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CLNet: Complex Input Lightweight Neural Network

designed for Massive MIMO CSI Feedback
Sijie Ji, Mo Li, Fellow, IEEE

Abstract—Unleashing the full potential of massive MIMO in
FDD mode by reducing the overhead of CSI feedback has
recently garnered attention. Numerous deep learning based
massive MIMO CSI feedback approaches have demonstrate
their efficiency and potential. However, most existing methods
improve accuracy at the cost of computational complexity and
the accuracy decreases significantly as the CSI compression rate
increases. This paper presents a novel neural network CLNet
tailored for CSI feedback problem based on the intrinsic proper-
ties of CSI. CLNet proposes a forge complex-valued input layer
to process signals and utilizes attention mechanism to enhance
the performance of the network. The experiment result shows

that CLNet outperforms the state-of-the-art method by average
accuracy improvement of 5.41% in both outdoor and indoor
scenarios with average 24.1% less computational overhead. Codes
are available at GitHub. 1.

Index Terms—Massive MIMO, FDD, CSI feedback, deep learn-
ing, complex neural network, attention mechanism, lightweight
model

I. INTRODUCTION

THe massive multiple-input multiple-output (MIMO) tech-

nology is considered one of the core technologies of the

next generation communication system, e.g., 5G. By equipping

a large number of antennas, the base station (BS) can suffi-

ciently utilize spatial diversity to improve the channel capacity.

Especially, by enabling beamforming, a 5G BS can concentrate

signal energy to a specific user equipment (UE) to achieve

higher signal-to-noise ratio (SNR), less interference leakage

and hence, higher channel capacity. However, beamforming is

possibly conducted by the BS only when it has the channel

state information (CSI) of the downlink at hand [1].

In frequency division duplexing (FDD) mode that most

of contemporary cellular systems operate in, the channel

reciprocity does not exist. Therefore, the UE would have to

explicitly feed back the downlink CSI to the BS, and the pilot-

aided training overhead grows quadratically with the number

of transmitting antennas, which might overturn the benefit of

Massive MIMO itself [2]. Thus, CSI compression is needed

before the feedback to reduce the overhead.

Traditional compressive sensing (CS) based methods rely

heavily on channel sparsity and are limited by their efficiency

in iteratively reconstructing the signals. Their performance is

highly dependent on the wireless channel [3], and thus is not
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1https://github.com/SIJIEJI/CLNet

a desirable approach considering the diversified use cases of

5G networks.

The recent rapid development of deep learning (DL) tech-

nologies provide another possible solution for efficient CSI

feedback in FDD massive MIMO system. Instead of relying

on sparsity, the DL approaches utilize the auto-encoder frame-

work [4]. The encoder learns a map to the low-dimensional

compressed space and the decoder reconstruct to the original

data by a single run without the labeled data. It naturally

overcomes the limits of CS-based approaches in channel

sparsity and operation efficiency.

The first DL-based method, CsiNet [5], explored and

demonstrated the efficiency of deep learning in CSI feed-

back. CsiNet significantly outperforms the traditional CS-

based methods (LASSO, BM3D-AMP and TVAL3) under

various compression rates.

Based on CsiNet, most of the subsequent DL-based meth-

ods utilize more powerful DL building blocks to achieve

better performance with the sacrifice of computational over-

head. CsiNet-LSTM [6] and Attention-CSI [7] introduced

LSTM that significantly increases the computational over-

head. CsiNet+ [8] comprehensively surveyed recent DL-based

methods and proposed a parallel multiple-rate compression

framework. The computational overhead of CsiNet+ are ap-

proximately x7 higher than the original CsiNet [9]. Recently,

some methods start to reduce the complexity, for example,

JCNet [10] and BcsiNet [11], however, their performance

has also reduced. So far, only CRNet [12] has outperformed

CsiNet without increasing the computational complexity.

However, CSI or signals are represented in complex en-

velopes, which have their own physical meaning that is over-

looked by previous works, only [13] considered this problem

by adopting complex-valued three dimensional convolutional

neural network [14]. However, as the complex kernel is hard

to optimize through back-propagation, the network is hard to

train and the computational complexity is inevitably greatly

increased. Considering the limited computational resource and

limited storage at UE side, this letter proposes a tailored DL

network that can cope with complex number yet maintain

lightweight, CLNet, for CSI feedback problem. Eventually,

CLNet outperforms CRNet with 5.41% higher accuracy and

24.1% less complexity on average. The main contributions are

summarized as follows:

• CLNet proposes a simple yet effective way to organic

integrate the real and imaginary parts into the real-valued

neural network models.

• CLNet adopts spatial attention mechanisms to let the DL

model focus on the more informative clustered signal

http://arxiv.org/abs/2102.07507v3
https://github.com/SIJIEJI/CLNet
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parts.

II. SYSTEM MODEL AND PRELIMINARY

Consider a single cell FDD system using massive MIMO

with Nt antennas at BS, where Nt ≫ 1 and Nr antennas at

UE side (Nr equals to 1 for simplicity). The received signal

y ∈ CNc×1 can be expressed as

y = Ax + z (1)

where Nc indicates the number of subcarriers, x ∈ CNc×1

indicates the transmitted symbols, and z ∈ CNc×1 is the

complex additive Gaussian noise. A can be expressed as

diag
(

hH
1 p1, · · · , h

H
Nc

pNc

)

, where hi ∈ CNt×1 and pi ∈
CNt×1, i ∈ {1, · · · , Nc} represent downlink channel coef-

ficients and beamforming precoding vector for subcarrier i,
respectively.

In order to derive the beamforming precoding vector pi, the

BS needs the knowledge of corresponding channel coefficient

hi, which is fed back by the UE. Suppose that the downlink

channel matrix is H = [h1 · · · hNc
]H which contains NcNt

elements. The number of parameters that need to be fed back

is 2NcNt, including the real and imaginary parts of the CSI,

which is proportional to the number of antennas.

Because the channel matrix H is often sparse in the angular-

delay domain. By 2D discrete Fourier transform (DFT), the

original form of spatial-frequency domain CSI can be con-

verted into angular-delay domain, such that

H′ = FcHFH
t (2)

where Fc and Ft are the DFT matrices with dimension Nc ×
Nc and Nt × Nt, respectively. For the angular-delay domain

channel matrix H′, every element corresponds to a certain path

delay with a certain angle of arrival (AoA). In H′, only the

first Na rows contain useful information, while the rest rows

represent the paths with larger propagation delays are made up

of near-zero values, can be omitted without much information

loss. Let Ha denote the informative rows of H′.

Ha is input into UE’s encoder to produce the codeword v

according to a given compression ratio η such that

v = fE (Ha,ΘE) (3)

where fE denotes the encoding process and ΘE represents a

set of parameters of the encoder.

Once the BS receives the codeword v, the decoder is used

to reconstruct the channel by

Ĥa = fD (v,ΘD) (4)

where fD denotes the decoding process and ΘD represents a

set of parameters of the decoder. Therefore, the entire feedback

process can be expressed as

Ĥa = fD (fE (Ha,ΘE) ,ΘD) (5)

The goal of CLNet is to minimize the difference between the

original Ha and the reconstructed Ĥa, which can be expressed

formally as finding the parameter sets of encoder and decoder

satisfying
(

Θ̂E , Θ̂D

)

= argmin
ΘE ,ΘD

‖Ha − fD (fE (Ha,ΘE) ,ΘD)‖
2
2 (6)

III. CLNET DESIGN

This section presents the design of the CLNet and its

key components. Figure 1 depicts the overall architecture of

CLNet, in which traditional convolution blocks are omitted for

simplicity. Overall, CLNet is an encoder-decoder framework

with four main building blocks that are tailored for the CSI

feedback problem.

Fig. 1: The encoder and decoder architecture of CLNet.

The performance of the CSI feedback scheme highly de-

pends on the compression part, the encoder. The less infor-

mation loss of the compression, the higher the decompression

accuracy can be obtained. Due to the limited computing power

and storage space of UE, deepening the encoder network de-

sign is not practical. Therefore, CLNet leverages the physical

characteristics of CSI to achieve a lightweight yet informative

encoder by two tailored blocks.

First, CSI is the channel frequency response with complex

values that depict channel coefficients of different signal paths.

The previous DL-based CSI feedback methods, treat the real

and imaginary parts of the CSI separately. Instead, the input

CSI in CLNet first goes through the forged complex-valued

input layer that embeds the real and imaginary parts together

to preserve the physical information of the CSI (Section III-

A). Second, different signal paths have different resolutions of

cluster effect in the angular-delay domain, which correspond-

ing to different angles of arrival and different path delays.

Thus, we introduce the CBAM block [15] that serves as

spatial-wise attention to force the neural network focus on

those clusters and suppress the unnecessary parts (Section III-

B).

Since the encoder becomes more powerful, the decoder can

be correspondingly more lightweight, thus CLNet modifies the

CRBlocks [12] in decoder by reducing the filter size from 1×9
to 1 × 3. To further reduce the computational cost, CLNet

adopts the hard-Sigmoid activation fuction which is more

hardware friendly than the conventional Sigmoid activation

function (Section III-C).

A. Forged Complex-valued Input

CSI is complex-valued channel coefficients such that:

H(t) =

N
∑

k=1

ak(t)e
−jθk(t) (7)

where N is the number of signal paths. ak(t) and θk(t)
indicate the signal attenuation and propagation phase rotation

of the k-th path at time t respectively. The BS relies the

physical meaning of CSI, the norm of real and imaginary part
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describes the channel’s attenuation to signal and the ratio of

the real and the imaginary part describes the channel’s phase

rotation to the signal, to conduct the beamforming.

Since a typical deep learning neural network is designed

based on real-valued inputs, operations, and representations.

Existing DL-based CSI feedback methods simply separate

the real and imaginary parts of the complex-valued as two

independent channels of an image as the neural network input,

which may destroy the original physical property of each

complex-valued channel coefficient. Specifically, as Figure 2

(a) depicts, a conventional 3× 3 kernel size entangles the real

and imaginary parts of neighboring elements in Ha, and as a

result, the 9 complex CSI are interpolated as one synthesized

value.

Fig. 2: Diagrammatic comparison of the conventional convo-

lution and the CLNet forged complex-valued input layer.

Mathematically, Ftr : Ha → I is a convolutional trans-

formation. Here, Ha ∈ RNa×Na×2 is a 3D tensor, extended

from its 2D version by including an additional dimension

to separately express the real and imaginary parts, and I ∈
RNa×Na×C , where C indicates the number of convolutional

filters applied to learn different weighted representations. The

output of Ftr is I = [i1, i2, . . . , iC ], ic ∈ RNa×Na . Let

an + bni denotes a CSI and wn is the learnable weight

of a convolutional filter f . The 3x3 convolution operation

essentially is the sum of two multiplication such that:

i1(1, 1) = [a1, ..., a9] · [w1, ..., w9] + [b1, ..., b9] · [w1, ..., w9]
(8)

In such way, the real and imaginary parts of the same complex-

valued signal are decoupled and different CSI metrics are

mixed, thus losing the original physical information carried

by the channel matrix.

The insight of CLNet is that by utilizing a 1× 1 point-wise

convolution, the real and imaginary parts of a complex-valued

coefficient can be explicitly embedded such that:

i1(1, 1) = [a1] · [w1] + [b1] · [w1] (9)

where the ratio between a and b are preserved, thus maintain

the phase information and the amplitude of the signal be scaled

by w. Since CNN shares the weight w, so the entire whole

CSI matrix’s amplitude is essentially scaled by the same w,

the relative amplitude across subchannels is also preserved.

The output ic, essentially, is a weighted representation of

the original Ha and different filters learn different weighted

representations, among which, some may be more important

than others. Based on this, CLNet further adopts the SE

block [16], which serve as the channel-wise attention in

the forged complex-valued input layer. It assists the neural

network to model the relationship of the weights so as to focus

on the important features and suppress the unnecessary ones.

A diagram of the SE block is shown in Figure 2 (b) with

annotation Fse.

The output I first goes through Fsq transformation by global

average pooling to obtain channel-wise statistics descriptor z ∈
RC . Here, Fsq expands the neural network receptive field to

the whole angular-delay domain to obtain the global statistical

information, compensating the shortcoming of the insufficient

local receptive field of 1× 1 convolution used in the first step

of the forged complex-valued input layer.

After that, the channel descriptor z goes through Fex trans-

formation, i.e., a gated layer with sigmoid activation to learn

the nonlinear interaction as well as the non-mutually-exclusive

relationship between channels, such that

s = Fex(z,W) = σ(g(z,W)) = σ (W2δ (W1z)) , (10)

where δ is the ReLU function, W1 ∈ R
C

2
×C and W2 ∈ RC×

C

2 .

Fex further explicitly models the inter-channel dependencies

based on z and obtain the calibrated s, which is the attention

vector that summarizes all the characteristics of channel C, in-

cluding intra-channel and inter-channel dependencies. Before

being fed into the next layer, each channel of I is scaled by

the corresponding attention value, such that

Ĩ:,:,i = Fscale(s, I) = siI:,:,i, s.t. i ∈ {1, 2, · · · , C} (11)

Ĩ ∈ RNa×Na×C is the final output of the forged complex-

valued input layer, which preserves the CSI physical informa-

tion while capturing dynamics by the channel-wise attention

mechanism.

B. Attention Mechanism for Informative Encoder

On the other hand, in angular-delay domain, the channel

coefficients exhibit the effect of clusters with different resolu-

tions that corresponding to the distinguishable paths that arrive

with specific delays and AoAs. In order to pay more attention

to such clusters, CLNet employs a CBAM block [15] serve as

spatial-wise attention to distinguish them with weights in the

spatial domain as Figure 3 illustrates.

Fig. 3: Operation illustration of spatial-wise attention of

CLNet.

Based on the cluster effect in the angular-delay domain,

spatial-wise attention uses the generated spatial statistical

descriptors as the basis for assigning weights, forcing the

network to focus more on the distinguishable propagation

paths.

First, two pooling operations, i.e., average-pooling and

max-pooling, are adopted across the input Fi’s channel C
to generate two 2D feature maps, Favg ∈ RNa×Na×1 and
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Fmax ∈ RNa×Na×1, respectively. CLNet concatenates the

two feature maps to generate a compressed spatial feature

descriptor Fdsc ∈ RNa×Na×2, and convolves it with a stan-

dard convolution layer to produce a 2D spatial attention mask

Fmask ∈ RNa×Na×1. The mask is activated by Sigmoid and

then multiplied with the original feature maps Fi to obtain Fo

with spatial-wise attention.

Fo = CBAM(Fi)

= Fi (σ (fc([AvgPool(Fi);MaxPool(Fi)])))

= Fi (σ (fc ([Favg;Fmax])))

(12)

With spatial-wise attention, CLNet focuses the neural network

on the more informative signal propagation paths in the

angular-delay domain.

C. Reduction of Computational Cost

The often-used Sigmoid activation function contains expo-

nential operation:

σ(x) =
1

1 + e−x
=

ex

ex + 1
. (13)

In order to reduce time cost in the computation, CLNet uses

the hard version of Sigmoid, its piece-wise linear analogy

function, denoted as hσ to replace the Sigmoid function [17],

hσ(x) =
min(max(x+ 3, 0), 6)

6
(14)

Fig. 4: Comparison between Sigmoid and hard-Sigmoid func-

tions.

Figure 4 compares the excitation curves of the hard-Sigmoid

and Sigmoid functions. The hard-Sigmoid induces no dis-

cernible degradation in the accuracy but benefits from its com-

putational advantage of entailing no exponential calculations.

In practice, the hard-Sigmoid can fit in most software and

hardware frameworks and can mitigate the potential numerical

quantization loss introduced by different hardware.

IV. EVALUATION

This section presents the detailed experiment setting and the

comparison with the state-of-the-art (SOTA) DL-based CSI

feedback approach, in terms of accuracy and computational

overhead.
1) Data Generation: To ensure a fair performance com-

parison, we use the same dataset as provided in the first work

of DL-based Massive MIMO CSI feedback in [5], which is

also used in later studies on this problem [6], [9], [8], [12],

[7]. The generated CSI matrices are converted to angular-

delay domain Ha ∈ R32×32×2 by 2D-DFT. The total 150,000

independently generated CSI are split into three parts, i.e.,

100,000 for training, 30,000 for validation, and 20,000 for

testing, respectively.

2) Training Scheme and Evaluation Metric: The normal-

ized mean square error (NMSE) between the original Ha and

the reconstructed Ĥa is used to evaluate the network accuracy:

NMSE = E
{

‖Ha − Ĥa‖
2
2/‖Ha‖

2
2

}

(15)

The complexity is measure by the flops (floating-point opera-

tions per second). The model was trained with the batch size

of 200 and 8 workers on a single NVIDIA 2080Ti GPU. The

epoch is set to 1000, as recommended in previous work [12],

[8]. To further ensure the fairness, we fix the random seed of

the computer.

3) CLNet Overall Performance: Table I shows the overall

performance comparison among the proposed CLNet and

related CSI feedback networks.

As for the complexity, generally, the LSTM-based networks

(CSINet+ and Attn-CSI) require approximate five to seven-

flods higher computational resources than the CNN-based

networks (CSINet, CRNet2 and CLNet). Furthermore, because

LSTM’s operation relies on the previous output as the input

of the hidden layer and cannot share parameters for parallel

computation, it is difficult to reduce the complexity even if the

compression rate increases. As we can see from Table I, the

CLNet is the lightest among all these networks. Compared

with the SOTA CRNet, the CLNet significantly reduces the

computational complexity by 24.1% fewer flops on average.

The flops of CLNet is 18.00%, 22.35%, 25.20%, 26.50%,

28.36% less than CRNet at the compression ratio η of 1/64,

1/32, 1/16, 1/8, 1/4, respectively. As the compression rate

increases, the computational complexity degrades more.

Turn to the accuracy part, the best results in the lightweight

network are shown in bold, and the best results in all networks

are shown in italics. For the accuracy as shown in Table I,

the result shows that CLNet consistently outperforms other

lightweight networks at all compression ratios in both indoor

and outdoor scenarios with 5.41% overall average improve-

ment compared with the SOTA CRNet3. In indoor scenarios,

CLNet obtains an average performance increase of 6.61%,

with the most increase of 21.00% at the compression ratio

of η = 1/4. In outdoor scenarios, the average improvement

on NMSE is 4.21%, with the most increase of 10.44% at the

compression ratio of η = 1/32. Compared to heavyweight

networks, CLNet still achieves the best results at the compres-

sion ratio of 1/4, outperforming the second place CSINet+ by

6.54% and 3.87% in indoor and outdoor scenario respectively.

CLNet also achieves the best result in indoor scenario at the

compression ratio equals to 1/64.

4) Ablation Study: Considering the limited interpretability

of deep neural network, we further conduct the ablation

study to better quantify the gain of the proposed forged

complex-valued input layer and spatial-attention mechanism.

The epochs of ablation studies are set to 500 in indoor scenar-

ios, the rest settings remain the same as discussed in §IV(1-2).

Baseline is the CRNet with conventional convolution.

2Note that the CRNet paper reported flops is corrected by [13].
3We reproduce CRNet follow the open source code:

https://github.com/Kylin9511/CRNet the higher performance they reported in
the paper are from training with 2500 epoch.



5

TABLE I: NMSE(dB)a and complexity comparison between series of CSI feedback network and the proposed CLNet.

a / means the performance is not reported.

η 1/4 1/8 1/16 1/32 1/64

Methods FLOPS
NMSE

FLOPS
NMSE

FLOPS
NMSE

FLOPS
NMSE

FLOPS
NMSE

indoor outdoor indoor outdoor indoor outdoor indoor outdoor indoor outdoor

CLNet 4.05M -29.16 -12.88 3.01M -15.60 -8.29 2.48M -11.15 -5.56 2.22M -8.95 -3.49 2.09M -6.34 -2.19
CRNet 5.12M -24.10 -12.57 4.07M -15.04 -7.94 3.55M -10.52 -5.36 3.29M -8.90 -3.16 3.16M -6.23 -2.19

CSINet[5] 5.41M -17.36 -8.75 4.37M -12.70 -7.61 3.84M -8.65 -4.51 3.58M -6.24 -2.81 3.45M -5.84 -1.93

CSINet+[8] 24.57M -27.37 -12.40 23.52M -18.29 -8.72 23.00M -14.14 -5.73 22.74M -10.43 -3.40 22.61M / /
Attn-CSI[7] 24.72M -20.29 -10.43 22.62M / / 21.58M -10.16 -6.11 21.05M -8.58 -4.57 20.79M -6.32 -3.27

TABLE II: NMSE (dB) Comparison of Ablation Study.

η Baseline 1x1 Conv
1x1 Conv

+ SE
1x1 Conv
+ CBAM

1x1 Conv
+ SE + CBAM

1/4 -21.702 -27.694 -27.903 -28.142 -28.984

1/8 -13.037 -15.171 -15.167 -15.321 -15.487

1/16 -10.212 -11.013 -11.231 -10.684 -11.217

1/32 -8.443 -8.525 -8.732 -8.613 -8.885

1/64 -6.023 -6.145 -6.201 -6.086 -6.297

As Table II shown, by simply modifying the first layer from

a conventional convolution layer to an 1x1 convolution as the

forged complex input layer,its accuracy surpasses the baseline

at all compression ratios with an average improvement of

10.964%, which demonstrates the efficacy of appropriately

preserving the complex notation. After adding the SE block,

the accuracy is slightly improved although there is no improve-

ment at η = 1/8. The last two columns show that the spatial-

attention slightly improves the accuracy at low compression

rates, however, when combined with the SE block, its accuracy

is further improved by 3.058% on average.

5) Encoder Complexity: Table III reveals that the CLNet

encoder is actually slightly heavier than that of CRNet. How-

ever, the BS may need to execute several different models

at the same time so a relatively light decoder would also be

beneficial. In terms of storage space, CLNet and CRNet are

roughly the same.

TABLE III: Detailed Complexity of CRNet and CLNet

η Method
Encoder at UE Decoder at BS

flops(M) #params flops(M) #params

1/4
CLNet 1.34 1.049M 2.71 1.052M
CRNet 1.20 1.049M 3.92 1.053M

1/64
CLNet 0.36 65.954K 1.73 69.210K
CRNet 0.22 65.720K 2.94 70.386K

V. CONCLUSION

This article studies the CSI feedback problem for massive

MIMO under FDD mode, which is the key technology of

5G communication systems. Based on the understanding of

the physical properties of the CSI data, a novel customized

deep learning framework, CLNet, is proposed. The forged

complex-valued input layer preserves the amplitude and phase

information of the signal and enhances with spatial-attention

mechanisms. The hard-Sigmoid function is adopts to elim-

inate the exponential calculations. The overall performance

of CLNet has 5.41% higher accuracy than the state-of-the-art

CRNet with 24.10% less computation overhead.
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