outperforms other

techniques for all sum rate constraints, and indicates a gain

of 2 bits in achieving %e < 0.001 at 47 bits with respect to

equal sharing and MSE methods. It should be noted that this

single inverted pendulum scenario is a sandbox, and the gains

and rate of the communication scheme in a real environment

with signal overheads and more devices increases rapidly.

Particularly, the KLD with histogram picks a significantly

better bit allocation for low sum rate values. For instance,

if 42 bits can be assigned for the system, error probability for

both eqaul sharing and MSE are larger than 40%. This number

can be reduced to ≈ 10% implying a reduction of more than

30% in failures using the KLD. This huge gain is a result of

taking ML output into consideration.

In order to study the distribution of quantization noise and

its pattern when a low error probability is achieved, consider

the KLD approach with histogram at 46 bits and %e ≈ 0.005.

With this constraint, the number of allocated bits for features

of x are [10, 10, 6, 6, 6, 8]. Assuming that quantization error

variance is defined as f2
8
= E{(G8 − Ĝ8)2} for each feature,

we have f2
3
≈ f2

4
of order of 10−6. However for E and @,

quantization variances are f2
5

≈ 0.0003 and f2
6

≈ 0.0001

which are almost 100 times larger than that of A and \. This

pattern of having lower quantization noise for \ and A remains

the same for bit allocations which turn out to provide low

probabilities of error. Therefore, it can be concluded that these

features have a higher relevancy or importance for the MLU.
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For 'sum ≤ 46, rate allocations selected by MSE criterion

result in the worst steady state error performance among all

the methods under study. This performance gap is larger at

lower sum rate values, e.g., a loss of 37.4% and 32.7% at

'sum = 43 regarding the KLD with histogram and kNN,

respectively. Furthermore, MSE based technique shows a huge

improvement from 'sum = 44 to 45 bits. The reason lies behind

the range from which input features take their values, and the

fact that MSE is calculated independent of MLC output. In

this setup, E and @ values are picked from intervals which are

almost 9 and 21 times bigger than those of \ and A. Therefore

at the beginning, the syntax based MSE allocates more bits

for @ and E, although high accuracy on these less relevant

RVs doesn’t improve the force decision. The first significant

enhancement only occurs when f2
5

and f2
6

are small enough,

so, extra bits are used for \. Thus, a change from 4 to 5 in

number of bits for \ when 'sum = 44 becomes 45 bits leads

to a decrease of ≈ 35.7% in probability of error. The second

decrease is also a consequence of allocating 5 bits instead of

4 bits for A when moving from 'sum = 46 to 47.

Equal sharing outperforms the MSE results given that

'sum ≤ 46, e.g., %e ≈ 42.5% instead of ≈ 43.5% for 43

bits. As stated before, the rate allocation provided by this

method remains the same, unless sum rate is divisible by 4

which explains improvements at 44 and 48 bits. This method

provides better results than KLD with kNN for the constraint

of 44 which can be interpreted as a lucky situation for this

approach. With 44 bits, equal sharing allocates 6 bits for each

of A, \, E and @. This indicates less quantization noise for

more relevant RVs \ and A which only happens because of

their smaller intervals in this specific pendulum scenario. On

the other hand, KLD with kNN is not capable of following

distributions accurately and settles for a worse bit allocation

with ≈ 3% more failures than that of equal sharing.

As expected, changing histogram estimator to kNN degrades

the performance since kNN is not capable of providing a

highly accurate estimation of KLD, particularly for the system

under investigation with highly correlated variables. However,

it still offers less number of errors compared with the MSE

approach for 'sum ≤ 46. For the constraint with 42 bits, it

achieves a gain of 27% and 25.8% in comparison to MSE

and equal bit sharing methods but the selected rate allocation

causes ≈ 6.5% higher error probability with respect to the

KLD with histogram estimator. KLD with kNN also provides

a better or equivalent performance regarding equal sharing for

most points, except for 'sum = 44 which was discussed.

As shown by the numerical results, using the relevance

based KLD approach with histogram is more beneficial in

terms of fulfilling the requirements imposed by ML func-

tionalities in a bandwidth limited system. In operation points

with high probability of stability, the quantization noise on

angle and position are much smaller than other features

which indicates they have a higher level of relevance for the

MLU. This knowledge can be used in case of having limited

resources for providing a best-effort performance.

VI. CONCLUSION

Since intelligent elements governed by ML become an inte-

grated part of communications networks, we introduced a KLD

based rate allocation for quantization of multiple correlated

sources delivering input of a MLU. Simulation results show

that the proposed method provides promising gains in system

performance of a cart inverted pendulum problem, particularly

for more restricted bandwidth constraints. It should be noted

that the final outcome is use-case dependent and more im-

portantly, it highly relies on KLD estimation accuracy. These

observations motivate the shift from syntax to relevance based

designs which operate in accordance with MLU requirements

considering rate and resource limitations. Some potential prob-

lems to be addressed in future are to introduce low complexity

methods for dealing with instantaneous fluctuations in channel

quality, and studying of iterative algorithms to improve the

overall system performance by targeting the combination of

codebook design, assignment and bit allocation.
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IMPACT OF BIT ALLOCATION STRATEGIES ON MACHINE

LEARNING PERFORMANCE IN RATE LIMITED SYSTEMS,

EXTENSION

In the following, we provide the numerical results for

other scenarios covering different MLUs, regression and clas-

sification, and real- and complex-valued attributes. All the

considered simulations show significant gains when using the

proposed KLD method, demonstrating its power and benefits

when used in rate limited systems. This is also theoretically

expected because the conventional methods like MSE do not

take the final MLU decision into consideration. The afore-

mentioned problems are listed below and their description and

simulation results are provided afterwards.

(i) Moon data set

(ii) Inverted pendulum with different setup

(iii) 2.4 GHz indoor environment classification with vector

quantization

(i) Moon Data Set

The moon data set is presented in scikit-learn to perform

classification tasks (Figure 3). The data set and more details

are available in [21], [22]. Assuming 2 ≤ '8 ≤ 7 to determine

the feasible set R, we get the results shown in Table I.

(ii) Inverted Pendulum with Different Setup

In the manuscript, it is assumed that bar mass and length do

not change frequently and thus, quantized with high accuracy

(10 bits). Here, we assume the rest of RVs are quantized with

high accuracy and the bit allocation is performed on bar mass

and length: <, ;.

R is defined for 1 ≤ '8 ≤ 7 and 'sum = 5. The simulation

results are shown in Table II. As it can be seen, the KLD

approach picks a bit allocation which results in achieving

zero steady state errors. For the same case, MSE picks a bit

allocation to decrease the quantization noise on < which has a

larger interval, however the controller sensitivity to changes in

; is higher. Hence, the MSE selection results in a degradation

of 16.2% in performance. Equal sharing allocates 2 bits instead

of just 1 bit for ; and thus, the performance loss becomes 1.6%.

For 'sum > 5, %4 = 0 for both KLD and MSE methods. As

mentioned in the manuscript, the method shows high gains for

systems with limited resources.

Input data

.90

Neural Network

Fig. 3. Moon data set and NN Classifier with non-quantized data.

Selected bit allocation Classification Accuracy (%)

The proposed KLD 4, 3 bits 92.5

MSE (benchmark) 7, 7 bits 90

TABLE I
MOON DATA SET RESULTS. BRIEF CONCLUSION: THE PROPOSED KLD

SELECTS A BIT ALLOCATION THAT RESULTS IN BOTH 2.5% GAIN IN

CLASSIFICATION ACCURACY AND 50% GAIN IN NUMBER OF USED BITS

COMPARING WITH THE BIT ALLOCATION SELECTED BY MSE.

Selected bit allocation
Steady state error
probability (%)

The proposed KLD 2, 3 bits 0

MSE (benchmark) 4, 1 bits 16.2

Equal Sharing (benchmark) 2, 2 bits 1.6

TABLE II
RESULTS FOR SIMULATIONS WITH DIFFERENT INVERTED PENDULUM

SETUP, QUANTIZING BAR MASS AND LENGTH. BRIEF CONCLUSION: FOR

'sum ≤ 5, THE PROPOSED KLD ACHIEVES THE BEST PERFORMANCE

OF %4= 0, INDICATING A GAIN OF ≈ 16% AND 1.6% COMPARING WITH

MSE AND EQUAL SHARING METHODS.

'sum The proposed KLD
MSE

(benchmark)
Equal sharing
(benchmark)

10 bits 69 % 59 % 63 %

14 bits 82.8 % 77.7% 78 %

TABLE III
CLASSIFICATION ACCURACY (%) FOR 2.4 GHZ INDOOR ENVIRONMENT

CLASSIFICATION WITH NN AND VECTOR QUANTIZATION.
BRIEF CONCLUSION: THE PROPOSED KLD DELIVERS THE HIGHEST

CLASSIFICATION ACCURACY FOR DIFFERENT CONSTRAINTS ON TOTAL

NUMBER OF USED BITS, SHOWING A GAIN OF AT LEAST ≈ 5% TO 10%
COMPARING WITH OTHER METHODS.

(iv) 2.4 GHz Indoor Environment Classification with Vec-

tor Quantization

The 2.4 GHz indoor environment classification data set is

available in [23], [24]. Here, we assume that channel transfer

function (CTF) and frequency coherence function (FCF) at-

tributes are transmitted to the MLU from two terminals. Each

of the CTF and FCF vectors have 601 complex-valued thus,

1202 real-valued attributes. For more details, see [25].

In this part, we apply kmeans as quantization on CTF and

FCF vectors . The simulation results for 4 ≤ '8 ≤ 8 are shown

in Table III. It can again be observed that the proposed KLD

method provides the best classification performance, e.g.,

10% and 7% gain compared to MSE and equal sharing for

'sum = 10, respectively.

https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html
https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html
https://archive.ics.uci.edu/ml/datasets/2.4+GHZ+Indoor+Channel+Measurements
https://archive.ics.uci.edu/ml/datasets/2.4+GHZ+Indoor+Channel+Measurements
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