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Expectation-Maximization Learning for Wireless Channel

Modeling of Reconfigurable Intelligent Surfaces

José David Vega Sánchez, Luis Urquiza-Aguiar, Martha Cecilia Paredes Paredes, and F. Javier López-Martı́nez

Abstract—Channel modeling is a critical issue when design-
ing or evaluating the performance of reconfigurable intelligent
surface (RIS)-assisted communications. Inspired by the promis-
ing potential of learning-based methods for characterizing the
radio environment, we present a general approach to model
the RIS end-to-end equivalent channel using the unsupervised
expectation-maximization (EM) learning algorithm. We show
that an EM-based approximation through a simple mixture of
two Nakagami-m distributions suffices to accurately approximate
the equivalent channel, while allowing for the incorporation of
crucial aspects into RIS’s channel modeling such as beamforming,
spatial channel correlation, phase-shift errors, arbitrary fading
conditions, and coexistence of direct and RIS channels. Based
on the proposed analytical framework, we evaluate the outage
probability under different settings of RIS’s channel features
and confirm the superiority of this approach compared to recent
results in the literature.

Index Terms—Expectation-maximization, channel modeling,
reconfigurable intelligent surface, spatial correlation, outage
probability.

I. INTRODUCTION

Reconfigurable intelligent surfaces (RISs) have been en-

visioned as a new paradigm to improve the coverage and

spectral efficiency of future wireless networks by customizing

the propagation radio environment; that is, RIS technology

brings intelligence to the physical channel level. An RIS is

a metasurface-based device built as a set of low-cost, nearly

passive reflecting units that can be configured via an external

programmable controller. Depending on the configuration, the

RIS is capable of altering the amplitude and/or phase-shift

response of the metasurface to modify the behavior of a

radio wave that impinges upon it [1]. Owing to its promising

features, RISs have been widely investigated in the literature

in the context of physical layer security [2–4], non-orthogonal

multiple access networks [5], full-duplex (FD) communication

systems [6], and many others.

Channel modeling in the context of RIS is a relevant issue,

since the achievable performance of RIS-based communi-

cations is determined by the distribution of the equivalent
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channel observed by the receiver. Hence, a good balance

between modeling accuracy and mathematical tractability is

key for performance analysis purposes. A deep inspection of

the RIS-related research in channel modeling reveals that the

common assumption of independent and identically distributed

(i.i.d.) fading to model the RIS channels is only justified

for the sake of mathematical tractability; several relevant

examples include somehow idealistic set-ups [7–9] as well as

more realistic scenarios that consider hardware impairments

and imperfect phase estimation [10–12]. Very recently, based

upon the formulation in [13], a Gamma approximation for

the equivalent composite model in RIS-assisted set-ups that

explicitly considers the impact of spatial channel correlation in

Rayleigh fading was given using the moment-matching (MoM)

technique [14].

Similarly, most of the aforementioned references are usually

restricted to the case of Rayleigh fading. Again, such an

assumption is taken because of mathematical simplicity rather

than based on physically-motivated evidences, specially in

line-of-sight (LOS) scenarios. The consideration of arbitrary

fading conditions for the individual links in the RIS-based

set-ups either requires for the use of simple (but not always

accurate) approximations based on the Central Limit Theorem

(CLT) [11], or come at the price of a rather high mathematical

complexity [15, 16] using Meijer-G and multivariate Fox-H

functions. In practice, the true distribution of the fading links

does not exactly belong to a given state-of-the-art model, and

the samples of the individual links may not even be available

when using existing channel estimation protocols for RIS [17].

Based on the above considerations, and motivated by the

potential of RIS to enable practical intelligent radio environ-

ments [18], we harness the potential of learning methods to

unify key factors (e.g., spatial correlation, arbitrary fading of

the links, phase-shift noise, and multiple antennas) in the RIS’s

channel modeling into a single approach without incurring

prohibitive complexity. We propose to approximate the exact

distribution of the RIS end-to-end channel by a simple mixture

of two Nakagami-m distributions, where the fitting parameters

are estimated via an unsupervised Expectation-maximization

(EM) algorithm. Since EM algorithms are agnostic to the

underlying distribution of the sample data, we exemplify how

this approach can be applied in two practical scenarios: (i)

spatially-correlated Rayleigh channels with phase errors, and

(ii) generalized fading conditions with phase errors.

In what follows, upper and lower-case bold letters denote

matrices and vectors; f(·)(·) denotes probability density func-

tion (PDF); F(·)(·) is the cumulative density function (CDF);

U [a, b] denotes a uniform distribution on [a, b]; CN (·, ·) is

the circularly symmetric Gaussian distribution; C denotes the

http://arxiv.org/abs/2103.13525v2
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complex numbers; E[·] is expectation; Γ(·) is the gamma

function [19, Eq. (6.1.1)]; Γ(·, ·) is the upper incomplete

gamma function [19, Eq. (6.5.3)]; diag (x) is a diagonal matrix

whose main diagonal is given by x; IN is the identity matrix

of size N × N ; (·)T is the transpose; ‖·‖ is the Euclidean

norm of a complex vector; (·)H is the Hermitian transpose;

mod (·) is the modulus operation; ⌊·⌋ is the floor function,

and sinc(w) = sin(πw)/(πw) is the sinc function.

II. SYSTEM AND CHANNEL MODELS

We consider an RIS-aided wireless communications setup

consisting of a transmitter (S) with M antennas communicat-

ing with a single-antenna receiver (D) via an RIS equipped

with N nearly passive reconfigurable elements. The receiver

complex baseband signal at D is expressed as:

y =
√
PT

(
hT
2 ΦG+ hT

sd

)
wx+ ñ, (1)

where PT indicates the transmit power at S, x is the transmit-

ted signal with E{|x|2} = 1, ñ ∼ CN (0, σ2
w̃) is the additive

white Gaussian noise with σ2
w̃ power, hsd ∈ CM×1 is the

direct channel between S and D, w ∈ CM×1 is the active

beamforming vector at S, G = [g1, . . . ,gM]T ∈ CN×M

and h2 = [h21, . . . , h2N ]
T ∈ CN×1 denote the channel

coefficients for the S-to-RIS and RIS-to-D links, respectively.

Furthermore, Φ = diag
(
ejφ1 , . . . , ejφN

)
is the phase-shift

matrix induced by the RIS. Let ∠gqn and ∠hq
sd be the phase

of gqn and hq
sd for q = {1, . . . ,M} and n = {1, . . . , N},

respectively. So, the RIS uses the optimally-designed phase

shifts for each element φn = ∠hq
sd − ∠gqn − ∠h2n to

cancel the overall phase-shift, which maximizes the SNR at

D. Nevertheless, in practice, the imperfect phase estimation

and the limited quantization of phase states at the RIS causes

that a residual random phase error Θn persists [13], i.e.,

φn = ∠hq
sd − ∠gqn − ∠h2n + Θn. Hence, the equivalent

magnitude channel observed by D can be formulated as1

h =
∣∣(vT diag (h2)G+ hT

sd

)
wopt

∣∣ , (2)

where v =
[
ejΘ1 , . . . , ejΘN

]
, with Θn being the phase

error terms. Under the maximum ratio transmission (MRT),

the optimal transmit beamforming vector at S is given by

wopt =
(vT diag(h2)G+h

T
sd)

H

‖vT diag(h2)G+hT
sd‖

∈ CM×1 [20]. With the previous

definitions, the instantaneous SNR at D is given by

γG,h2,hsd
=

PT

σ2
w̃

h2. (3)

Here, our goal is to provide an approximate statistical model

for h and then obtain the SNR distribution straightforwardly.

For benchmarking purposes with existing results in the litera-

ture, we will consider two rather general situations: (i) spatially

correlated Rayleigh fading channels, and (ii) generalized i.i.d.

fading channels. In all instances, S and D are assumed to be

well-separated so that their direct channel is independent from

the RIS channels. Next, we detail the specific conditions for

both scenarios.
1To reach the expression in (2), we use the equivalent operation, hT

2 Φ ≡
v
T diag (h2), where v =

[

ejφ1 , . . . , ejφN
]

.

A. Correlated Rayleigh fading channels

Here, we take into account spatial Rayleigh correlation for

the fading channels G and h2. Based on the assumptions in

[13], for a rectangular phase-shift array with N = NV NH

elements, where NV and NH denotes the number of elements

per row and per column, respectively, and under isotropic

scattering environment, the distributions of the fading channels

in (1) are described by:

hsd ∼ CN (0M, βsdIM) , h2 ∼ CN (0N, Aβ2RIN)

gq ∼ CN (0N, Aβ1RIN) for q = {1, . . . ,M} , (4)

where β1, β2, and βsd encompass the average attenuation due

to the path losses for the S-RIS, RIS-D, and S-D links, respec-

tively. Also, A = dHdV is the area of a single RIS element,

where dV is the vertical height and dH is the horizontal width,

and R ∈ CN×N denotes the spatial correlation matrix for the

RIS. The (a, b)-th element of R is given by

ra,b = sinc (2 ‖ua − ub‖ /λ) a, b = 1, . . . , N (5)

where uζ = [0,mod (ζ − 1,NH) dH, ⌊(ζ − 1) /NH⌋ dV]
T

,

ζ ∈ {a, b}, and λ is the wavelength of a plane wave.

B. Generalized i.i.d. fading channels

We now analyze the case on which the all channel coef-

ficients at the RIS are arbitrarily distributed. For the sake of

generality, we consider that the fading channel coefficients are

built as a superposition of an arbitrary number L of dominant

specular waves plus an additional diffuse components [21], as:

hq
sd =

√
βsd

(
L∑

l=1

V
(l,q)
sd ejθ

(l,q)
sd + Z

(q)
sd

)
(6)

h2n =
√
β2

(
L∑

l=1

V
(l,n)
2 ejθ

(l,n)
2 + Z

(n)
2

)
(7)

gqn =
√
Aβ1

(
L∑

l=1

V
(l,q,n)
1 ejθ

(l,q,n)
1 + Z

(q,n)
1

)
(8)

with q = {1, . . . ,M} and n = {1, . . . , N}, and where V
(l,·)
(·)

denote the constant amplitude of an l-th specular component,

θ
(l,·)
(·) ∼ U [0, 2π], and Z

(·)
(·) are Rayleigh distributed with

E{|Z|2} = 2σ2 = Ω0 denoting the diffuse received signal

components. This formulation includes important ray-based

fading models such as Rayleigh, Rician, and two-wave with

diffuse power (TWDP) as special cases for L = 0, 1, 2,

respectively.

III. EM-BASED RIS CHANNEL MODELING

In this section, we describe how the EM learning algorithm

can be used to model the equivalent RIS channel. Even though

this general approach can be used for any target distribution,

we exemplify that a simple mixture of two Nakagami-m
distributions2 provides an excellent performance.

2Experience shows that, in general, the higher the number Mix of the
Nakagami-m distributions being mixed, the better the fit of the approximate
solution concerning the true distribution. On the other hand, beyond a certain
value of Mix, i) EM becomes computationally hard, and ii) mathematical
tractability of the approximation may become tedious. Choosing Mix = 2 is
a good rule of thumb that leads to a trade-off among accuracy, computational
cost, and mathematical complexity.
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A. Proposed Approximation

Let us consider a training set vector h = {hi}
t
j consisting

of t samples of h in (2) observed by D; we propose to approx-

imate the distribution of h by a mixture of two Nakagami-m
distributions, given by

fh(r) =

2∑

i=1

ωiφi (r;mi,Ωi) =

2∑

i=1

ωi
mmi

i r2mie
−

mir
2

Ωi

2−1Γ(mi)Ω
mi

i r
, (9)

where ωi,∈ {1, 2} under the constraints of
∑2

i=1 ωi = 1 and

0 ≤ ωi ≤ 1 denote the mixture weights, Ωi are the mean pow-

ers, and mi are the fading parameters of the weighted PDFs.

Moving from the conventional channel modeling approaches

to learning-based channel modeling, we adopt a practical fit-

ting technique based on the EM algorithm in order to estimate

the mixture parameters in (9) [22]. EM is an iterative approach

that maximizes the mixture model’s likelihood function with

respect to the weight coefficients using the input unlabeled

samples. The EM algorithm consists of two steps, namely, the

expectation (E)-step and the maximization (M)-step. Initially,

the parameters in the EM algorithm are randomly chosen for

the mixture model. Then, the parameters are updated on each

iteration until a convergence criteria is met. E-step calculates

the membership coefficients of the ith weighted PDF for all

data point utilizing the current parameter estimates ωi, Ωi and

mi. The membership values can be computed as [23]

τ
(k)
ij =

ωiφi (hj ;mi,Ωi)∑2
l=1 ωlφl (hj ;mi,Ωi)

, i = 1, 2, j = 1, 2, . . . , t,

(10)

where k denotes the current iteration, t is the size of the

sample set in (2), hj , ∀j = 1 . . . t represent the unlabeled

samples, and i is the mixture index. Then, in the M-step, the

new parameters (i.e., fading and weight values) are estimated

by maximizing the log-likelihood function of each mixture

distribution weighted by the membership values. The updated

parameters are given by [23]:

Ω
(k+1)
i =

∑t
j=1 τ

(k)
ij h2

j
∑t

j=1 τ
(k)
ij

m
(k+1)
i =

1 +

√
1 +

4∆k
i

3

4∆k
i

ω
(k+1)
i =

∑t
j=1 τ

(k)
ij

t
,∆k

i =

∑t
j=1 τ

(k)
ij

[
log(Ωi)− log(x2

j )
]

∑t
j=1 τ

(k)
ij

(11)

Algorithm 1 shows the Nakagami-m Mixture Model based on

the EM approach. Here, the mixture weights are randomly

chosen in the range of [0 1], and the initial values for the fad-

ing parameters are computed via the conventional Maximum

Likelihood Estimation (MLE). The relative tolerance method

is used as stopping criterion. The algorithm stops when a

relative tolerance between two parameters (i.e., the old and

the new values) is lower than a given threshold, which is

experimentally set to 1× 10−3.

Remark 1. The PDF approximation in (9) is general and

new, and it can be easily used to model any existing fading

channel assumed in (2). More importantly, it can also be used

with raw measurement data, without the explicit knowledge

Algorithm 1: EM procedural algorithm to estimate ωi,

Ωi, and mi of Nakagami-m Finite Mixture Model

Input: h← training set, ǫ← 1× 10−3, and initialization of ωi,
Ωi, and mi via MLE, for i = 1, 2;
Output: ωi, Ωi, and mi, for i = 1, 2;
k = 1, t = length(h);
while ΛΩi && Λmi < ǫ do

E step:
for j = 1; j < t; j++ do

τkij =
ωk
i φi

(
hj ;m

k
i ,Ω

k
i

)

∑2
l=1

ωlφl(hj ;m
k
i
,Ωk

i )
, for i = 1, 2;

end
M step:

∆k
i =

∑t
l=1 τk

il

(
log(Ωk

i )−log(h2
l )

)

∑
t
l=1

τk
1l

;

Ωk+1
i =

∑t
l=1 τk

il×h2
l∑

t
l=1

τk
il

mk+1
i =

1+

√

1+
4∆k

i
3

4∆k
i

;

ωk+1
i =

∑t
l=1 τ

k
il
/t, for i = 1, 2;

k = k + 1;
end
Stop Criterion Definition:

Λmi =| (m
(k+1)
i −m

(k)
i )/mk

i | ΛΩi =| (Ω
(k+1)
i −Ω

(k)
i )/Ωk

i |;

of the actual wireless propagation characteristics. Also, the

obtained framework is, to the best of our knowledge, the first

one in the literature that can be used to characterize the RIS’s

composite channels as correlated/independent over conven-

tional/generalized fading paths in the presence of phase errors

without incurring in additional mathematical complexity.

B. Outage Probability Performance

We consider the outage probability (OP) as the bench-

marking metric to evaluate the system performance. Hence,

the OP expression for the network is given by the following

proposition.

Proposition 1. The approximate OP expression of the pro-

posed system is given by

OP = 1−
2∑

i=1

Γ

(
mi,

mi(2Rth−1)
ΩiPT/σ2

w̃

)

Γ (mi)
, (12)

where Rth [b/s/Hz] is the target rate, and the parameters

(mi,Ωi, ωi) for the mixture model are estimated by using (11).

Proof. The OP is defined as the probability that information

rate is less than the required threshold information rate (Rth).

Therefore the OP of the system can be formulated as

OP = Pr
{
log2

(
1 + PT

σ2
w̃

h2
)
< Rth

}
= Fh

(√
2Rth−1
PT/σ2

w̃

)
.

(13)

From (13), the OP in (12) can be obtained directly from the

cumulative distribution function (CDF) of (9).

IV. NUMERICAL RESULTS AND DISCUSSIONS

We now evaluate the effect of correlated/i.i.d channels under

traditional/generalized fading with phase errors on the perfor-

mance in the investigated scenario, as well as the goodness

of the proposed approximation for the equivalent channel in

RIS-aided system. For all plots, we consider a RIS network

geometry as in [13], where the fixed system parameters are
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Fig. 1. OP vs. Rth by assuming correlated Rayleigh channels in different scenarios: (a) no direct link exists between S and D and varying N and M ; (b)
only the indirect link channel for different N values and M = 1; (c) the joint presence of direct (S-D) and correlated RIS channels for different correlation
matrix distances and M = 1.

setting as PT/σ
2
w̃ = 124 dB, which corresponds to trans-

mitting 30 dBm over 10 MHz of bandwidth with 10 dB

noise figure, and a carrier frequency of 3 GHz, so the size

of a single RIS element will be λ = 0.1 mts. The phase

errors Θn are modeled as zero-mean Von Mises RVs with

concentration parameter κ, which captures the accuracy of

the phase estimation at the RIS elements (i.e., a smaller κ
means a larger phase error). For the sake of comparison, the

approaches in [14] and [11] for modeling correlated Rayleigh

and i.i.d. generalized RIS channels, respectively, are included

as a reference in the OP analysis. For informative purposes,

to estimate the mixture model parameters in (9) with the

EM algorithm’s aid, t = 105 realizations are generated for

the training set in (2) for all instances. Monte Carlo (MC)

simulations for the true channels are provided to validate the

accuracy of the proposed framework.

Figs. 1a-1c illustrate the impact of assuming correlated

Rayleigh fading in the RIS’s composite channel on the OP

performance. In these figures, for the indirect channels, we

consider Aβ1 = Aβ2 = −75 dB. Also, for Figs. 1a-

1b, the spatial correlation matrices are formulated assuming

dH = dV = λ/8, and κ = 1, which is linked to one

of the practical limitations of state-of-the-art implementations

arising from hardware impairments at the RIS. In Fig. 1a, we

present the OP vs. Rth by varying the number of both N (RIS

elements) and M (transmit antennas) when the direct channel

is blocked. From all traces, we see that the source’s antenna

configuration contributes to improving the OP performance

as M increases, regardless of the number of RIS elements.

Fig. 1b shows the OP vs. Rth for different values of N without

the existence of the direct link for M = 1. The i.i.d. Rayleigh

case is also included as a reference. From all the curves, it

is evident that channel correlation significantly affects the OP

compared to the i.i.d. Rayleigh case. In fact, the performance

gap between correlated and independent channels becomes

more consistent as N increases. In Figs. 1a-1b, notice that the

differences between MC simulations and the proposed EM-

based approximation are almost imperceptible. Conversely, the

MoM approach in [14], although reasonably good, is notably

outperformed by our approximation. Fig. 1c depicts the OP

vs. Rth for M = 1 in the presence of both direct and

indirect channels. Here, we explore the effect of varying the

size of the RIS element on the OP performance. Hence, we

use different correlation matrix distances, i.e., dH = dV ∈

{λ/4, λ/8, λ/12}. Also, the other system parameters are set

to: βsd = −130 dB, and κ = 3. As in the previous figure, the

case of i.i.d. Rayleigh fading is also reported as a reference.

From all traces, it can be observed that decreasing the size

of the RIS (i.e., reducing the inter-element distance) leads to

a significant loss in the OP performance when dealing with

correlated channels; in contrast, the best OP performance is

achieved with the unrealistic i.i.d. Rayleigh case. Again, the

proposed approach presents a better fit than the approach in

[14] to the MC simulations.

To demonstrate the generality of the proposed EM-based

approach, we now study how the consideration of assuming

i.i.d. generalized fading channels in a RIS-aided communica-

tion impacts the OP behavior. Figs. 2a and 2b show the OP vs.

Rth by varying the number of elements at the RIS without/with

the existence of the direct link, respectively. For the sake

of simplicity, we define a power ratio parameter similar to

the well-known Rician K parameter, i.e., KL
∆
= ΩL

Ω0
, with

ΩL =
∑L

l=1 V
2
l being the total average power of the specular

components. Likewise, the amplitudes of the successive rays

are expressed in terms of the amplitude of the first dominant

component, as in [24], i.e., Vl = αV1 for l = {2, . . . , L}, with

0 < α < 1. Considering this, in Fig. 2a, for the links between

S and the RIS, and between the RIS and D, we consider

L = 2, K = 2 dB, V1 = 1, α = 0.5, and Ω0 = 1. Also,

β1 = β2 = −55 dB, and dH = dV = λ/2, and κ = 1.

In Fig. 2b, all the previous configurations in Fig. 2a for the

indirect channels are kept. Regarding the direct path between

S and D, we assume Rician fading, i.e., L = 1 with K = 5
dB, and βsd = −135 dB. Comparing Figs. 2a and 2b, we

see a remarkable performance gain due to the existence of

a direct link. For instance, when N = 196 and Rth = 0.4,

the OP is 1.3 × 10−4 with the direct link and 3.9 × 10−5

without the direct path. Finally, for all scenarios under study,

our approximations work well regardless of N , while the

approach in [11] (vide Fig. 2a) is slightly degraded for low

OP values. Finally, Table I shows the normalized mean square

error (NMSE) evaluated using the NMSE built-in function in

MATLAB, as a figure of metric to quantify the goodness-of-fit

among the MC simulations, the proposed EM method, and the

approaches in [11, 14] of the curves considered in Figs. 1b and

2a. Results in Table I support the observation that our approach

provides better performance in the left tail (asymptotic region)
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Fig. 2. OP vs. Rth for different N values and generalized NWDP channels.

TABLE I
OP FITTING RESULTS.

NMSE RANGES FROM−∞ (BAD FIT) TO 1 (PERFECT FIT).

NMSE

Fig. # N Proposed OP OP [14]-Correlated OP [11]-i.i.d.

36 0.99 0.96 -

1b 100 0.99 0.91 -

256 0.99 0.86 -

49 0.99 - 0.97

2a 100 0.99 - 0.94

196 0.99 - 0.88

of the OP plots than its counterparts, regardless of the value

of N . This difference in accuracy becomes more evident in

the illustrative examples shown in the other figures.

V. CONCLUSIONS

The potential of learning-based methods for modeling the

distribution of RIS end-to-end channels has been explored.

Specifically, the use of unsupervised EM techniques facilities

incorporating key channel aspects such as spatial correlation,

presence of phase noise at the RIS, the existence of both

the direct and indirect paths, and assumptions of conven-

tional/generalized fading. The potential of using these tech-

niques with channel measurement data opens the possibility to

naturally incorporating learning-based techniques in intelligent

radio environments.
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