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Abstract—This letter proposes a deep learning approach to
detect a change in the antenna orientation of transmitter or
receiver as a physical tamper attack in OFDM systems using
channel state information. We treat the physical tamper attack
problem as a semi-supervised anomaly detection problem and
utilize a deep convolutional autoencoder (DCAE) to tackle it.
The past observations of the estimated channel state information
(CSI) are used to train the DCAE. Then, a post-processing is
deployed on the trained DCAE output to perform the physical
tamper detection. Our experimental results show that the pro-
posed approach, deployed in an office and a hall environment, is
able to detect on average 99.6% of tamper events (TPR = 99.6%)
while creating zero false alarms (FPR = 0%).

Index Terms—OFDM, channel state information, deep learn-
ing, deep convolutional autoencoder, physical tamper attack

I. INTRODUCTION

I f wireless networks are used in critical infrastructures
such as airports, military installations, etc., a high level

of security is required. Among the many different threats in
wireless networks, we consider physical tampering with a
device and more specifically the movement or relocation of
static transmitters or receivers. Such an attack impacts the
functionality of a wireless network by changing the radio
channel. An example, which is investigated by [1], is a
surveillance system using WiFi-based cameras integrated with
antennas to monitor critical infrastructure. Another example
is RF fingerprint-based localization systems using PHY-layer
aspects (e.g., [2]). In both cases, the locations of transmitters
need to be fixed in order for the system to work properly. If the
transmitters are moved, with high probability the functionality
of the systems is destroyed. Therefore, a physical tamper
attack detection mechanism is needed.

In order to solve this issue, we use PHY layer information
already available in wireless networks. Previously, Fabia et al.
[3] utilized RSSI information to detect identity-based attacks
in wireless networks. Patwari et al. [4] exploited channel
impulse response (CIR) information to define link signatures
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for transmitter location distinction. Bagci et al. [1] proposed an
algorithm based on the channel state information (CSI) values
of a transmission at multiple receivers for solving the physical
tamper attack problem. These works consider direct seqeuence
spread spectrum [4] or OFDM [1], [3] based systems.

Since OFDM is currently the most common transmission
technology [5], we follow [1], [3] and use CSI (which contains
more information than RSSI) in an OFDM-based wireless
system. The direct relation of CSI to the radio channel makes
it possible to detect physical changes due to a tamper attack.
Besides, the radio channel is also sensitive to other changes
in the environment, like movement of people and/or objects,
which are clearly not related to an attack. Thus, an attack
detection algorithm must be able to distinguish those cases.

To differentiate between environmental changes and tamper
attacks on the transmitter, [1] suggests to use multiple receivers
and calculate different distances between the CSI of the offline
and the online phase to detect the physical tamper attack.
This approach is based on the assumption, that environmental
variations (e.g., from moving persons) will not affect all
receivers. Unlike [1], instead of calculating the distances,
we propose to use machine learning methods to detect the
physical tamper attack based on CSI at a receiver. The main
contributions of this letter are:

• We exploit a machine learning approach for physical
tamper attack detection. We consider the problem as a
semi-supervised anomaly detection problem.

• We use a deep convolutional autoencoder (DCAE) with a
post-processing unit to learn CSI-characteristics in tamper
free scenarios and use it to detect physical tamper attacks.

• For a robust tamper detection algorithm, we propose to
use a probability density function (pdf) approximation
of the DCAE reconstruction error. The detection perfor-
mance is compared with existing work in the literature.

The letter is organized as follows: The tamper detection
framework is introduced in section II. The operational phases
and the experimental results are presented in Sections III and
IV, respectively. Finally, Section V concludes the letter.

II. TAMPER DETECTION FRAMEWORK

A. Problem Statement

In wireless communication the transmitted signal is modi-
fied by the mobile radio channel. This channel is determined
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by the propagation of the electromagnetic waves from trans-
mitter to receiver, which in turn is defined by the surrounding
environment. Any change in the environment also changes the
mobile radio channel. Thus, the main difficulty in detecting
a physical tamper attack in form of movement or relocation
of transmitters or receivers is to distinguish between changes
caused by the physical tamper attack and changes caused by
modifications in the surrounding like persons walking by. Our
goal is to use a machine learning approach applied to the
magnitude of the estimated CSI (|Ĥ|1)[6] that detects tamper
attacks on the transmitter despite changes in the environment.

We formulate the problem of detecting the physical tamper
attack as a data-driven semi-supervised anomaly detection
problem. According to [7], semi-supervised anomaly detection
refers to the problem of finding patterns in data that do
not conform to expected behavior. For the tamper detec-
tion problem we aim to detect if the characteristics of the
magnitude of CSI does not conform to the characteristics
learned in tamper free scenarios.

In order to investigate the performance of the proposed
method in the physical tamper attack problem, three different
methods are taken into account as below:

B. Conventional Threshold Detection

Similar to [1], a simple and straightforward approach is
to use a distance metric followed by a threshold decision. If
the distance is greater than a certain threshold, the algorithm
will detect tampering. HOff is the collected magnitude of the
estimated CSI while the transmitter is in a tamper free scenario
(Offline phase) given by:

HOff , [|Ĥ1
Off |, |Ĥ

2
Off |, . . . , |Ĥ

𝑁Off
Off |]𝑇 ∈ R𝑁Off×𝑆𝑐 . (1)

It is used for comparison with the newly received magnitude
of the estimated CSI HOn (Online phase) represented as

HOn , [|Ĥ1
On |, |Ĥ

2
On |, . . . , |Ĥ

𝑁On
On |]𝑇 ∈ R𝑁On×𝑆𝑐 . (2)

A distance metric and a threshold decision is calculated as,

D𝑖, 𝑗 , 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒( |Ĥ𝑖
Off |, |Ĥ

𝑗

On |) , 𝑖 = 1, . . . , 𝑁Off

, 𝑗 = 1, . . . , 𝑁On
(3)

𝑚𝑒𝑎𝑛∀𝑖, 𝑗 (D𝑖, 𝑗 )
𝑇 𝑎𝑚𝑝𝑒𝑟 𝐹𝑟𝑒𝑒

≶
𝑇 𝑎𝑚𝑝𝑒𝑟𝑖𝑛𝑔

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , (4)

where 𝑆𝑐 is the number of subcarrier, 𝑁Off and 𝑁On are the
number of frames in the offline phase and online phase, respec-
tively. As in [1], 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 in (3) refers to a distance metric
(e.g., 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒). The distance metric quantifies the
distance between two CSI vectors. Afterwards, the mean value
of the distance is considered to make the decision. In this work,
this approach is referred to as Method 1. As shown in Sec. IV,
this method has a poor attack detection performance.

1The estimated signal taken from the receiver is denoted by Ĥ.
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|Ĥ |rec Σ+ e
-DCAE

Conv1D(𝐹1, 𝐿1)
Maxpooling(𝑀1)

Conv1D(𝐹𝑛 , 𝐿𝑛)
Maxpooling(𝑀𝑁 )

Conv1D(𝐹𝑛 , 𝐿𝑛)
Upsampling(𝑀𝑁 )

Conv1D(𝐹1, 𝐿1)
Maxpooling(𝑀1)

Flatten Layer
Dense

...
...

Figure 1: DCAE to compare measured and reconstructed CSI,
i.e. |Ĥ| and |Ĥ|rec, respectively. The reconstruction is based
on the tamper free CSI characteristics that are encoded into
the latent space.

C. Using Deep Convolutional Autoencoder

To detect modifications in the CSI, the DCAE can be
applied [8]. It is a well-suited method for feature extraction
and anomaly scoring in static environments. In what follows
we first introduce the DCAE approach, before proposing a
post-processing unit to enhance robustness.

DCAE is a method for representation learning that usually
is used in image processing applications. It maps the input
into a compressed representation space (i.e., latent space)
with a number of convolutional layers and max-pooling layers
through the encoding procedure from which the decoding part
reconstructs the input data with a number of convolutional
layers and upsampling layers. The training is performed by
minimizing the difference between input data and recon-
structed data. Since a DCAE utilizes convolutional layers,
it adopts local information to reconstruct the signal. The
advantage of using the DCAE is that it automatically detects
the most important characteristics of the training data and
outputs a scoring value on how well new input data fits to
those characteristics.

As shown in Fig. 1, the DCAE consists of two main stages:
1) The encoding procedure, which is a compression of the
input data |Ĥ| into a lower dimension space , the latent
space. The compression is done with 𝑛 layers in the encoding
procedure where each layer consists of a one-dimensional (1D)
convolutional layer with 𝐹 filters, each with length 𝐿. The
rectified linear unit (ReLU) activation function is used in the
Conv1D layers. Then, a max pooling layer with parameter 𝑀

is appended. 2) The decoding procedure, which reconstructs
the input data from the compressed representation (|Ĥ|rec).
For the decoding procedure, the structure of the encoding
procedure is mirrored. At the end of the decoder, a fully
connected layer, with the same number of neurons as the
length of input data with sigmoid activation function, is
employed. The output of the DCAE is the reconstruction error
vector e given by:

e = |Ĥ|rec − |Ĥ| . (5)

The number of layers, number of filters, and size of filters
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were found by simulation experiments such that we achieved
best performance while having moderate computational re-
quirements, i.e. minimizing the reconstruction error of the
training data while requiring low computation time.

Two methods that use the DCAE for the physical tamper
attack problem are proposed as below:

1) DCAE with distance threshold: Instead of using HOff
and HOn in the previous approach, EOff and EOn are used as,

EOff , [e1
Off , e

2
Off , . . . , e

𝑁Off
Off ]𝑇 ∈ R𝑁Off×𝑆𝑐 , (6)

EOn , [e1
On, e

2
On, . . . , e

𝑁On
On ]𝑇 ∈ R𝑁On×𝑆𝑐 , (7)

where e𝑖Off and e 𝑗

On are the reconstruction error vectors

e𝑖Off = |Ĥ𝑖
Off | − |Ĥ𝑖

Off |rec, 𝑖 = 1, . . . , 𝑁Off , (8)

e 𝑗

On = |Ĥ 𝑗

On | − |Ĥ 𝑗

On |rec, 𝑗 = 1, . . . , 𝑁On . (9)

In this work, this approach is referred to as Method 2.
2) DCAE with pdf estimator: To increase robustness in

dynamic environments, we consider an approximation of pdf
of anomaly score in this approach which is referred to as
Method 3. Similar to the method 2, EOff is considered as in
(6). The norm (i.e., the Euclidean norm) of the EOff is defined
as 𝐴𝑛𝑜𝑚𝑎𝑙𝑦 𝑆𝑐𝑜𝑟𝑒 a calculated by:

a =‖ EOff ‖2 𝜖R𝑁Off . (10)

By computing the Euclidean norm of the output of the DCAE
we obtain the anomaly scores of frames and use it to detect a
physical tamper attack. As in many density-based anomaly
detection approaches in the literature, to achieve a robust
attack detector, the attack detection algorithm can either be a
parametric or a non-parametric one. Since it is possible that the
data does not fit well to any member of a parametric family of
distributions, our approach is based on a pdf approximation of
the anomaly score. We have used the Gaussian kernel density
estimation from the Sklearn library [9] for the pdf estimator.

By measuring the similarity between the pdf approximations
of the anomaly scores in the offline (where we have only
tamper free data) and online phase, a physical tamper attack
can be detected. In other words, if the newly estimated |Ĥ| is
sufficiently similar to the tamper free data from the offline
phase, the DCAE is able to well reconstruct |Ĥ| and the
reconstruction error is small. Otherwise, the error is large.

We decide if a tamper attack has happened by measuring
the distance between the stored pdf in the database and the
obtained pdf in the online phase. If the distance exceeds a
threshold, then the system triggers an attack detection alarm.

In order to measure the distance of two pdfs, we
used the overlapping index [10]. The overlapping index
𝜂 : R𝑛 × R𝑛 → [0, 1] is defined as:

𝜂
(
𝑓𝑌Off (𝑎), 𝑓𝑌On (𝑎)

)
=

∫ ∞

0
min

{
𝑓𝑌Off (𝑎), 𝑓𝑌On (𝑎)

}
d𝑎, (11)

where 𝑓𝑌Off (𝑎) and 𝑓𝑌On (𝑎) are the pdf of the anomaly score
in the offline and online phase, respectively.
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Figure 2: Offline phase: training the DCAE and storing the
trained model and the pdf approximation of a in the database.
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Figure 3: Online phase: using the trained DCAE and calculat-
ing and comparing the new a with the stored a in the database.

III. OPERATIONAL PHASES

We train and deploy the DCAE, as a state-of-the-art semi-
supervised learning method for anomaly detection, and a post-
processing unit applied to the physical tamper attack detection
problem. Our method includes an offline and an online phase.

A. Offline Phase

Figure. 2 shows the structure of the offline phase in which
the tamper free CSI observations (denoted by |Ĥ|) from dif-
ferent environmental conditions including movement of people
and static environments at different times are collected.

These CSI measurements are utilized as the training data to
train the DCAE. The DCAE weights are trained by using the
mean square error (MSE) of the reconstruction error vector
(5). Therefore, the MSE is used as loss function and the adam
optimizer [11] was utilized to train the DCAE. We have made
use of the Keras library [12] to build the proposed DCAE with
20 epochs and a batch size of 100.

After training the DCAE, as described in method 3, the
anomaly scores of 𝑁Off frames are obtained. Finally, the
weights of the trained DCAE and the pdf approximation of
the anomaly score are stored in the database for the following
use in the online phase.

B. Online Phase

As shown in Fig. 3, the new estimated CSI ("New mea-
surement", |Ĥ|) is fed into the DCAE (with the weights that
are loaded from the database). We find the anomaly score by
computing the Euclidean norm of the output of the DCAE. We
estimate the pdf of the anomaly score based on 𝑁On successive
frames. Finally, we evaluate the similarity of the obtained pdf
with the one stored in the database.
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IV. EXPERIMENTAL RESULTS

A. OFDM System

To experimentally verify our proposed tamper attack detec-
tion method, we performed measurements using the Gnuradio
OFDM project [13]. The transmitter and receivers were real-
ized via a USRP X310, equipped with a directional antenna
[14], connected to a host computer for signal processing,
using 200 data subcarriers, 8 pilot subcarriers, and 48 null
subcarriers resulting in a channel bandwidth of 25 MHz. The
OFDM symbol duration was 11.52 𝜇s with 10.24 𝜇s IFFT
period and 1.28 𝜇s guard interval. The carrier frequency was
2.55 GHz. A frame consisted of nine data OFDM symbols
and three preamble symbols, Two preamble symbols were
used for synchronization and one to estimate Ĥ using a
least squares approach. The amplitude of the estimated Ĥ
was then used in the DCAE.

B. Environment and Physical Tamper

We evaluated the aforementioned tamper detection methods
in two different environments which are an office and a hall
as depicted in Fig. 4. The transmitter (denoted by TX) and
receivers (RX 1 and RX 2) were placed on top of the shelves
with an elevation of 230 cm in the office environment and the
desks with an elevation of 140 cm in the hall environment.
RX 2 was considered only for the method from [1] which
was used for comparison.

We considered 8 different antenna orientations, i.e., the
tamper free default orientation and rotations r1, r2, ... r7 (c.f.
Fig. 4) as physical tamper attacks.

RX1

TX

Window

shelves

Desk

Chair 1

r1
r2

r3
r4

r5r6 r7Default

Chair 2Chair 3

Chair 4

Perspective
of View

RX2

(a)

RX1

Elevator

TX
r1
r2

r3 r4
r5

r6
r7

Default

Desk
Chair

Perspective
of View

RX2

(b)

Figure 4: Measurement environments: (a) Office (4×6𝑚2) and
(b) Hall (7 × 12𝑚2), depicted with photos and layout (not to
scale). Orientations r1, r2, ... , r7 are considered as physical
tamper attacks.

C. Experiment Methodology

We considered 7 scenarios for the tamper free default
orientation in the office environment, i.e., (A) a person sits
on chair 1, (B) same as A one hour later, (C) a person walks
in the area randomly, (D) same as C one hour later, (E) two

Table I: DCAE parameters

Description Value

Optimizer Adam

Batch Size 100

Number of Epochs 20

Learning Rate 0.001

DCAE1=


𝐹1 𝐿1 𝑀1

𝐹2 𝐿2 𝑀2

𝐹3 𝐿3 𝑀3



10 52 2

10 26 2

10 1 2


DCAE2=


𝐹1 𝐿1 𝑀1

𝐹2 𝐿2 𝑀2

𝐹3 𝐿3 𝑀3

𝐹4 𝐿4 𝑀4




10 104 2

10 52 2

10 26 2

10 1 2


persons walk in the area randomly, (F) same as E one hour
later, (G) three persons walk in the area randomly. A, C, E,
and G were considered in the hall environement.

D. DCAE parameters

Table I summarized the parameters used to train the DCAE
in Fig. 1. For the training data set a measurement set of
𝑁Off = 40000 CSIs was collected. We trained the DCAE in
which the default antenna orientation was used in all different
scenarios. We trained the DCAE 5000 times with different ini-
tial weights. To compare the performance of DCAEs with
different number of layers, two different DCAEs (DCAE1
[6 layers] and DCAE2 [8 layers]) were considered.

E. Tamper Detection Performance

Figures 5 and 6 depict |Ĥ| for tamper free and tamper attack
scenarios in the both environments, respectively. In Fig. 5,
|Ĥ| is shown for different scenarios with mean and variance
depicted with the error bars over 𝑁Off frames. From Fig. 5
it is obvious that the shape of |Ĥ| is similar in all scenarios.
Even if two people are walking, the shape of |Ĥ| remains
largely the same as compared to scenario (A). As can be
seen, variations due to movement (two persons walking vs.
one person sitting) only lead to slightly increased variance
indicated by the error bars in the insert of Fig. 5.

In contrast, in Fig. 6 the shape of |Ĥ| changes when the
orientation of the transmitter antenna is changed. As before,
movement of people in the radio channel does not make a big
difference in the shape of |Ĥ| (c.f. (r3,A) and (r3,C) in Fig. 6).
We therefore conclude, that |Ĥ| is a suitable input to the
proposed DCAE for tamper detection. To have a performance
comparison between the three aforementioned methods, a mea-
surement set of 30000 CSI vectors of the tamper free scenarios
and 30000 CSI vectors of the tamper scenarios were collected
as the test set. We implemented method 1 by considering the
Euclidean distance as its distance metric based on the CSI
measured at one receiver. To assess the detection performance
of the DCAE and the influence of the post-processing, the
receiver operating characteristics (ROC) are depicted in Fig. 7.
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Figure 5: |Ĥ| in tamper free scenarios presented in Sec. IV.C
in the office (left) and in the hall environement (right).
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Figure 6: |Ĥ| in tamper attack scenarios in the office (left) and
in the hall environement (right).

It is the average detection performance over the two envi-
ronments. The ROC plots the true positives versus the false
alarm rate by varying the threshold value. While the detection
performance of method 1 is poor, its advantage is simplicity.
According to [1] and the measurement results with two re-
ceiving antennas, by increasing the number of receivers and
using their CSIs simultaneously, the detection performance
increases. Methods 2 and especially 3 perform significantly
better with a single RX antenna (avg. tamper detection rate
of 99.6% at a 0% false positive rate for method 3) than
method 1 [1] for which we used 2 receiving antennas. The
superior performance comes at the cost of increased compu-
tational complexity. A disadvantage of method 3 is a delay
equal to 𝑁On number of frames. By comparing the detection
performance of the DCAE with a different number of layers
(DCAE1 and DCAE2) in Fig. 7, we find that adding one layer
in encoding and decoding only slightly increases the already
excellent performance.

V. CONCLUSION

In this letter, we proposed a DCAE-based approach for
detecting a physical tamper attack using CSI in an OFDM-
based wireless communication system. The main challenge

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru
e
P
os
it
iv
e
R
at
e

Random Classifier

Method 1-AUC=0.86739

[1] with 2 RX antennas-AUC=0.96367

Method 2(DCAE 1)-AUC=0.97415

Method 3(DCAE 1)-AUC=0.99987

Method 3(DCAE 2)-AUC=0.99998

0.000 0.005 0.010

0.9975

1.0000

Figure 7: Comparison of the ROC curves as a function of the
decision threshold. AUC is the area under the ROC Curve.

of this problem is to distinguish between antenna orientation
changes and communication environment changes. To achieve
a robust attack detector, we use a post-processing of the
DCAE. In our experiment, we achieved on average a tamper
detection rate of up to 99.6% at a false positive rate of 0% in
two different environments, which outperforms existing work.
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