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Abstract—Perfect channel state information (CSI) is usually
required when considering relay selection and power allocation
in cooperative communication. However, it is difficult to get an
accurate CSI in practical situations. In this letter, we study
the outage probability minimizing problem based on optimizing
relay selection and transmission power. We propose a prioritized
experience replay aided deep deterministic policy gradient learn-
ing framework, which can find an optimal solution by dealing
with continuous action space, without any prior knowledge of
CSI. Simulation results reveal that our approach outperforms
reinforcement learning based methods in existing literatures, and
improves the communication success rate by about 4%.

Index Terms—cooperative communication, relay selection,
power allocation, deep reinforcement learning

I. INTRODUCTION

In recent years, cooperative communication has been paid
much attention, for it can help realizing resource collaboration
between different nodes and obtaining diversified benefits in
multi-user scenario [1]. In cooperative communication, an
outage occurs when the received signal-to-noise ratio (SNR)
falls below a certain threshold [2], and outage probability is
usually used as a metric to measure the Quality-of-Service
(QoS) of communication system. In order to minimize outage
probability and improve QoS, it is intuitive to optimize relay
selection and power allocation schemes. Traditional methods
usually establish a probabilistic model based on the distri-
bution assumption of channel uncertainty [3]–[5], and then
design relay or power optimizing scheme. It should be noted
that assuming an exact channel state information (CSI) is
usually impractical because of the inevitable noise. Therefore,
artificial assumptions about channel state distribution may
bring estimation bias and mislead the final decision.

Reinforcement learning (RL) is one of the three paradigms
of machine learning. RL methods use an agent, which can
be taken as an intelligent robot, to interact with and learn
from the communication environment, and thus do not need
any prior knowledge or assumptions about the environment. In
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addition, different from other machine learning methods, RL
methods do not require data sets, because all the training data
is obtained through continuous interaction [6]. After online
data collecting and offline learning, the well-trained network
models can be implanted into corresponding equipments for
practical use.

To address the aforementioned issue in cooperative com-
munication, several methods have been proposed with the
help of RL, by using which optimizing strategy can be
directly learned from original communication environment.
Khan et al. used SARSA-λ algorithm to make an adaptive
power allocation [7]. In [8] and [9], Q-learning algorithm
was employed to help power control and relay selection,
respectively. In [10]–[12], the authors developed deep Q
network (DQN), which is a combination of RL and deep neural
network (DNN), for relay-aided communication. Further, [13]
introduced convolutional neural network (CNN) to study relay
features in several previous time slots, then the output of
CNN is used for value estimation in DQN. Although such
modification obtained improvement in system performance,
the computational complexity increased considerably. On the
other hand, however, none of above studies have successfully
addressed power allocation problems with continuous action
space. These methods have to set several optional power levels
within the given power range for agent to choose from, and
thus the final scheme is usually not optimal.

Motivated by this, in this letter, we propose a prioritized
experience replay aided deep deterministic policy gradient
(PER-DDPG) learning framework for the outage probability
minimization problem. The proposed method performs ef-
ficient experience learning, and realizes precise control of
continuous action by performing gradient operation directly
on the action policy, with which the agent can optimize its
action policy for discretized relay selection and continuous
power allocation.

II. SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Fig. 1, there is an NS-antenna source S,
an ND-antenna destination D, and a group of single-antenna
relays R = {R1, R2, . . . , RK} in the two-hop wireless relay
network. Suppose the source is far from the destination, and it
does not have the direct link to destination. Therefore, the relay
which uses amplify-and-forward (AF) protocol to process the
received signal, is needed to help communication.
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Fig. 1: Cooperative relay network.

We consider a half-duplex signaling mode because of
equipment limitation. The source selects only one relay and
orthogonal channels are used, in order to achieve full set gain
and avoid mutual interference. Therefore, the communication
from source S to destination D via the selected relay Rk will
take two time slots.

In the first time slot, the source broadcasts its signal, then
all candidate relays listen to this transmission. The received
signal at Rk can be written as

ysk(t) =
√
Psw

†
shsk(t)x(t) + nk(t), (1)

where Ps ∈ [0, Pmax] represents the transmission power at
source, x(t) represents data symbol. hsk represents channel
vector between source and relay Rk, where each element is a
complex Gaussian random variable with zero mean and vari-
ance σ2

sk, and nk is the complex Gaussian noise with variance
σ2
n at relay. w†s = hsk/‖hsk‖ is the normalized beamforming

vector using principles of maximal ratio transmission, where
† denotes conjugate transpose operation.

In the second time slot, the selected relay amplifies and
forwards the detected signal to destination. Then the received
signal at destination can be written as

ykd(t) =
√
Prhkd(t)βysk(t) + nd(t), (2)

where Pr ∈ [0, Pmax] is the transmission power at relay, and
similarly, hsk represents channel vector between relay and
destination, nd ∼ CN (0, σ2

nIND ) is the complex Gaussian
noise at destination. By employing maximal ratio combining
methods, we multiply signal ykd by a beamforming vector
w†d = hkd/‖hkd‖, and have

xkd(t) =
√
PsPrw

†
dhkd(t)βwshskx(t)+

+
√
Prw

†
dhkd(t)βnk(t) + w†dnd(t),

(3)

where β2 = (Ps‖hsk‖2 + σ2
n)−1 is the amplification factor.

Similar to [10], [14], we have the final end-to-end SNR
ϕz = ϕskϕkd/(ϕsk+ϕkd+1) after some manipulations, where
ϕsk = Ps‖hsk‖2/σ2

n and ϕkd = Pr‖hkd‖2/σ2
n. Then we have

the mutual information (MI) between source and destination
using unit bandwidth.

I =
1

2
log2(1 +

ϕsiϕid
ϕsi + ϕid + 1

). (4)

We assume that the RL agent has access to CSI in the
previous time slot, which can be denoted as h(t) = {hsk(t−

1),hkd(t− 1)}. Then we define the following indicator func-
tion to represent the outage event.

f(t) , f
(
Rk(t), Ps(t), Pr(t);h(t)

)
, 1I<λ, (5)

where λ > 0 denotes the outage threshold, and 1I<λ denotes
the indicator function which equals to 1 when the inequality
I < λ is satisfied. Since the expectation of an indicator
function can be used to calculate the probability of its orig-
inal event, we then formulate the optimization problem for
minimizing outage probability as follows.

P 1 : min
Rk(t),Ps(t),Pr(t)

E

[
1

T

T∑
t=1

f(t)

]
s.t. C1 : Rk ∈ {R1, R2, . . . , RK},

C2 : 0 ≤ Ps, Pr ≤ Pmax,
C3 : Ps + Pr ≤ Pmax,

(6)

where E[·] denotes expectation operation, and our goal is to
minimize the average outage probability over T time slots.

III. DEEP REINFORCEMENT LEARNING METHOD

Without acquiring real-time CSI, we turn to RL methods
for solutions. In our method, the source node acts as RL
agent, and selects a proper relay and sets transmission power
according to its observation of historical CSI, then it receives
communication result as reward from the environment. In this
section, we model this process as a Markov decision process
(MDP), and then describe our proposed method.

A. Markov Decision Process and System Variables

The MDP consists of environment E , state space S, action
space A, and reward space R. At each time step t, RL
agent observes current state st ∈ St, and accordingly selects
action at ∈ At. After executing action at, it receives a scalar
reward rt ∈ Rt from the environment E and observers next
state st+1. This process will continue until terminal state is
reached. Specifically, components of our system are designed
as follows.
• Environment: The environment is a virtual scenario

which corresponds to the two-hop cooperative commu-
nication system established in section II.

• RL Agent: In our proposed method, the source node is
equipped with learning ability, and is considered as RL
agent. Note that, any information about the environment
is unknown to RL agent at the beginning. Therefore, RL
agent needs to act and interact with the environment to
obtain experiences for strategy learning.

• System State: Full observation of environment consists
of channel states between any two nodes in the previous
time slot. Therefore, we consider historical channel state
h(t) as system state, which can be denoted as

St , [hsk(t− 1),hkd(t− 1)], (7)

where hsk(t − 1) represents the set of channel vectors
between source and all relays in time slot t − 1, and
similarly hkd(t − 1) represents that between all relays



3

and destination. More specifically, in our simulation envi-
ronment, channel states of adjacent time slots will change
according to the following Gaussian Markov block fading
autoregressive model [14], [15], which the RL agent has
no prior knowledge about.

hij(t) = ρhij(t− 1) +
√

1− ρ2e(t), (8)

where ρ denotes the normalized channel correlation coef-
ficient, and e(t) ∼ CN (0, σ2I) denotes the error variable
and is uncorrelated with hij(t).

• System Action: In each time slot, RL agent needs to
select relay and make power allocation simultaneously.
Therefore, our system action can be defined as

At , [aR(t), aPs(t)], (9)

where aR(t) ∈ {1, 2, . . . ,K} and aPs(t) ∈ [0, Pmax].
Note that, the action for Pr(t) is omitted, for it can be
replace by the subtraction of Pmax and Ps(t).

• Reward Function: In this letter, we consider an extreme
case that the only feedback our agent gets is a binary re-
sult of successful or unsuccessful communication, which
can be denoted as Rt = {0, 1}. Accordingly, we design
the following outage-based binary reward function.

rt = r(st, at) , 1− f
(
aR(t), aPs(t);h(t)

)
. (10)

The total accumulated reward at time step t can be written as
Rt =

∑T
i=t γ

i−tri, where T denotes total step and γ ∈ [0, 1]
denotes discount factor. The goal of RL agent is to maximize
the expected accumulated reward from each state st.

B. PER-DDPG Solution

To achieve optimal actions under different states, the action-
value function Q(st, at; θ) = E[Rt|st, at] is first defined to
describe the expected return after selecting action at in state
st, which is controlled by network parameter θ. Then, the
optimal action-value function is denoted as Q∗(st, at; θ) =
maxat∈At Q(st, at; θ), which obeys Bellman function.

Q∗(st, at; θ) = Est+1∼E [r + γmax
at+1

Q(st+1, at+1; θ)], (11)
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Fig. 2: PER-DDPG learning framework.

The utilization of DNN has guaranteed the ability of gen-
eralization in terms of action-value estimation. Further, to
data-efficiently deal with continuous power action space, we
propose a PER-DDPG learning method, whose framework is
shown in Fig. 2.

For sampling efficiently, we maintain a prioritized ex-
perience buffer B, to store agent’s experience unit et =
{st, at, rt, st+1} after each interaction. The priority pt indi-
cates the importance of corresponding unit, and it is intuitive to
employ TD error δt as a proxy for priority, which specifically
shows the difference between current state-action value and its
next-step bootstrap estimation. The larger the value, the more
RL agent can learn from this experience unit.

When calculating the priority, a small positive constant ε
is introduced, i.e. pt = |δt| + ε, to ensure that each unit has
the probability to be sampled even if its TD error is zero. In
addition, to correct the bias illustrated in [16], we accordingly
employ the following importance-sampling weight

wi =
(Bsize · pi)−κ

maxj<t wj
, (12)

where Bsize denotes the size of experience buffer, and κ is an
exponent between 0 and 1.

In terms of RL agent, it consists of two parts, which are
called actor and critic, respectively [17]. Further, the agent
employs two separate DNNs for both of them, which are
known as evaluate network and target network.

Critic: The critic estimates action-value function by em-
ploying a DNN with parameter θQ. During training process,
the agent samples a mini-batch of experience units according
to experience priority. Similar to other value-based RL meth-
ods, the critic tries to minimize the following loss function.

L(θQ) = Eet∼B
[
wt · δ2t (st, at; θQ)

]
(13)

with TD error represented as

δt(st, at; θQ) = rt+γmax
at+1

Q(st+1, at+1; θ−Q)−Q(st, at; θQ),

(14)
where θ−Q is a group of old parameters in target network. In
order to improve learning stability, old parameters will be soft
replaced periodically following θ−Q ← τθQ + (1− τ)θ−Q with
τ � 1. Afterwards, parameters in evaluate network will be
updated using RMSProp optimization.

θQ ← θQ − ηQwtδt(st; θQ)∇θQQ(st, at; θQ), (15)

where ηQ denotes learning step size for critic.
Actor: The actor is used to learn action policy and

perform primitive actions. It maintains a parameterized func-
tion µ(s; θµ), which specifies the current policy by deter-
ministically mapping states to specific actions. We define the
following performance objective for current action policy.

J(θµ) = Est∼B[Q(st, µ(st; θµ); θQ)]. (16)

The gradient of such deterministic policy moves the action
policy in the direction of the gradient of action-value function,
that is, network parameters θµ will be updated in proportion to
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∇θµQ(st, µ(st; θµ); θQ). By using chain rule, it can be divided
into two parts as shown below.

∇θµJ = Est
[
∇θµµ(st; θµ)∇aQ(st, at; θQ)|at=µ(st;θµ)

]
,

(17)
based on which the actor parameters θµ is updated as follows.

θµ ← θµ − ηµ∇θµJ, (18)

where similarly ηµ denotes learning step size for actor.
Pseudocode of our method can be found in Algorithm 1.

Algorithm 1 PER-DDPG for Relay and Power Optimization

1: Initialize experience buffer B = ∅.
2: Initialize evaluate network parameters θQ and θµ.
3: Initialize target network with θ−Q = θQ and θ−µ = θµ.
4: for episode u = 1, 2, . . . , umax do
5: Initialize communication environment, get state s1.
6: Initialize a random process ∆µ as noise.
7: for time slot t = 1, 2, . . . , tmax do
8: Choose action at = µ(st; θµ)+∆µt to determine the

selected relay and power for transmission.
9: Execute action at, then receive reward rt and observe

next state st+1.
10: Collect and save current experience et with initial

priority pt = maxi<t pi, and then sample a mini-
batch of experience units ej according to probability
p(j) = pαj /

∑
i p
α
i with predefined exponent α.

11: Calculate importance-sampling weight and TD error
of each experience unit according to (12) and (14).

12: Minimize the loss of mini-batch in (13), and update
evaluate network of critic according to (15).

13: Calculate the sampled policy gradient in (17), and
update evaluate network of actor according to (18).

14: Update experience priority using pj = |δj |+ ε.
15: Update parameters of corresponding target networks

by θ−Q ← τθQ+(1−τ)θ−Q and θ−µ ← τθµ+(1−τ)θ−µ .
16: end for
17: end for

IV. EVALUATION

In this section, we present implementation details of sim-
ulation environment, and demonstrate performance of the
proposed method. Similar to the settings in [10], the required
outage threshold is set as λ = 0.1, and total maximum
power Pmax for source and relay transmission is 1W. Learning
rates for updating critic network and actor network are set as
ηQ = 0.005 and ηµ = 0.001, respectively. Parameter for soft
update is set as τ = 0.001. In addition, the size of experience
buffer Bsize is 10000, and mini-batch size which determines
numbers of training cases is 128.

Given the lack of knowledge of the underlying channel
distribution in actual communication system, we mainly em-
ploy random selection and existing RL algorithms as baseline
methods. More specifically, since the PER operation can be
decoupled from our proposed method, we are able to take
original DDPG scheme for comparison. In addition, DQN is a

widely used RL method in the field of communication, which
we will also take as a baseline method. Note that, DQN can
only solve problems with discrete action spaces. Therefore,
when using this method, we divide the power into L power
levels for the agent to choose from, which can be denoted as
1
LPmax,

2
LPmax, . . . , Pmax.

We first evaluate the training performance of different
methods with total training episodes µmax = 100. Specifically,
we first perform 10 training trials for each method. Then, we
select the successful trials among these 10 repetitions, and
use solid line to represent the median and shadow region to
represent the range of them.

As shown in Fig. 3, the training performance of random
selection is poor, while all DRL methods can converge. Before
training with our proposed method (orange line) and its
another version without handling experience replay (blue line),
we both use 10 episodes for RL agent to select randomly and
collect enough experience units. We find that, PER-DDPG and
original DDPG can finally converge to a similar value. When
compared with DQN method (green line), our method can
achieve a better result with an improvement of about 4% in
average success rate.
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Fig. 3: Average success rate with different methods.

For better explanation, we also present the statistic for all
successful training trials in Table I, where we analyze the
performance of the last 40 episodes (i.e. Episode 61-100, after
training curves converge).

TABLE I: Statistic of 10 trials with different methods.

Method Successful trials Mean Standard deviation
PER-DDPG 10 0.969 1.374 ∗ 10−2

Original DDPG 9 0.955 3.209 ∗ 10−2

DQN 10 0.926 2.003 ∗ 10−2

Random - 0.835 -

We find that with our PER-DDPG method, RL agent can
obtain appropriate action policy every time, but there is one
record of failure using its original version. What’s more,
we observe that although original DDPG trains faster, our
PER-DDPG method has smaller standard variance. As vividly
depicted in Fig. 3, the fluctuation of PER-DDPG’s training
curve is slighter, and the shadow region is smaller. Actually,
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such failure in using original DDPG is caused by the interplay
between the actor and critic updates [18]. The usage of
outdated experience unit can lead to a high variance in value
estimate, which then misleads policy updates. However, with
the help of PER, we realize efficient data sampling, and can
achieve better stability during the training process.
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Fig. 4: Testing result under different outage thresholds.

In testing process, we evaluate the outage probability of
these well-trained DRL models with different threshold re-
quirements. Note that, corresponding to the training process,
we preserve all successful trained network models for each
method. Then we record the average performance of each
method. The testing result is depicted in Fig. 4, where we
can obviously find that our PER-DDPG model still has better
performance than other models. Although original DDPG
method can achieve an average success rate close to that
of PER-DDPG method in training stage, due to its larger
variance, the results obtained in test process are not good.
On the other hand, DQN model always performs worse than
model with policy gradient methods, for it can only perform
coarse-grained discrete power optimization. From the above,
our proposed method can obtain a robust action policy, which
can effectively reduce outage probability and be applied to
other situations.

V. CONCLUSION

In this letter, we introduce deep deterministic policy gradient
into dynamic relay selection and power optimization in a two-
hop cooperative relay network, and realize data efficiency
with the help of prioritized experience. Unlike traditional
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