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Abstract—In this letter, we study the resource allocation for a
multiuser intelligent reflecting surface (IRS)-aided simultaneous
wireless information and power transfer (SWIPT) system. Specif-
ically, a multi-antenna base station (BS) transmits energy and
information signals simultaneously to multiple energy harvesting
receivers (EHRs) and information decoding receivers (IDRs)
assisted by an IRS. Under this setup, we introduce a multi-
objective optimization (MOOP) framework to investigate the fun-
damental trade-off between the data sum-rate maximization and
the total harvested energy maximization, by jointly optimizing
the energy/information beamforming vectors at the BS and the
phase shifts at the IRS. This MOOP problem is first converted
to a single-objective optimization problem (SOOP) via the ε-
constraint method and then solved by majorization minimization
(MM) and inner approximation (IA) techniques. Simulation
results unveil a non-trivial trade-off between the considered
competing objectives, as well as the superior performance of
the proposed scheme as compared to various baseline schemes.

I. INTRODUCTION
Simultaneous wireless information and power transfer

(SWIPT) has been introduced as a promising solution for ad-
dressing the energy limitation of battery-powered devices, es-
pecially in low-power Internet-of-Things (IoT) scenarios. In
such scenarios, the performances of wireless communica-
tion and energy transfer are both important, which moti-
vates the investigation on their fundamental trade-off [1]. As
a result, multi-objective optimization problem (MOOP) has
been proposed to address conflicting objectives in SWIPT
systems. For instance, [2] studied the trade-off between the
transmit power and the total harvested power in a full-duplex
SWIPT system.

Recently, intelligent reflecting surface (IRS) been proposed
as a promising solution to improve the wireless communication
spectral and energy efficiency, which has been considered
for the future sixth-generation (6G) wireless network [3]. In
general, an IRS is composed of a large number of recon-
figurable passive reflecting elements installed on a planar
surface and each reflecting element can introduce a phase shift
when reflecting the incident signal. By properly designing the
phase shifts of these elements, the reflected signals from the
IRS can be combined at the receivers either constructively
or destructively to improve the desired signal power or to
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eliminate the undesired interference [5]. In [6], an IRS-
aided green system was considered where the total transmit
power was minimized by jointly optimizing the passive and
active beamformers based on the alternative optimization (AO)
and inner approximation (IA) methods. Existing works have
provided researchers with clear evidence that the deployment
of IRSs can significantly improve the performance of wireless
communication systems. However, they mostly focus on pure
wireless information transmission while its potential perfor-
mance gain to wireless power transfer remains unclear. In this
regard, some recent works have exploited the IRS in SWIPT
systems, e.g., [7]–[10]. In [7], the total transmission power
was considered in a MISO IRS-aided SWIPT network where
an AO algorithm via applying the penalty-based method was
adopted. The authors in [8] aimed to maximize the weighted
sum-power in the formulation of single-objective optimization
problem (SOOP) subject to the individual SINR constraints at
the IDRs. In particular, they proposed an AO method to obtain
a suboptimal solution of the main problem by optimizing
the IRS phase shifts and transmission precoders at the base
station (BS) iteratively. Compared with existing works, the
main contributions of this letter are summarized as follows:
• We propose an IRS-SWIPT system in which both in-

formation decoding receivers (IDRs) and energy harvesting
receivers (EHRs) receive signals reflected by the IRS such
that the overall performance in terms of data sum-rate and
total harvested power can be improved. To balance between
the information transmission and energy harvesting (EH) in the
IRS-SWIPT system, we formulate an MOOP by optimizing
joint active and passive beamforming at the BS and IRS, re-
spectively. In contrast to [4], [5], [7]–[10], where only one
of the two objectives was investigated with the other being
fixed, we propose a new MOOP framework to fundamentally
characterize their trade-off.
• The resulting non-convex MOOP is transformed into

a single-objective optimization problem (SOOP) via the ε-
constraint method, which is more efficient than the conven-
tional weighted sum maximization method as the former can
characterize the entire Pareto boundary of the trade-off region
[13].
• Note that for existing methods in the literature, e.g.,

semi-definite relaxation (SDR) and AO based method [4],
[5], [7]–[10], the convergence is not always guaranteed due
to the application of Gaussian randomization in solving the
feasibility check problem. In contrast, via applying the IA
method as in our work, obtaining a locally optimal solution is
guaranteed [6].

Notation: Vectors and matrices are indicated by boldface
lower-case letters and capital letters, respectively. For a square
matrix A, AH , AT , Tr(A), ||A||∗, and Rank(A) denote
its Hermitian conjugate transpose, transpose, trace, trace
norm, and rank, respectively. A � 0 means that A is a
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Figure 1: An IRS-aided multiuser MISO SWIPT system.

positive semidefinite matrix. diag(·) is the diagonalization
operation. The Euclidean norm of a complex vector and the
absolute value of a complex scalar are denoted by ‖ · ‖
and | · |, respectively. ∇xf(x) denotes the gradient vector
with respect to x. The expectation operator is denoted by
E[·], and CM×N represents M × N dimensional complex
matrices. The distribution of a circularly symmetric complex
Gaussian (CSCG) random vector with mean µ and covariance
matrix C is denoted by ∼ CN (µ, C).

II. SYSTEM MODEL

A. Signal Model

In this letter, we consider an MISO downlink (DL) IRS-
SWIPT system consisting of a BS, an IRS, K IDRs, and
L EHRs as shown in Fig. 1. The BS and IRS are equipped
with M antennas and N reflecting elements, respectively. It
is assumed that all the receivers are single-antenna devices
to reduce the hardware cost and complexity. The transmit
signal at the BS can be written as s =

∑
k∈Kwkx

ID
k +∑

l∈L vlx
EH
l , where xID

k and xEH
l ∈ C are the information

signal for IDR k ∈ K = {1, ...,K} and energy signal for EHR
l ∈ L = {1, ..., L}, respectively. Without loss of generality,
xID
k is assumed to be independent and identically distributed

(i.i.d) while satisfying E{|xID
k |2} = 1 and we further assume

that xEH
l are independently generated from an arbitrary distri-

bution with E{|xEH
l |2} = 1. Besides, wk ∈ CM×1 denotes the

transmit information beam for IDR k and vl ∈ CM×1 is the
transmit energy beam for EHR l.
B. Channel Model

Assume that all the channel links experience a quasi-static
flat fading and accurate channel state information (CSI) can
be obtained through an IRS controller1 (see [3]). The received
signal at the k-th IDR is given by yID

k = hHk s + nID
k , k ∈ K,

where nID
k ∼ CN (0, σ2

k) is the received noise at the k-th
IDR with variance σ2

k. In particular, hHk
∆
= hHb,k + hHr,kΘH

represents the equivalent channel from the BS-to-IRS and
IRS-to-IDR k along with the direct path from the BS-to-IDR
k. Especially, hr,k ∈ CN×1, hb,k ∈ CM×1, and H ∈ CN×M
are the channel vectors between the k-th IDR and IRS, BS and
IDR k, and the equivalent channel matrix between the BS and
IRS, respectively. Besides, Θ = diag(α1e

jβ1 , ..., αNe
jβN )

denotes the reflection coefficient matrix at the IRS where
βn ∈ (0, 2π] and αn ∈ [0, 1], ∀n ∈ {1, ..., N}, represent
the phase shift and reflection amplitude of the n-th IRS
element, respectively. We assume that all passive elements

1The results in this letter serve as theoretical performance upper bounds
for IRS-aided SWIPT systems with imperfect CSI in practice.

have an amplitude equal to one i.e., |αn|2 = 1 as commonly
adopted in literature, e.g., [7]–[11]. Accordingly, the received
signal at the l-th EHR can be written as yEH

l = gHl s + zEH
l ,

where zEH
l ∼ CN (0, δ2

l ) is the received noise with variance
δ2
l . Similarly, we have gHl

∆
= gHb,l + gHr,lΘH, where gr,l ∈

CN×1 denotes the channel vector between the l-th EHR and
IRS, and gb,l ∈ CM×1 represents the channel vector between
the l-th EHR and BS.
C. Performance Metrics

Without loss of generality, we assume that a pseudo-
random sequence generator provides vl at the BS with a given
seed, which is known to all users. Therefore, all IDRs can
eliminate the possible interference caused by the energy sig-
nal [16]. The received signal-to-interference-plus-noise ratio
(SINR) at the k-th IDR can be written as

SINRk(wk,Θ) =

∣∣hHk wk

∣∣2∑
i∈K,i6=k

∣∣hHk wi

∣∣2 + σ2
k

. (1)

On the other hand, the total amount of harvested energy at
EHR l is considered to be linearly proportional to the received
power [8], which is given by

Pl(wk,vl,Θ) = ηl E
{∑
k∈K

∣∣gHl wk

∣∣2 +
∑
l∈L

∣∣gHl vl
∣∣2}, (2)

where 0 ≤ ηl ≤ 1 is the energy conversion efficiency of the
l-th EHR. Note that the power of received noise is neglected
in (2) as it is negligible for EH.

III. PROBLEM FORMULATION AND SOLUTION

In this section, we first formulate two SOOPs for the pur-
poses of maximizing the data sum-rate and the total harvested
energy, respectively. Then, we introduce an MOOP framework
to investigate the trade-off between these two competing
objectives.

A. Optimization Problem Formulation

First, the sum-rate maximization problem is formulated as
follows, which jointly optimizes the covariance matrix of the
energy signal, active beamforming vectors at the BS, and
phase shifts at the IRS.

Problem 1: Sum-rate Maximization

P1: maximize
vl,wk,Θ

∑
k∈K

log2

(
1 + SINRk(wk,Θ)

)
(3a)

s.t.
∑
k∈K

‖wk‖2 +
∑
l∈L

‖vl‖2 ≤ Pmax, (3b)

SINRk(wk,Θ) ≥ Γreq,k, ∀k, (3c)
Pl(wk,vl,Θ) ≥ Emin,l, ∀l, (3d)
|Θnn| = 1, ∀n, (3e)

where Pmax indicates the maximum transmit power at the
BS. Constants Γreq,k ≥ 0 and Emin,l ≥ 0 denote the minimum
required SINRs for the IDRs and minimum harvested energy
requirement for the EHRs, respectively. Constraint (3e) is
imposed to guarantee that the IRS only introduces phase shifts
to the impinging signals. Similarly, for the total harvested
energy maximization problem, we impose the same constraint
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set as for (P1)2. Then, the problem is formulated as follows.

Problem 2: Total Harvested Energy Maximization

P2: maximize
vl,wk,Θ

∑
l∈L

Pl(wk,vl,Θ) (4a)

s.t. (3b)–(3e). (4b)

Subsequently, the MOOP based on (P1) and (P2) is formulated
in the next.

Problem 3: Multi-objective Optimization

P3: Q1: maximize
vl,wk,Θ

∑
k∈K

log2

(
1 + SINRk(wk,Θ)

)
(5a)

Q2: maximize
vl,wk,Θ

∑
l∈L

Pl(wk,vl,Θ) (5b)

s.t. (3b)–(3e). (5c)
B. Proposed Solution

To address the conflicting objectives in (P3), we adopt the
ε-constraint method [11] by transferring (Q2) to the constraint
set and setting (Q1) as the main objective function. Bear in
mind that the ε-constraint method can generate the whole
Pareto frontier [13] of the two optimal objective values by
varying the value of ε and solving the corresponding opti-
mization problem. Thus, for a given ε, the new optimization
problem for obtaining a Pareto optimal solution can be written
as

P4: minimize
vl,wk,Θ

−
∑
k∈K

log2

(
1 + SINRk(wk,Θ)

)
(6a)

s.t.
∑
l∈L

Pl(wk,vl,Θ) ≥ ε, (6b)

(3b)–(3e). (6c)

Constraint (6b) states that the total EH amount is re-
quired to be greater than ε. It is evident that the value
of ε determines the relationship of the solution of (P4)
compared with that of (P3). Besides, due to the existence
of coupling between optimization variables, i.e. wk and
Θ, as well as the unit-modulus constraints in (3e), it is
generally difficult to obtain a globally optimal solution for
(P4). As an alternative, we aim to design a computation-
ally efficient algorithm to obtain a suboptimal solution to
(P4). To start with, we first define Wk = wkw

H
k , Vl =

vlv
H
l , θ = (ejα1 , ..., ejαN )H ∈ CN×1, and u = [θT t]T ∈

C(N+1)×1, respectively. Besides, t ∈ C is a dummy variable
with |t| = 1. By applying the transformation of semidef-
inite programming (SDP), U = uuH ∈ C(N+1)×(N+1)

is introduced such that the matrix U is semi-definite and
satisfies Rank(U) ≤ 1. Thus, |(hHb,k + hHr,kΘH)wi|2, |(gHb,l +
gHr,lΘH)wk|2, and |(gHb,l + gHr,lΘH)vl|2 can be equivalently
written as Tr(ULkWiL

H
k ) = Tr(WiZk), Tr(UL̃lWkL̃

H
l ) =

Tr(WkXl), and Tr(UL̃lVlL̃
H
l ) = Tr(VlYl), respec-

tively, where Lk = [(diag(hHr,k)H)T h∗b,k]T , L̃l =

[(diag(gHr,l)H)T g∗b,l]
T , Zk = LHk ULk, and Xl =

L̃Hl UL̃l. Unlike most of the existing works adopting AO
which optimizes Wk, Vl, and θ separately in an iterative
manner, we aim to optimize all variables jointly. However, the

2It should be noted that although solving (P1) with different values of
Emin,l and (P2) with different values of Γreq,k can also help investigate the
trade-off between ID and EH, the set of all Pareto optimal resource allocation
policies cannot be obtained in general [2].

multiplication of two matrices poses a challenge in solving
our problem. By following [6], [15], we further rewrite the
related terms as
Tr(WiZk) =

1

2
‖Wi + Zk‖2F −

1

2
‖Wi‖2F −

1

2
‖Zk‖2F , Ak,i,

(7)

Tr(WkXl) =
1

2
‖Wk +Xl‖2F −

1

2
‖Wk‖2F −

1

2
‖Xl‖2F , Bk,l,

(8)

Tr(VlYl) =
1

2
‖Vl +Yl‖2F −

1

2
‖Vl‖2F −

1

2
‖Yl‖2F , Cl. (9)

Hence, (P4) is now in a more tractable form, which is given
by

P5: minimize
Vl,Wk,U

−
∑
k∈K

log2

(
1 +

Ak,k∑
i∈K,i6=k

Ak,i + σ2
k

)
(10a)

s.t. ηl
(∑
l∈L

∑
k∈K

Bk,l +
∑
l∈L

Cl) ≥ ε, (10b)∑
k∈K

Tr(Wk) + Tr(Vl) ≤ Pmax, (10c)

Ak,k

Γreq,k
−
∑
i 6=k

Ak,i ≥ σ2
k, ∀k, (10d)

ηl
∑
k∈K

Bk,l + Cl ≥ Emin,l, ∀l, (10e)

Vl � 0, Wk � 0, ∀k, l (10f)
Rank(Wk) = 1, ∀k, Rank(U) = 1. (10g)

However, (7), (8), and (9) are not concave functions. To handle
them, we adopt the iterative MM method [12] via the first-
order Taylor approximation to establish the corresponding
convex lower bounds. Taking (7) as an example, the term
F1(Wi,Zk) , 1

2 ‖Wi + Zk‖2F can be bounded by an affine
function which is given by

F1(Wi,Zk) ≥ F1(W
(i)
i ,Z

(i)
k )

+ Tr(∇HWi
F1(W

(i)
i ,Z

(i)
k )(Wi −W

(i)
i ))

+ Tr(∇HZk
F1(W

(i)
i ,Z

(i)
k )(Zk − Z

(i)
k ))

, F̃1(W
(i)
i ,Z

(i)
k ). (11)

Similar to (11), we have F2(Wk,Xl) , 1
2 ‖Wk + Xl‖2F ≥

F̃2(W
(i)
k ,X

(i)
l ) and F3(Vl,Yl) , 1

2 ‖Vl + Yl‖2F ≥
F̃3(V

(i)
l ,Y

(i)
l ), where {W(i)

k ,W
(i)
i ,Z

(i)
k ,X

(i)
l ,V

(i)
l ,Y

(i)
l } is

the set of solutions obtained at the i-th iteration of the MM
method. Therefore, lower bounds of (7), (8), and (9) are given
by

Ã
(i)
k,i , F̃1(W

(i)
i ,Z

(i)
k )− 1

2
‖Wi‖2F −

1

2
‖Zk‖2F , (12)

B̃
(i)
k,l , F̃2(W

(i)
k ,X

(i)
l )− 1

2
‖Wk‖2F −

1

2
‖Xl‖2F , (13)

C̃
(i)
l , F̃3(V

(i)
l ,Y

(i)
l )− 1

2
‖Vl‖2F −

1

2
‖Yl‖2F , (14)

respectively. Then, we apply the following lemma to achieve a
more efficient solution for the phase shifts, since the tightness
of the SDR, i.e., Rank(U) = 1 in (10g), cannot be ensured.

Lemma 1. The equivalent form of Rank(U) = 1, is given by
[6]

g(U) , ‖U‖∗ − ‖U‖2 ≤ 0. (15)
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However, (15) is still non-convex. In order to tackle this
obstacle, we adopt a penalty approach to augment (15) into
the objective function which penalizes the objective function
when the matrix rank of U is greater than one. Hence, by
using the first-order Taylor approximation of ‖U‖2, in each
iteration of the MM algorithm, we obtain

g̃(i)(U) ,‖U‖∗ − ‖U(i)‖2 − Tr
[
u(i)
max(u

(i)
max)

H(U−U(i))
]
,

(16)

where u
(i)
max is the eigenvector corresponding to the maximum

eigenvalue of matrix U(i) in the i-th iteration. Furthermore, the
non-convex constraint (10d) can be approximated as

Ã
(i)
k,k

Γreq,k
−
∑
i6=k

Â
(i)
k,i − σ

2
k ≥ 0, (17)

where Â
(i)
k,i ,

1
2 ‖Wi + Zk‖2F − S̃1(W

(i)
i )− S̃2(Z

(i)
k ), and

S1(Wi) ,
1

2
‖Wi‖2F ≥ S1(W

(i)
i )

+ Tr(∇HWi
S1(W

(i)
i )(Wi −W

(i)
i )) , S̃1(W

(i)
i ). (18)

Similar to (18), S̃2(Z
(i)
k ) can be obtained by defining

S2(Zk) , 1
2 ‖Zk‖

2
F . As a result, by augmenting (16) to the

objective function of (P5) with Φ � 1 as a penalty factor to
penalize any non-rank-one matrix U, an upper bound of (P5)
can be established via the following problem

P6: minimum
V,Wk,U

−
∑
k∈K

Tk + Φ
(
g̃(i)(U)

)
(19a)

s.t. ηl
(∑
l∈L

∑
k∈K

B̃
(i)
k,l +

∑
l∈L

C̃
(i)
l

)
≥ ε, (19b)

ηl
∑
k∈K

B̃
(i)
k,l + C̃

(i)
l ≥ Emin,l, ∀l, (19c)

(10c), (10f), (17), Rank(Wk) = 1, (19d)

where Tk = log2

(∑
i∈K Ã

(i)
k,i + σ2

k

)
− R̃(W

(i)
i ,Z

(i)
k ). Sim-

ilar to (11), R̃(W
(i)
i ,Z

(i)
k ) denotes the lower bound of

R(Wi,Zk) , log2

(∑
i∈K,i6=k Ak,i + σ2

k

)
.

Proposition 1. For arbitrary user channels, the optimal solu-
tion to (P6) satisfies Rank(W∗

k) = 1 and V∗l = 0.
Proof. It can be proved by following a similar approach as

in [8], which is omitted here due to page limitation.
It can be observed that (P6) is a convex optimization

problem and optimization tools such as CVX can be uti-
lized to solve it efficiently [14]. By iteratively solving (P6)
optimally, we can monotonically tighten this upper bound.
Besides, the objective function in (P6) is monotonically non-
increasing, which guarantees the converge to a stationary
point. The maximum value of ε is obtained with Emax such
that (P5) remains feasible [11], where Emax is the maximum
EH amount. The value of Emax can be found by solving the
following optimization problem:

P7: maximum
V,wk,Θ

∑
l∈L

Pl(wk,V,Θ)− Φ
(
g̃(i)(U)

)
(20a)

s.t. ηl
∑
k∈K

B̃
(i)
k,l + C̃

(i)
l ≥ Emin,l, ∀l, (20b)

(10c), (10f), (17), Rank(Wk) = 1. (20c)

Table I: Simulation Parameters

Parameters Values
Path-loss model and exponent [8]

Number of antennas at the BS, M 4
Maximum transmit power, Pmax 40 dBm
Minimum required SINR, Γreq,k 5 dB
Minimum required EH, Emin,l −20 dBm

Carrier frequency 750 MHz
Noise power, σ2

k σ2
k = σ2 = −90 dBm

The different values of ε lead to different trade-offs between
total EH amount and data sum-rate. To obtain a specific value
of ε, we let ε = δEmax, where δ is a positive value in the range
of (0, 1].
C. Computational Complexity Analysis

In this subsection, we present a computational complexity
for our proposed solution. Specifically, (P6) includes M2

variables and 3K affine constraints. Consequently, the com-
plexity order for designing joint beamforming and phase shift
optimization in each iteration is given by O

(
log 1

ε (3K)M2 +

N2
)3.5

[17]. Moreover, the computational complexity order
for solving (P6) via adopting AO method based on the SDP
for finding beamforming is O

(
M2 + 3K

)3.5
while for the

reflecting elements the complexity order is O(3K + N2)3.5

[17]. It is worth mentioning that while the KKT solution
obtained by the IA algorithm is better in quality than the
stationary point obtained by the AO algorithm, there is a
trade-off between the algorithm complexity and the system
performance.

IV. SIMULATION RESULTS

We evaluate the performance of the proposed algorithm
by simulation. The simulation parameters are summarized in
Table I unless otherwise is given. We consider the location
of the BS and the IRS as (3, 0) m and (0, 4) m, respec-
tively. Also, it is assumed that K = 2 IDRs and L = 2 EHRs
are randomly distributed with a distance of d = 50 m and
d = 4 m from the BS, respectively. The small-scale fading
channels are modeled as Rayleigh fading. Fig. 2 investigates
the trade-off region between the system data sum-rate and
average total harvested energy for different values of N , which
is obtained via solving (P6) by varying the values of δ with
a step size of 0.1. As can be observed the average harvested
energy decreases with the increasing data sum-rate. This result
confirms that the objective of maximizing average harvested
energy generally conflicts with that of maximizing the data
sum-rate. For comparison, we also consider two baseline
schemes. For baseline scheme 1, we consider the proposed
scheme in [8], where SDP and AO approaches are adopted
and apply them with the ε-constraint method for the consid-
ered MOOP framework. For baseline scheme 2, we consider
random passive beamforming at the IRS [5]. It can be observed
that our proposed scheme can establish a better performance
compared with baseline scheme 1. Note that in our proposed
solution, we optimize the active beamforming at the AP
and passive beamforming at the IRS simultaneously in every
iteration, while the proposed algorithm in the literature adopted
an AO method only optimizes parts of the total variables
each time. In particular, the objective function of (P6) is non-
decreasing in each iteration and the proposed IA algorithm
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Figure 3: Average sum-rate versus minimum SINR.

is guaranteed to converge to a KKT solution [6]. Hence, the
superior performance brought by the proposed scheme is due
to the fact that the AO algorithm can be easily trapped in some
inefficient solution, while the IA algorithm can ensure the
convergence to a KKT solution of the design problem, which
is better in quality than the point obtained by the AO algorithm
in general. In addition, our proposed scheme also outperforms
baseline scheme 2 without phase-shift optimization. On the
other hand, one can observe that by increasing the number
of IRS reflecting elements, N , a larger achievable trade-off
region can be obtained, which demonstrates the superiority
of deploying IRS with a large number of low-cost reflecting
elements. We can also observe that the achieved average trade-
off region is significantly enlarged by deploying an IRS in
the considered system. This confirms the capability of the
IRS as a promising approach for providing favorable channel
conditions, which is beneficial to the data sum-rate as well as
harvested energy. Fig. 3 plots the sum-rate versus the minimum
target SINR (Γreq) for different values of M and N , which is
obtained by solving (P6) with ε = 0. It can be perceived that
the data sum-rate remains nearly constant for a small value
of minimum required SINR, Γreq, but starts to decline as Γreq
increases. This is because when Γreq is low, the transmitted
power budget is low. Therefore, the proposed design can
easily satisfy the constraints. However, for a higher value
of Γreq, more transmit power is required to meet the target
SINR. It can be seen that our proposed scheme outperforms
the two baseline schemes, which shows the effectiveness of the
proposed design based on the IA-method for jointly optimizing
the reflecting elements and active beamformers at the IRS and
the BS, respectively. We also observe the effect of increasing
transmit antennas at the BS, M , as well as reflecting elements

at the IRS, N , on the performance gain in terms of average
sum-rate. In particular, increasing M and N allows a further
improvement of the average total system sum-rate achieved
by the proposed design. More specifically, additional reflecting
elements at the IRS offer more degrees of freedom for resource
allocation by establishing a more favorable propagation envi-
ronment. Furthermore, increasing the number of transmitting
antennas at the BS provides a higher spatial multiplexing gain,
which results in an improvement of average sum-rate.

V. CONCLUSION
In this letter, an MOOP was formulated for the joint passive

and active beamforming design in an IRS-aided SWIPT system
to study the trade-off between the data sum-rate maximization
and the total harvested energy maximization. We first applied
the ε-constraint method to convert the MOOP into an SOOP
and then proposed an IA-based algorithm to obtain an efficient
solution. Simulation results unveiled the advantages of the IRS
deployment and demonstrated the superior performance of the
proposed scheme as compared with baseline schemes.
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