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Abstract—Reconfigurable intelligent surfaces (RISs) are an
emerging technology for enhancing the performance of wireless
networks at a low and affordable cost, complexity, and power
consumption. We introduce an algorithm for optimizing a single-
input single-output RIS-assisted system in which the RIS is
modeled by using an electromagnetic-compliant framework based
on mutual impedances. More precisely, we provide the following
new contributions: (i) in the absence of mutual coupling among
the scattering elements of the RIS, we derive a closed-form
expression for the optimal tunable impedances, which inherently
accounts for the interplay between the amplitude and phase of
the lumped loads of the RIS; and (ii) in the presence of mutual
coupling, we introduce an iterative algorithm for optimizing the
tunable impedances of the RIS. The algorithm is proved to
be convergent by showing that the objective function is non-
decreasing and upper bounded. Numerical results reveal that
the mutual coupling among the scattering elements of the RIS
significantly affects the end-to-end signal-to-noise ratio (SNR) if
the inter-distance is less than half of the wavelength. If the RIS is
optimized by explicitly taking into account the impact of mutual
coupling, a better end-to-end SNR is obtained.

Index Terms—Reconfigurable intelligent surfaces, mutual
impedances, mutual coupling, optimization.

I. INTRODUCTION

A reconfigurable intelligent surface (RIS) is an emerging

technology that enables the control of the electromagnetic

waves at a reduced cost, power consumption, and hardware

complexity [1]. In general terms, an RIS can be viewed as

a thin sheet of electromagnetic material, which is made of

a large number of nearly-passive scattering elements that are

controlled via low cost and low power electronic circuits. By

appropriately configuring the electronic circuits, different wave

transformations can be applied. Recent research works have

shown that RISs whose geometric size is sufficiently large are

capable of outperforming other technologies, e.g., relays, at a

reduced hardware and signal processing complexity [2], and

are capable of enhancing the reliability of wireless links by

reducing the fading severity [3]. In addition, the achievable

performance of RIS-assisted systems has been proved to be

robust to various hardware impairments, e.g., the phase noise,

which may further reduce the implementation cost [4].

In order to quantify the performance gains offered by RISs

in wireless networks, realistic communication models need to

be employed, see, e.g., [5] and [6]. The authors of [6], in par-

ticular, have recently introduced an end-to-end communication

model for RIS-assisted systems that accounts for the mutual

coupling among the closely spaced scattering elements of the
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RIS, and for the circuits of the electronic components that are

used for making the RIS reconfigurable. The communication

model proposed in [6] is derived by departing from Maxwell’s

equations and leverages a general framework based on self

and mutual impedances. More precisely, an RIS is modeled

as an array of passive scattering elements driven by low

power tunable lumped impedances, which can be appropriately

optimized to control the scattered electromagnetic waves.

By capitalizing on the impedance-based communication

model in [6], we introduce an analytical and numerical frame-

work for optimizing the tunable lumped impedances of an

RIS, so as to maximize the end-to-end signal-to-noise ratio

(SNR). In particular, we focus our attention on a single-input

single-output RIS-assisted system and provide the following

contributions: (i) in the absence of mutual coupling among

the scattering elements of the RIS, we derive a closed-form

expression for the optimal tunable lumped impedances, which

inherently accounts for the interplay between their ampli-

tude and phase response; and (ii) in the presence of mutual

coupling, we introduce an iterative algorithm for optimizing

the tunable lumped impedances. The algorithm is shown to

be convergent by proving that the objective function is non-

decreasing and upper bounded. Numerical results reveal that

the mutual coupling among the scattering elements of the RIS

significantly affects the end-to-end SNR if they are spaced

less than half of the wavelength apart. If the RIS is optimized

by explicitly taking into account the mutual coupling, a better

end-to-end SNR is attained.

The rest of this paper is organized as follows. In Section II,

the system model and the problem statement are introduced.

In Sections III and IV, the optimization frameworks in the

absence and in the presence of mutual coupling are presented,

respectively. In Section V, numerical results are illustrated and

discussed. Finally, Section VI concludes this paper.

Notation: Vectors and matrices are denoted in bold font;

j =
√
−1 denotes the imaginary unit; Re(a) and Im(a)

denote the real and imaginary parts of the complex number

a, respectively; |a| and ∠a denote the absolute value and the

phase of the complex number a, respectively; AH denotes the

Hermitian of matrix A; wπ (θ) is the function that wraps the

angle θ, expressed in radians, to the interval [−π,+π]; 0N×N

denotes an N × N matrix whose entries are all zero; IN×N

denotes an N ×N identity matrix; ‖A‖ denotes the spectral

norm of A that is equal to the largest eigenvalue of AHA.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider an RIS-assisted wireless system that comprises

a single-antenna transmitter, a single-antenna receiver, and an
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RIS that is made of NRIS = M × M scattering elements

arranged on a square array. The locations of the transmitter

t, the receiver r, and the ith passive scatterer of the RIS

are denoted by rξ = xξx̂ + yξŷ + zξẑ for ξ = {t, r, i}.

According to [6], we assume that the transmit antenna, the

receive antenna, and the scattering elements of the RIS can

be modeled as cylindrical thin wires of perfectly conducting

material, whose length is l and whose radius a ≪ l is finite

but negligible with respect to l (thin wire regime). The inter-

distance between adjacent scattering elements of the RIS is

denoted by d. Since the transmitter, the receiver, and the RIS

may have different implementation requirements, we consider

distinct pairs (lξ, aξ). All thin wires are assumed to be parallel

to each other and to be co-polarized, as shown in [6, Fig. 1].

Each scattering element of the RIS is connected to a lumped

load impedance, which can be optimized in order to appropri-

ately shape the propagation of the electromagnetic waves. The

NRIS tunable impedances are collected in the NRIS × NRIS

diagonal matrix ZRIS, whose ith diagonal element is denoted

by ZRIS(i, i). In particular, Re (ZRIS (i, i)) = R0 ≥ 0, for

i = 1, 2, . . . , NRIS, denotes the resistance of each lumped

load. The resistance R0 accounts for the internal losses of

the tuning circuits and is assumed to be fixed. On the other

hand, the reactance Im (ZRIS (i, i)) is an arbitrary real number

that can be appropriately optimized for system optimization.

By assuming that the transmitter and the receiver are in the

far-field of each other and of the RIS, the end-to-end channel

of the considered RIS-assisted system can be formulated as:

HE2E = Y0(ZRT − zRS(ZSS + ZRIS)
−1zST) (1)

where Y0 is a complex constant that accounts for the internal

impedance of the voltage generator at the transmitter, the load

impedance at the receiver, the self impedances of the transmit

and receive antennas; ZRT is the mutual impedance between

the transmitter and the receiver; zST is the NRIS × 1 vector

of mutual impedances between the transmit antenna and the

reconfigurable elements of the RIS; zST is the 1×NRIS vector

of mutual impedances between the reconfigurable elements

of the RIS and the receive antenna; and ZSS is the NRIS ×
NRIS matrix of self and mutual impedances between pairs of

reconfigurable elements of the RIS. The mutual impedances

can be computed by using [6, Lemma 2], and they only depend

on the geometry of the considered thin wire antennas.

In this paper, we are interested in optimizing the diagonal

matrix of tunable impedances ZRIS in order to maximize the

intensity of the voltage measured at the port of the receiver.

Based on the end-to-end channel in (1), the corresponding

optimization problem can be formulated as follows:

P : max
ZRIS

|ZRT − zRS(ZSS + ZRIS)
−1zST| (2a)

subject to Re(ZRIS(i, i)) = R0 ≥ 0 (2b)

Im(ZRIS(i, i)) ∈ R (2c)

In the following two sections, we solve P under the assump-

tion that the mutual coupling among the scattering elements

of the RIS can be ignored and cannot be ignored, respectively.

III. OPTIMIZATION – NO MUTUAL COUPLING

In this section, we assume that no mutual coupling among

the scattering elements of the RIS exists. Therefore, ZSS is a

diagonal matrix and (1) simplifies to:

HE2E = Y0

(
ZRT −

NRIS∑

i=1

zST(i)zRS(i)

ZSS(i, i) + ZRIS(i, i)

)
(3)

In the considered system model, the NRIS scattering ele-

ments of the RIS are identical. Therefore, ZSS (i, i) = XSS +
jYSS for i = 1, 2, . . . , NRIS. For ease of writing, we introduce

the notation ZRIS(i, i) + ZSS(i, i) = xi + jyi, where:

xi = Re (ZRIS (i, i) + ZSS (i, i)) = R0 +XSS (4)

yi = Im (ZRIS (i, i) + ZSS (i, i)) = Im (ZRIS (i, i)) + YSS

Therefore, we obtain:

1

xi + jyi
=

xi − jyi
x2
i + y2i

= ρi exp (jθi) (5)

where:

tan (θi) = − yi
xi

, ρi =
1√

x2
i + y2i

=
|1 + exp (j2θi)|

2 |xi|
(6)

Since the phase of 1 + exp (j2θi) is equal to θi, i.e.,

∠ (1 + exp (j2θi)) = θi, we have 1 + exp (j2θi) =
|1 + exp (j2θi)| exp (jθi). From (4)-(6), therefore, we obtain:

1

xi + jyi
= ρi exp (jθi) =

1 + exp (j2θi)

2 |xi|
(7)

Remark 1: It is worth mentioning that φi = 2θi ∈ [−π, π)
for any values of XSS, since the reactance YSS can be positive

and negative. If XSS ≥ 0, in particular, we have xi ≥ 0, which

implies θi ∈ [−π/2, π/2) and φi ∈ [−π, π).
With the aid of (3) and (7), P can be reformulated as:

PNC : max
θi

i=1,2,...,NRIS

∣∣∣∣∣b−
NRIS∑

i=1

ai exp (j2θi)

∣∣∣∣∣ (8a)

subject to 2θi ∈ [−π, π) , i = 1, 2, . . . , NRIS (8b)

where the following definitions hold:

ai =
zST (i) zRS (i)

2 |R0 +XSS|
, b = ZRT −

NRIS∑

i=1

ai (9)

Let θ∗i for i = 1, 2, . . . , NRIS be the solution of PNC. The

optimal tunable impedance of the ith element of the RIS is:

Z∗
RIS (i, i) =

2 |R0 +XSS|
1 + exp (j2θ∗i )

− ZSS (i, i) (10)

The optimal phase shifts θ∗i for i = 1, 2, . . . , NRIS in (8a)

are given in the following theorem.

Theorem 1: The global maximizer of PNC is:

2θ∗i = wπ(∠b− ∠ai ± π) (11)

Also, the corresponding intensity of the end-to-end channel

HE2E is the following:

|HE2E| = |Y0|
∣∣∣∣∣|b|+

NRIS∑

i=1

|ai|
∣∣∣∣∣ (12)
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Proof: Define the objective function F (θ), where θ is

the vector of phase shifts to be optimized:

F (θ) =

∣∣∣∣∣b−
NRIS∑

i=1

ai exp (j2θi)

∣∣∣∣∣ (13)

The stationary points of F (θ) correspond to the solution of

the set of equations ∂F (θ)/∂θi = 0 for i = 1, 2, . . . , NRIS,

which can be formulated as follows:

|bai| sin (χi)−
NRIS∑

k 6=i=1

|aiak| sin (χi − χk) = 0 (14)

where χi = ∠β − ∠ai − 2θi for i = 1, 2, . . . , NRIS.

The zeros of (14) are χi = 0 and χi = ±π for i =
1, 2, . . . , NRIS. The proof follows by noting that F (θ) attains

its maximum if χi = ±π for i = 1, 2, . . . , NRIS. This can be

proved by applying the triangle inequality:

F (θ) =

∣∣∣∣∣b−
NRIS∑

i=1

ai exp (j2θi)

∣∣∣∣∣ ≤ |b|+
NRIS∑

i=1

|ai| (15)

where the upper bound is attained by setting β−∠ai− 2θi =
±π for i = 1, 2, . . . , NRIS. This completes the proof.

Remark 2: The optimization of the impedance-based end-

to-end channel model for RIS-assisted systems is different

from the usual optimization of single-input single-output RIS-

assisted systems, e.g., [3] and [7]. More precisely, by direct

inspection of (10), we observe that: (i) the amplitude and the

phase of the tunable load impedances are not independent of

each other; and (ii) the internal losses (through R0) of the

tunable circuits are explicitly taken into account along with the

self impedance of the radiating scattering elements (through

ZSS). These two remarks are similar to those made in [5] for a

different circuit model of the RIS. In contrast to [5], Theorem

1 yields the closed-form and globally optimal expression of the

tunable impedances that maximize the end-to-end SNR. This

is a major positive aspect of the considered impedance-based

model for RIS-assisted communications.

Remark 3: By direct inspection of (15), we evince that,

in the far-field regime, the SNR of an optimized RIS scales

with the square of the number of reconfigurable scattering

elements, i.e., SNR ∝ |F (θ)|2 ∝ N2
RIS. This is in agreement

with conventional models for RIS-assisted communications,

e.g., [3] and [7]. In addition, the SNR of the signal scattered

by an RIS scales with the reciprocal of the product of the

square of the transmission distances between the transmitter

and the mid-point of the RIS, and the mid-point of the RIS

and the receiver. This is similar to [8] and [9].

IV. OPTIMIZATION – MUTUAL COUPLING

In this section, we analyze the general setup in which the

mutual coupling among the reconfigurable elements of the RIS

cannot be ignored. In this case, the off-diagonal elements of

ZSS are not negligible, and ZSS can not be approximated to

be a diagonal matrix. Compared with the case study in the

absence of mutual coupling, solving P entails the inversion

of ZSS + ZRIS, i.e., the computation of (ZSS + ZRIS)
−1

.

To circumvent this issue, we propose an iterative, provably

Algorithm 1 Proposed optimization algorithm

1: initialization: Z
(1)
RIS = ZNC

RIS, Z
(1)
D = 0NRIS×NRIS

2: for k = 1 : 1 : K
3: Solve P(k)

D to obtain Z
(k)∗
D

4: Update Z
(k)
RIS as in (17)

5: end

6: return Z
(K)
RIS

convergent, algorithm that capitalizes on the optimal solution

obtained in the absence of mutual coupling.

The proposed algorithm is reported in Algorithm 1. The

following notation is used: (i) Z
(k)
RIS denotes the value of ZRIS

at the kth iteration; (ii) ZNC
RIS is the optimal matrix of tunable

impedances of the RIS in the absence of mutual coupling.

ZNC
RIS is obtained from (10) by considering only the diagonal

elements of ZSS; and (iii) ZD is an NRIS ×NRIS diagonal

matrix that is introduced for convenience of optimization.

More specifically, ZD can be thought of as a small perturbation

that is optimized, through iterative small increments, in lieu of

ZRIS. At each iteration of Algorithm 1, the optimal ZD , i.e.,

Z∗
D, is obtained as the solution of the optimization problem:

P(k)
D : max

Z
(k)
D

∣∣∣ZRT − zRS(ZSS + Z
(k)
RIS + Z

(k)
D )−1zST

∣∣∣ (16a)

s. t. Z
(k)
D (i, i) = δ exp(jθi), i = 1, 2, . . . , NRIS (16b)

where δ ≪ 1 is the absolute value of each diagonal element

of ZD and θi is the phase of the ith diagonal element.

Once Z
(k)∗
D at the kth iteration is obtained by solving P(k)

D ,

the matrix of tunable impedances of the RIS at the (k + 1)th
iteration is updated as follows:

Z
(k+1)
RIS = Z

(k)
RIS + jIm

(
Z
(k)∗
D

)
(17)

It is worth noting that only the imaginary part of Z
(k)∗
D is

used for updating Z
(k+1)
RIS , in order to ensure that the real part

of each element of ZRIS is equal to R0 (as required in P).

In the following two subsections, we introduce an efficient

solution for solving P(k)
D , provide guidelines on the choice of

δ, as well as prove that Algorithm 1 is convergent.

A. Solution of P(k)
D

In order to efficiently solve P(k)
D and to avoid the calculation

of the inverse of a non-diagonal matrix, we leverage the

Neuman series approximation for the inverse of matrices [10].

For ease of notation, we define Gk = ZSS + Z
(k)
RIS. Under

the considered case of interest in which Gk is invertible, the

application of the Neuman series yields the following:

(Gk + Z
(k)
D )−1 =

[
Gk(INRIS×NRIS +G−1

k Z
(k)
D )
]−1

=
[
INRIS×NRIS − (−G−1

k Z
(k)
D )
]−1

G−1
k

=

+∞∑

n=0

(−G−1
k Z

(k)
D )nG−1

k

(a)
≈ G−1

k −G−1
k Z

(k)
D G−1

k (18)

where (a) is obtained by retaining the first two terms (n = 0
and n = 1) of the Neuman series representation.
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Since only two terms of the Neuman series are used

in (18), it is necessary to ensure that the obtained ap-

proximation is sufficiently accurate at each iteration step.

To this end, an appropriate choice for δ is needed. Let

Γ =
[
INRIS×NRIS − (−G−1

k Z
(k)
D )
]−1

and Γ̂ = INRIS×NRIS −
G−1

k Z
(k)
D be the exact matrix that needs to be inverted and its

approximation obtained from the Neuman series. From [10,

Eq. (4.17)], the norm of the error is upper bounded as follows:

‖Γ− Γ̂‖ ≤ ‖(G−1
k Z

(k)
D )‖2

1− ‖G−1
k Z

(k)
D ‖

(19)

Therefore, a sufficient condition for the approximation error

to be small is ‖Γ− Γ̂‖ ≪ 1, which yields ‖G−1
k Z

(k)
D ‖ ≪ 1.

Since ‖G−1
k Z

(k)
D ‖ ≤ ‖G−1

k ‖‖Z(k)
D ‖ ≤ ‖G−1

k ‖δ, we obtain

the sufficient condition δ ≪ 1/‖G−1
k ‖. This implies that the

two-term Neuman series approximation in (18) is sufficiently

accurate provided that the absolute value δ is sufficiently small

at each iteration of Algorithm 1.

By leveraging the Neuman series approximation in (18), the

optimization problem P(k)
D can reformulated as follows:

P̃(k)
D : max

Z
(k)
D

∣∣∣b(k) + p(k)Z
(k)
D q(k)

∣∣∣ (20a)

s. t. Z
(k)
D (i, i) = δ exp(jθi), i = 1, 2, . . . , NRIS (20b)

where the following definitions are introduced:

b(k) = ZRT − zRS

(
ZSS + Z

(k)
RIS

)−1

zST (21)

p(k) = zRS

(
ZSS + Z

(k)
RIS

)−1

(22)

q(k) =
(
ZSS + Z

(k)
RIS

)−1

zST (23)

The following theorem yields the optimal solution of P̃(k)
D .

Theorem 2: The global maximizer of P̃(k)
D is as follows

(for i = 1, 2, . . . , NRIS):

Z
(k)∗
D (i, i) = δ exp

(
jwπ

(
∠b(k) − ∠p(k) (i)− ∠q(k) (i)

))

(24)

Proof: The proof follows by using the same steps as for

the proof of Theorem 1 for computing the optimal θi.

B. Convergence of Algorithm 1

Armed with Theorem 2, we analyze the convergence of

Algorithm 1. For ease of writing, we introduce the notation:

L
(
Z
(k)
RIS,Z

(k)∗
D

)
=
∣∣∣b(k) + p(k)

(
jIm

(
Z
(k)∗
D

))
q(k)

∣∣∣ (25)

which is the objective function of P̃(k)
D , at the kth iteration

of Algorithm 1, that is evaluated at Z
(k)∗
D in (24). In (25), in

particular, we consider only the imaginary part of Z
(k)∗
D , since

it determines the objective function according to (17).

The main result about the convergence of Algorithm 1 is

stated in the following proposition.

Proposition 1: The objective function of P̃(k)
D at the kth

iteration of Algorithm 1, i.e., L
(
Z
(k)
RIS,Z

(k)∗
D

)
in (25), is

a non-decreasing function of Z
(k)∗
D and is upper bounded.

Therefore, Algorithm 1 is convergent.

Proof: To prove that L
(
Z
(k)
RIS,Z

(k)∗
D

)
is non-decreasing,

we need to prove L
(
Z
(k)
RIS,Z

(k)∗
D

)
≤ L

(
Z
(k+1)
RIS ,Z

(k+1)∗
D

)
.

To this end, we have the following two results:

L
(
Z
(k+1)
RIS ,0NRIS×NRIS

)
=
∣∣∣b(k+1)

∣∣∣ (26)

(a)
=

∣∣∣∣ZRT − zRS

(
ZSS + Z

(k+1)
RIS

)−1

zST

∣∣∣∣ (27)

(b)
=

∣∣∣∣ZRT − zRS

(
ZSS + Z

(k)
RIS + jIm

(
Z
(k)∗
D

))−1

zST

∣∣∣∣ (28)

(c)
≈
∣∣∣b(k) + p(k)

(
jIm

(
Z
(k)∗
D

))
q(k)

∣∣∣ (29)

= L
(
Z
(k)
RIS,Z

(k)∗
D

)
(30)

L
(
Z
(k+1)
RIS ,Z

(k+1)∗
D

)
(31)

=
∣∣∣b(k+1) + p(k+1)

(
jIm

(
Z
(k+1)∗
D

))
q(k+1)

∣∣∣ (32)

(d)
=

∣∣∣∣∣b
(k+1) + jδ

NRIS∑

i=1

a
(k+1)
i sin

(
θ
(k+1)
i

)∣∣∣∣∣ (33)

=

∣∣∣∣∣
∣∣∣b(k+1)

∣∣∣+ jδ

NRIS∑

i=1

∣∣∣a(k+1)
i

∣∣∣ e−jθ
(k+1)
i sin

(
θ
(k+1)
i

)∣∣∣∣∣ (34)

(e)
=
∣∣∣
∣∣∣b(k+1)

∣∣∣+X(k+1) + jY (k+1)
∣∣∣ (35)

(f)

≥
∣∣∣b(k+1)

∣∣∣ = L
(
Z
(k+1)
RIS ,0NRIS×NRIS

)
(36)

where (a) follows by definition of b(k); (b) follows from (17);

(c) follows by applying the Neuman series approximation; (d)

follows by using the notation a
(k+1)
i = p(k+1) (i)q(k+1) (i)

and θ
(k+1)
i = wπ

(
∠b(k+1) − ∠p(k+1) (i)− ∠q(k+1) (i)

)
;

(e) follows by introducing the notation X(k+1) =

δ
∑NRIS

i=1

∣∣∣a(k+1)
i

∣∣∣ sin2
(
θ
(k+1)
i

)
and Y (k+1) =

δ
∑NRIS

i=1

∣∣∣a(k+1)
i

∣∣∣ sin
(
θ
(k+1)
i

)
cos
(
θ
(k+1)
i

)
; and (f) follows

because X(k+1) ≥ 0 based on its definition.

Therefore, we eventually obtain L
(
Z
(k+1)
RIS ,Z

(k+1)∗
D

)
≥

L
(
Z
(k+1)
RIS ,0NRIS×NRIS

)
≈ L

(
Z
(k)
RIS,Z

(k)∗
D

)
, which proves

that the objective function is non-decreasing.

To prove that L
(
Z
(k)
RIS,Z

(k)∗
D

)
is upper bounded, we can

first apply the triangle inequality to the objective function in

(16a) and then consider that the matrix Gk = ZSS + Z
(k)
RIS is

invertible in the case study of interest. This implies that each

element of the inverse of Gk can be upper bounded by the

largest of its elements. This concludes the proof.

V. NUMERICAL RESULTS

We illustrate some numerical results in order to verify the

effectiveness of the proposed optimization algorithms and to

analyze the impact of mutual coupling. The considered setup

is the same as in [6]: the carrier frequency is f = 28 GHz; the

locations of transmitter and receiver are rt = (5,−5, 3) and

rr = (5, 5, 1); and the RIS is centered at (0, 0, 0) with M =
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Fig. 1: Convergence of Algorithm 1.
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Fig. 2: Impact of mutual coupling (NRIS is kept fixed).
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Fig. 3: Impact of mutual coupling (the RIS size is kept fixed).

√
NRIS. The transmit and receive antennas, and the passive

scatterers of the RIS are identical thin wires with radius a =
λ/500 and length l = λ/32, where λ is the wavelength, and

R0 = 0.2 Ohm. We assume that the direct link is negligible

due to the presence of obstacles between the transmitter and

receiver. The self and mutual impedances (ZSS) are obtained

from the analytical framework in [6, Lemma 2].

In Fig. 1, we verify the convergence of Algorithm 1 as

a function of the number of scattering elements of the RIS

(NRIS) and their inter-distance (d). We observe that the

statement in Proposition 1 is confirmed. The convergence rate

of Algorithm 1 depends, in general, on both NRIS and d.

In Fig. 2, we analyze the impact of mutual coupling on

the end-to-end SNR and the effectiveness of mutual coupling

aware optimization. The figure is obtained by keeping fixed

NRIS, while varying the inter-distance d between adjacent

scattering elements. The case study corresponding to “no

coupling” is referred to a setup in which only the diagonal

elements of ZSS are retained (ideal case study). The case

study corresponding to “mutual coupling unaware” is referred

to a setup in which the off-diagonal elements of ZSS are

non-zero, but they are not taken into account for system

optimization (mismatched optimization). We observe that the

proposed mutual coupling aware design and algorithm can

significantly enhance the intensity of the end-to-end SNR.

In Fig. 3, we analyze the impact of mutual coupling by

assuming that the size of the RIS is kept fixed (i.e., NRISd
2 is

constant), while NRIS and d are varied accordingly. This case

study corresponds to the optimization of one super-cell of size

λ × λ (see [1, Fig. 4]). We evince that ignoring the mutual

coupling among the scattering elements of the RIS results in a

performance degradation, as compared to the proposed mutual

coupling aware optimization (i.e., Algorithm 1).

VI. CONCLUSION

By leveraging a recently proposed communication model

for RIS-assisted communications, we have introduced an op-

timization algorithm for maximizing the end-to-end SNR as a

function of the tunable impedances of the RIS, which explicitly

takes into account the mutual coupling among closely spaced

scattering elements. The numerical results have unveiled that

the end-to-end SNR can be enhanced by explicitly taking

into account the mutual coupling at the design phase. The

proposed approach is applicable to single-antenna transmitters

and receivers that operate in the far-field of the RIS. Possible

generalization of the proposed approach includes the optimiza-

tion of RIS-assisted systems with multi-antenna transmitters

and receivers in both the far-field and near-field regimes.
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