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Abstract—We investigate a multi-user multiple-input multiple-
output interference network in the presence of multiple reconfig-
urable intelligent surfaces (RISs). The entire system is described
by using a circuit-based model for the transmitters, receivers,
and RISs. This is obtained by leveraging the electromagnetic tool
of mutual impedances, which accounts for the signal propaga-
tion and the mutual coupling among closely-spaced scattering
elements. An iterative and provably convergent optimization
algorithm that maximizes the sum-rate of RIS-assisted multi-
user interference channels is introduced. Numerical results show
that the sum-rate is enhanced if the mutual coupling among the
elements of the RISs is accounted for at the optimization stage.

Index Terms—Reconfigurable intelligent surfaces, mutual
impedances, mutual coupling, sum-rate, optimization.

I. INTRODUCTION

A reconfigurable intelligent surface (RIS) is a nearly-passive

thin sheet of electromagnetic material that can make a complex

radio environment programmable at the electromagnetic level

[1]. To evaluate the performance benefits and to optimize the

deployment and operation of RIS-assisted wireless networks,

it is necessary to utilize channel and communication models

that account for the electromagnetic characteristics and the

physical implementation of the RISs. This is an open research

issue that is currently subject to intense investigation [2].

The authors of [2], in particular, have recently introduced

an electromagnetic-compliant communication model for RIS-

assisted communications, which resembles a multiple-input

multiple-output (MIMO) channel. The model proposed in [2]

can be applied to an RIS made of closely-spaced scattering

elements that are controlled via tunable impedances. The elec-

tromagnetic field scattered by the RIS is engineered through

an appropriate design of the tunable impedances. By departing

from the channel model in [2], the authors of [3] have recently

introduced an analytical framework and a numerical algorithm

that optimize the tunable impedances so as to maximize the

received power. It is shown that major gains are obtained if

the electromagnetic properties (e.g., the mutual coupling) and

the circuital implementation (e.g., the tunable impedances) of

the RIS are taken into account at the optimization stage.

The algorithm introduced in [3] is, however, applicable

only to single-antenna transmitters and receivers. In addition,

a single RIS and a single receiver are considered. In this

paper, we depart from the channel model introduced in [2] and

introduce an algorithm for optimizing an RIS-assisted wireless

network in the presence of an arbitrary number of multi-

antenna transmitters, multi-antenna receivers, and RISs that are
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shared among all the transmitter-receiver pairs. Notably, the

interference among all the available transmitter-receiver pairs

is taken into account (MIMO interference channel). The pro-

posed algorithmic solution leverages the weighted minimum

mean square error (wMMSE) algorithm and the iterative block

coordinate descent (BCD) method. The obtained results show

that the sum-rate is enhanced if the mutual coupling among

the elements of the RISs is accounted for at the design stage.

Notation: ℜ and ℑ are real and imaginary parts; E is the

expectation; (·)� , (·)) , tr(·) are Hermitian, transpose, trace;

⊙ is the Hadamard product; ‖·‖ is the spectral norm; ∇ is the

gradient; I# , 0# are the # ×# identity and all-zero matrices.

II. SYSTEM AND SIGNAL MODEL

We consider a MIMO interference channel that comprises

#D transmitter-receiver pairs. Each transmitter is equipped

with " antennas and each receiver is equipped with ! ≤ "

antennas. Based on [2], each antenna element of the transmitter

and receiver is assumed to be a thin wire dipole of perfectly

conducting material. Each transmit antenna element is driven

by an independent voltage generator that models a transmit

feed line, and each receive antenna element is connected to a

load impedance that models a receive electric circuit.

For simplicity, we assume that the number of symbols

(independent streams) sent by each transmitter is equal to

the number of receive antennas. The transmission between the

#D transmitter-receiver pairs is assisted by  RISs. Each RIS

comprises % nearly-passive tiny scattering elements that can

be independently configured through a network controller. We

use the indices 9 , :, and 8 to denote the 9th transmitter, :th

RIS, and 8th receiver. With this notation, we imply that the

intended receiver of the 9th transmitter is the 8th receiver. The

 RISs are shared among all the #D transmitter-receiver pairs.

We denote by s 9 =
[

B 9 (1), B 9 (2), . . . , B 9 (!)
])

the complex

vector that comprises the ! information symbols of the 9th

transmitter. The information symbols are assumed to be zero-

mean and independent and identically distributed (i.i.d.) ran-

dom variables (RVs), i.e., E
[

s 9s
�
9

]

= I! and E
[

s 9s
�
8

]

= 0!

for 9 ≠ 8. Denoting by V 9 ∈ C
"×! the precoding matrix of the

9th transmitter, its transmitted vector is x 9 = V 9s 9 ∈ C
"×1.

As for the RISs, we adopt the electromagnetic-compliant

communication model recently introduced in [2], which is

based on mutual impedances. The channel model in [2] is

applicable to RISs constituted by an array of thin wire dipoles

of perfectly conducting material. Each dipole is controlled

by a tunable load impedance that enables the control of

the scattered field. Thus, the RIS-assisted channel can be

appropriately programmed and shaped by optimizing the tun-

able impedances. In [2, Theorem 1], the authors introduce
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an ! × " end-to-end channel matrix that formulates the

voltage measured at the ports of the receive antennas as a

function of the voltage generators connected to the ports

of the transmit antennas. The channel matrix is applicable

to a general communication system, which encompasses a

multi-antenna transmitter, a multi-antenna receiver, and the

possibility that all the radiating elements are in the near-field of

each other. In this paper, we consider a simplified case study in

which the "-antenna transmitters and the !-antenna receivers

are in the far-field of each other and in the far-field of the

RISs. However, the % tiny scattering elements that comprise

each RIS can be arbitrarily close to each other, and the mutual

coupling among them is appropriately taken into account.

Based on [2, Theorem 1], the !×" channel matrix (denoted

by H
(:)
8, 9

) between the 9th transmitter and the 8th receiver,

which accounts for the line-of-sight link between them and

the scattered link from the :th RIS, can be formulated as

H
(:)
8, 9

=

(

I! +	
(:)
8,8

Z−1
8 −	

(:)
8, 9

(

	
(:)
9 , 9
+ Z 9

)−1

	
(:)
9 ,8

Z−1
8

)−1

×	
(:)
8, 9

(

	
(:)
9 , 9
+ Z 9

)−1

∈ C!×" (1)

where Z 9 and Z8 are " ×" and ! × ! diagonal matrices that

collect the internal impedances of the transmit generators and

the load impedances of the receive antennas, respectively, and

	
(:)
9 , 9

= Z 9 , 9 − Z 9 ,:

(

Z:,: + Z
(:)
tun

)−1

Z:, 9 ∈ C"×" (2)

	
(:)
9 ,8

= Z 9 ,8 − Z 9 ,:

(

Z:,: + Z
(:)
tun

)−1

Z:,8 ∈ C"×! (3)

	
(:)
8, 9

= Z8, 9 − Z8,:

(

Z:,: + Z
(:)
tun

)−1

Z:, 9 ∈ C!×" (4)

	
(:)
8,8

= Z8,8 − Z8,:

(

Z:,: + Z
(:)
tun

)−1

Z:,8 ∈ C!×! (5)

where ZG,H , for G, H ∈ { 9 , :, 8}, is the matrix of mutual (or

self if G = H) impedances between the radiating elements

of H and G, which characterizes the signal propagation and

the mutual coupling between G and H, and Z
(:)
tun is the % × %

diagonal matrix of tunable impedances of the :th RIS. The

matrices ZG,H can be computed by using [2, Lemma 2], which

shows that they depend only on the geometry and the physical

implementation of the RISs, e.g., the scattering elements of

the RISs are thin wire dipoles. In this paper, therefore, the

impedances ZG,H need to be computed only once and are

assumed to be fixed and given parameters, while the matrix

Z
(:)
tun , which ensures the reconfigurability of the :th RIS, is a

variable that is optimized to maximize the system sum-rate.

If the transmitters, the receivers, and the RISs are in the

far-field of each other, while still taking the mutual coupling

among the closely-spaced scattering elements of each RIS

into account, (1) can be simplified. The self impedances ZG,G
are, in fact, independent of the transmission distances of the

transmitter-receiver, transmitter-RIS, and RIS-receiver links,

and they depend only on the inter-distances between the radiat-

ing elements that comprise each transmitter, RIS, and receiver.

In the far-field region, therefore, we have 	
(:)
9 , 9
≈ Z 9 , 9 , 	

(:)
8,8
≈

Z8,8 , and 	
(:)
8,8

Z−1
8
−	

(:)
8, 9

(

	
(:)
9 , 9
+ Z 9

)−1

	
(:)
9 ,8

Z−1
8
≈ 	

(:)
8,8

Z−1
8

. If

the radiating elements of each transmitter and each receiver

are sufficiently spaced apart, the matrices Z 9 , 9 and Z8,8 are

almost diagonal matrices, i.e., the off-diagonal entries are

much smaller than the diagonal entries. Due to the small inter-

distances between the scattering elements of the RISs, on the

other hand, the matrices Z:,: are, in general, full matrices. In

the far-field region, thus, H
(:)
8, 9

in (1) can be approximated as

H
(:)
8, 9
≈
(

I! + Z8,8Z
−1
8

)−1

Z8, 9
(

Z 9 , 9 + Z 9

)−1
(6)

−
(

I! + Z8,8Z
−1
8

)−1

Z8,:

(

Z:,: + Z
(:)
tun

)−1

Z:, 9
(

Z 9 , 9 + Z 9

)−1
.

By considering the contribution of the  RISs available in

the system and by introducing the shorthand notation

H̄8, 9 =

(

I! + Z8,8Z
−1
8

)−1

Z8, 9
(

Z 9 , 9 + Z 9

)−1
∈ C!×" (7)

T8,: =
(

I! + Z8,8Z
−1
8

)−1

Z8,: ∈ C!×% (8)

S:, 9 = Z:, 9
(

Z 9 , 9 + Z 9

)−1
∈ C%×" (9)

B̄: = Z:,: ∈ C%×%, B: = Z
(:)
tun ∈ C%×% (10)

H̃8,:, 9 = −T8,:
(

B̄: + B:
)−1

S:, 9 ∈ C!×" (11)

the end-to-end channel matrix from the 9th transmitter to the

8the receiver can be formulated, in the far-field region, as

H8, 9 (B) ≈ H̄8, 9 +
∑ 
:=1 H̃8,:, 9 (B) ∈ C!×" (12)

where H̄8, 9 accounts for the line-of-sight link and H̃8,:, 9

accounts for the (virtual line-of-sight) link scattered by the :th

RIS. In (12), we have made explicit the dependence of the scat-

tered field with the diagonal matrix B: = diag (b:) of tunable

impedances of the  RISs. In particular, B = {b1, b2, . . . , b }

denotes the set of  vectors b: to be optimized. For simplicity,

only single reflections from the RISs are considered in (12).

By taking into account the concurrent transmissions of the

#D transmitters, the signal at the 8th receiver is

y8 = H8,8 (B) x8 +
∑#D

9=1, 9≠8
H8, 9 (B) x 9 + n8 ∈ C!×1

(13)

where n8 ∈ C
!×1 denotes the additive white Gaussian noise

with distribution CN
(

0, f2
8
I!
)

. Based on the resulting MIMO

interference channel in (13), the achievable rate of the 8th

transmitter-receiver pair can be formulated as [6]

'8 (V,B) = log det
(

I! + V�
8 H�

8,8 (B) J̄
−1
8 H8,8 (B)V8

)

(14)

where J̄8 =
∑#D

9=1, 9≠8
H8, 9 (B)V 9V

�
9

H�
8, 9
(B) + f2

8
I! is

the interference-plus-noise covariance matrix and V =
{

V1,V2, . . . ,V#D

}

denotes the set of #D precoding matrices.

III. PROBLEM FORMULATION AND SOLUTION

In this paper, we are interested in optimizing the two setsV

and B so as to maximize the system sum-rate. Let %8 be the

power budget of the 8th transmitter and α = [U1, U2, . . . , U#D
]

be a set of weights that is chosen for ensuring some fairness

among the #D transmitter-receiver pairs [6]. Thus, the sum-

rate maximization problem of interest is the following



Algorithm 1: BCD for RIS optimization

Initialize: RIS impedances B
(0)
:

; precoding matrices V
(0)
8

;
small increment 0 ≤ X ≪ 1; number of iterations Q;

for @ = 1, . . . , Q do

Compute G
(@)
8

, W
(@)
8

and V
(@)
8

from Algorithm 2;

for : = 1, . . . ,  do
Compute M: and u: according to (26);
Compute δ: according to (27);

B
(@+1)
:

← B
(@)
:
+ �: ;

Algorithm 2: wMMSE for precoding optimization

Define: E8 (V,G8 , B) =
I! − 2ℜ

(

G�
8

H8,8 (B) V8

)

+ f2
8
G�

8
G8 +

∑#D
9=1

G�
8

H8, 9 (B) V 9V
�
9

[

H8, 9 (B)
]�

G8 ;

for 8 = 1, . . . , #D do

J8 =
∑#D

9=1
H8, 9 (B) V

(@)
9

(

V
(@)
9

)�
[

H8, 9 (B)
]�
+ f2

8
I! ;

G
(@+1)
8

= J−1
8

H8,8 (B) V
(@)
8

;

W
(@+1)
8

=

[

E8

(

V (@) ,G
(@+1)
8

, B
)]−1

;

K =
∑#D

9=1
U9

[

H 9,8 (B)
]�

G
(@+1)
9

W
(@+1)
9

G
(@+1)
9

H 9,8 (B);

V
(@+1)
8

= U8 (K + `8I" )
−1

[

H8,8 (B)
]�

G
(@+1)
8

W
(@+1)
8

;

max
V,B

'C>C (V,B) = max
V,B

∑#D

8=1
U8'8 (V,B) (15)

s.t. tr
(

V8 V�
8

)

≤ %8 , 8 = 1, . . . , #D (15.a)

ℜ
(

1:,?
)

= '0, : = 1, . . . ,  , ? = 1, . . . , % (15.b)

ℑ
(

1:,?
)

∈ R, : = 1, . . . ,  , ? = 1, . . . , % (15.c)

where '0 ≥ 0 is a constant resistance that accounts for the

losses of the tunable impedances of the RIS elements [2].

The optimization problem in (15) is, however, not convex

in the optimization variables V and B. Thus, it is difficult

to solve it globally. Then, we introduce a sub-optimal but

tractable iterative algorithm to tackle it. The proposed ap-

proach is given in Algorithm 1 and is detailed in the next

sub-sections. In general terms, at each iteration of Algorithm

1, we first solve (15) as a function of V by assuming B fixed,

and then we solve (15) as a function of B by assuming V

fixed. Algorithm 1 combines, at each iteration, the solutions

of the two sub-problems according to the BCD method.

A. Precoding Optimization

We commence with the computation of V with B kept

fixed. At the @th iteration of Algorithm 1, this corresponds to

executing Algorithm 2 by setting B: = B
(@)

:
. By assuming B

fixed, the problem in (15) reduces to a conventional precoding

optimization problem, which is, however, not jointly convex

in the #D precoding matrices V. To tackle it, we utilize the

wMMSE algorithm [4], as summarized in Algorithm 2.1

B. RIS Optimization – Formulation and Challenges

Subsequently, we solve the problem in (15) as a function

of B by assuming V fixed. This corresponds to executing the

inner loop (as a function of  ) in Algorithm 1. We utilize again

the wMMSE algorithm at each iteration of Algorithm 1. Unlike

the application of the wMMSE algorithm in Section III-A, the

reformulation in terms of wMMSE framework is, however,

1In Algorithm 2, `8 denote the Lagrange multipliers of the optimization
problem. They are chosen so that the power constraint in (15.a) is fulfilled.

not easy to solve in this case. To appreciate the difficulties

of computing B, let us first reformulate (15) according to the

wMMSE framework. We obtain the following problem [4]

min
B

∑#D

8=1
U8 tr (W8E8 (V,G8,B)) (16)

s.t. ℜ
(

1:,?
)

= '0, : = 1, . . . ,  , ? = 1, . . . , % (16.a)

ℑ
(

1:,?
)

∈ R, : = 1, . . . ,  , ? = 1, . . . , % (16.b)

where E8 (V,G8 ,B) = E
(@)
8

(

V (@) ,G
(@)
8
,B (@)

)

is defined in

Algorithm 2, and G8 = G
(@)
8

, W8 = W
(@)
8

and V8 = V
(@)
8

are

the solutions of Algorithm 2 at the @th iteration.

Compared with the wMMSE algorithm in Section III-A,

the main challenge for solving (16) lies in the end-to-end

matrices H̃8,:, 9 in (11) that depend on the inverse of the

matrices of tunable impedances B: . This implies that E8 (·)

is not convex in each of the optimization variables in B

while keeping the others fixed. For completeness, we remark

that the wMMSE algorithm has recently been utilized in [5]

and [6] for optimizing the sum-rate of RIS-assisted systems

in the presence of instantaneous and statistical channel state

information, respectively. In these latter papers, however,

similar to Section III-A, the corresponding E8 (·) matrices of

the wMMSE algorithmic reformulation are convex in each

of the optimization variables while keeping the others fixed.

Therefore, the problem formulations in [5] and [6] are easier

to solve. In [5] and [6], in addition, the elements of the

RISs are modeled as ideal unit-modulus phase shifters, and

the impact of the mutual coupling and tunable circuits is not

considered. These two aspects make the problem formulation

in (16) unique, and, to the best of our knowledge, the wMMSE

reformulation in (16) has never been tackled in the context of

optimizing RIS-assisted MIMO interference channels. Finally,

the constraints (16.a) and (16.b) are not the conventional unit-

modulus constraints used in the literature, e.g., in [5], [6].

C. RIS Optimization – Algorithmic Solution

To solve the problem in (16) by circumventing these issues,

we leverage the Neuman series approximation [7]. Specifically,

the inverse matrix in (11) is calculated through a linearization,

which allows us to tackle the non-convexity of E8 (·) with B.

In detail, at each iteration of Algorithm 1, B
(@)

:
is updated

through small increments (perturbations). Let �: = diag (δ:) ∈

C
%×% be the diagonal matrix of such a small perturbations

for : = 1, 2, . . . ,  . The updating policy at each iteration is

B
(@+1)
:

= B
(@)
:
+ �: . By defining X

(@)
:

=

(

B̄: + B
(@)
:

)−1

, with

the aid of the Neuman series approximation [7], we obtain

(

B̄: + B
(@+1)

:

)−1

≈ X
(@)

:
− X

(@)

:
�:X

(@)

:
(17)

which is sufficiently accurate if





�:X
(@)

:





 ≪ 1, where ‖X‖ is

the spectral norm of X, i.e., the largest eigenvalue of X�X

[7, Eq. (4.17)]. Since





�:X
(@)

:





 ≤ ‖�: ‖




X
(@)

:





, the inequality




�:X
(@)

:





 ≪ 1 is equivalent to ‖�: ‖ = X/




X
(@)

:





 with X ≪ 1.

In Algorithm 1, X is set small enough to make (17) accurate.



Thanks to the re-writing B
(@+1)

:
= B

(@)

:
+ �: , the problem

in (16) can be equivalently reformulated in terms of �: as

optimization variables. In particular, the constraint in (16.a) is

enforced by setting ℜ(B
(0)
:
) = '0I% and considering only the

imaginary part of �: for updating B
(@)
:

at each iteration of

Algorithm 1. This is further elaborated and detailed next.

For ease of notation, let D = {δ1, . . . , δ } denote the new

set of optimization variables. Thanks to (17), the optimization

problem in (16) can be solved by applying again the wMMSE

algorithm. By capitalizing on the linearization in (17), in

particular, the optimization problem in (16) is convex in

the generic optimization variable δ: while keeping the other

variables δ8≠: fixed. Therefore, the BCD-based method can

be applied to obtain a locally optimal solution of (16). In

particular, the impedance matrices of each RIS, B: , can be

computed one-by-one in an iterative fashion as illustrated in

the inner loop of Algorithm 1 and detailed next.

D. RIS Optimization – Closed-Form Formulation

In order to compute B: and solve the problem in (16) with

the aid of (17), we employ the wMMSE algorithm [4], whose

specific implementation details are given in this section and

correspond to the inner loop in Algorithm 1. In particular, the

objective of this section is to derive a closed-form analytical

expression for the optimization variables D. For ease of

exposition and to leverage the BCD method, we introduce

the notation D∼: = {δ1, . . . , δ:−1, δ:+1, . . . , δ } that yields

the set of all optimization variables with the exception of δ: .

Based on this notation, E8 (V,G8,B) can be formulated as

E8 (D) = E8,: (δ: ,D∼:) + Υ (D∼:) (18)

where Υ (D∼:) collects all terms that are independent of δ: .

Based on the BCD-based method [4], at each iteration of Al-

gorithm 1, the variable δ: is computed by assuming that D∼:
is fixed. At the :th iteration of the inner loop in Algorithm

1, we are interested in E8,: (δ: ,D∼:), while Υ (D∼:) can

be disregarded. After lengthy algebraic manipulations that are

omitted due to space limitations and ignoring some constant

terms that are irrelevant to the optimization problem, at the @th

iteration of Algorithm 1, E8,: (δ: ,D∼:) can be formulated as

E
(@)

8,:
(δ: ,D∼:) =

∑#D

9=1

[

A
(@)

8,:
�:C

(@)

:, 9

]+

− 2ℜ
(

A
(@)

8,:
�:C

(@)

:,8

)

+ 2ℜ
(
∑#D

9=1
A
(@)

8,:
�:D

(@)

8,:, 9

)

+ 2ℜ
(
∑#D

9=1
A
(@)

8,:
�:F

(@)

8,:, 9

)

(19)

where A
(@)

8,:
= −G�

8 T8,:X
(@)

:
∈ C!×%, C

(@)

:, 9
= X

(@)

:
S:, 9V 9 ∈

C
%×! , D

(@)
8,:, 9

= X
(@)
:

S:, 9V
+
9

(

Ĥ
(@)
8, 9

)�

G8 ∈ C
%×! , X+ = XX� ,

Ĥ
(@)
8, 9

= H̄8, 9 −
∑ 

:=1
T8,:X

(@)
:

S:, 9 ∈ C!×! (20)

F
(@)

8,:, 9
= X

(@)

:
S:, 9V 9

(

G�
8

∑ 

<=1
<≠:

H̃8,<, 9 (b<) V 9

)�

∈ C%×! .

(21)

By direct inspection of (19), we evince that E
(@)
8,:
(δ: ,D∼:)

is a convex function in δ: if D∼: if kept fixed. The locally

optimal solution of δ: we are looking for can, therefore, be

obtained by minimizing the objective function in (16). To this

end, the gradient of E
(@)
8,:
(δ: ,D∼:) is needed. In particular, the

gradient of E
(@)

8,:
(δ: ,D∼:) needs to be computed with respect

to the imaginary part of δ: , i.e., δ
(� )

:
= ℑ (δ: ), in order to

fulfill the constraint in (16.a), as discussed in previous text.

In order to compute the gradient of E
(@)
8,:
(δ: ,D∼:) in

(19) with respect to δ
(� )
:

, we introduce the compact indexing

notation M{=::,;:?}, which yields the submatrix extracted from

the =th to the :th rows and from the ;th to the ?th columns

of M. Also, we introduce the mapping Q (Q1,Q2) between

the matrices Q1 ∈ C
!×% and Q2 ∈ C

%×! and the matrices

Q ∈ C!×%! and �: ∈ C
%!×! defined as

Q{;, (:−1)%+1::%} (Q1,Q2) = Q
{;,:}

1
⊙
(

Q
{:,: }

2

))

�
{ (;−1)%+1:;%,; }

:
= δ:

(22)

which fulfill the identity Q1�:Q2 = Q (Q1,Q2) �: .

Based on (22), E
(@)

8,:
(δ: ,D∼:) in (19) can be re-written as

E
(@)

8,:
(δ: ,D∼:) =

∑#D

9=1

[

Q
(

A
(@)

8,:
,C
(@)

:, 9

)

�:

]+

− 2ℜ
(

Q
(

A
(@)

8,:
,C
(@)

:,8

)

�:

)

(23)

+ 2ℜ
(
∑#D

9=1
Q

(

A
(@)

8,:
,D
(@)

8,:, 9

)

+Q
(

A
(@)

8,:
,F
(@)

:, 9

))

�: .

For mathematical convenience, we introduce the notation

M̃
(@)
:

=

∑#D

8=1
U8

∑#D

9=1
Q�

(

A
(@)
8,:
,C
(@)
:, 9

)

W8Q
(

A
(@)
8,:
,C
(@)
:, 9

)

(

Ũ
(@)

:

)�

=

∑#D

8=1
U8W8

∑#D

9=1
Q

(

A
(@)

8,:
,C
(@)

:, 9

)

−Q
(

A
(@)

8,:
,D
(@)

8,:, 9

)

−Q
(

A
(@)
8,:
,F
(@)
8,:, 9

)

. (24)

Based on these definitions, the gradient of the objective

function in (16) (at the @th iteration of Algorithm 1) with

respect to δ
(� )
:

can be formulated as follows

∇
δ
(� )
:

∑#D

8=1
U8 tr

(

W
(@)
8

E
(@)
8
(δ: ,D∼:)

)

= 2ℑ
(

M
(@)

:

)

δ
(� )

:
− 2ℑ

(

u
(@)

:

) (25)

where M
(@)

:
∈ C%×% and u

(@)

:
∈ C%×1 are defined as

M
(@)

:
=
∑!
;=1

(

M̃
(@)

:

) { (;−1)%+1:;%, (;−1)%+1:;%}

u
(@)
:

=
∑!
;=1

(

Ũ
(@)
:

) {(;−1)%+1:;%,; } . (26)

From (25), we obtain the solution

δ
(� )

:
=

(

ℑ
(

M
(@)

:

)

+ `:

)−1

ℑ
(

u
(@)

:

)

(27)

where the Lagrange multipliers `: are chosen to fulfill the

constraint ‖�: ‖ = X/




X
(@)

:





. From (27), the matrices of tun-

able impedances are iteratively updated as B
(@+1)

:
= B

(@)

:
+�: .

E. Convergence of Algorithm 1

Algorithm 1 consists of the iterative solution of a set of

convex subproblems that are characterized by a global utility

function, i.e., the weighted mean square error (wMSE). This

ensures that the wMSE is a non-increasing function of @.
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Since the wMSE is lower bounded by zero, Algorithm 1 is

monotonically convergent. The convergence of the weighted

sum-rate 'C>C (V,B) in (15) is analyzed as follows.

Proposition 1 'C>C (V,B) is a non-decreasing function in @.

Proof: Denote Ê
(@)
8

= E8

(

V (@) ,G
(@)
8
,B (@)

)

at the @th

iteration of Algorithm 1. From [4], the rate '
(@)
8

in (15) can be

expressed as '
(@)
8

= log det
(

Ê
(@)
8

)−1

and the optimal weights

in Algorithm 2 can be expressed as W
(@)
8

=

(

Ê
(@)
8

)−1

. The

wMSE at the @th iteration is, therefore, equal to !#D − '
(@)
8

,

and 'C>C (V,B) is a non-decreasing function of @.

IV. NUMERICAL RESULTS

We consider a setup with two transmitter-receiver pairs

(#D = 2) located in t1 = (5 20 1), t2 = (5 10 1), r1 = (5 5 1)

and r2 = (5 25 1) and two RISs ( = 2) centered in (0 20 2)

and (0 5 2). The transmission frequency is 5 = 28 GHz and

the wavelength is _. The number of antennas at the transmitters

and receivers is the same, i.e., ! = " , and their inter-distance

is _/2. The RIS scattering elements are thin wires with radius

0 = _/500 and length ; = _/32. Also, '0 = 0.2 Ohm. To

assess the impact of having sub-wavelength inter-distances

while keeping the simulation time reasonably short, we assume

that the size of each RIS is fixed to _×_, which may represent

a super-cell in a large-size RIS. Thus, the number of scattering

elements % and their inter-distances are chosen appropriately,

e.g., % = {4, 16, 64, 256} for 3 = {1/2, 1/4, 1/8, 1/16}_. The

noise power and transmit power are f2
8

= −120 dBm and

%8 = 20 dBm. The matrices of mutual coupling are computed

as detailed in [2, Lemma 2]. The transmitters and receivers

are assumed to be in non-line-of-sight so that the direct links

are ignored. For comparison, two case studies are considered:

(i) the mutual coupling aware (MCA) setup in which the

mutual coupling is taken into account at the optimization stage;

and (ii) the mutual coupling unaware (MCU) setup in which

the off-diagonal entries of B̄: are set equal to zero at the

optimization stage but are considered when computing the

resulting sum-rate (i.e., mismatched design).

In Fig. 1, we observe the convergence of Algorithm 1

according to Proposition 1. We note the important role played

by presence of mutual coupling in sub-wavelength designs and

the need of taking it into account at the optimization stage.

For values of inter-distances up to 3 = _/4, increasing the

number of scattering elements may compensate in part for

the negative impact of mutual coupling, but this does not

hold for smaller inter-distances. In Fig. 2, we observe that, if

mutual coupling is taken into account, increasing the number

of antennas at the transmitters and receivers enhances the sum-

rate, and RISs with closely-spaced scattering elements yield

superior performance. In Fig. 3, we report the equivalent array

factor (AF) of the RIS centered in (0 5 2) assuming 3 = _/16.

The AF is obtained, as a function of the angle of view (\)

of the considered RIS, after configuring the RIS by using

Algorithm 1. Based on the considered network topology, we

evince that Algorithm 1 configures the RIS so that its AF has a

null in correspondence of the angle under which the RIS views

the interfered receiver for each considered intended link.

V. CONCLUSION

We have introduced a provably convergent optimization

algorithm for maximizing the sum-rate of RIS-assisted MIMO

interference channels. The proposed approach accounts for the

mutual coupling among closely-spaced scattering elements.

Numerical results have validated the convergence of the pro-

posed approach and the need of accounting for the mutual

coupling among the scatterers of the RIS at the design stage.
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