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Abstract—To achieve the joint active and passive beamforming
gains in the reconfigurable intelligent surface assisted millimeter
wave system, the reflected cascade channel needs to be accurately
estimated. Many strategies have been proposed in the literature to
solve this issue. However, whether the Cramér-Rao lower bound
(CRLB) of such estimation is achievable still remains uncertain.
To fill this gap, we first convert the channel estimation problem
into a sparse signal recovery problem by utilizing the properties
of discrete Fourier transform matrix and Kronecker product.
Then, a joint typicality-based estimator is utilized to carry out the
signal recovery task. We show that, through both mathematical
proofs and numerical simulations, the solution proposed in this
letter can asymptotically achieve the CRLB.

Index Terms—Reconfigurable intelligent surface, cascade chan-
nel estimation, millimeter wave, Cramér-Rao lower bound, noisy
sparse signal recovery, joint typicality-based channel estimator.

I. INTRODUCTION

RECONFIGURABLE intelligent surface (RIS) technology

is a very promising and cost-effective solution to improve

the spectrum and energy efficiency of wireless communication

systems [1]–[4]. With the assistance of a smart controller, the

RIS can adjust its reflection coefficients such that the desired

signals are added constructively. The joint active and passive

beamforming design has been studied in many existing works

with continuous phase shifts (e.g., [5], [6]) or discrete phase

shifts (e.g., [7], [8]) at reflecting elements. Moreover, the RIS

also can be used in millimeter wave (mmWave) systems [9].

To achieve the above joint active and passive beamforming

gains, the cascade channel should be estimated efficiently and

accurately. However, in the scenario of mmWave channels, it is

difficult to establish a scheme that can simultaneously achieve

high accuracy and efficiency. In consequence, efficiency is the

priority in the existing work. Several novel strategies have been

proposed to efficiently make such estimations. Authors in [10]

utilized the generalized approximate message passing (GAMP)

algorithm to find the entries of the unknown mmWave channel

matrix. Similarly, in [11], authors adopted the message passing

(MP) based algorithm to estimate the cascade channels. The
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orthogonal matching pursuit (OMP) method was used in [12].

Nevertheless, the existing schemes cannot achieve the optimal

estimation accuracy, i.e., the Cramér-Rao lower bound (CRLB)

of channel estimation for RIS-aided mmWave systems.

Contrary to these efficient algorithms, we intend to establish

a scheme which can achieve the CRLB. For this purpose, we

first convert the channel estimation task into a noisy sparse

signal recovery problem through utilizing the properties of the

discrete Fourier transform (DFT) matrix and the Kronecker

product. Then, a joint typicality-based estimator is proposed

to carry out the recovery task and establish the asymptotic

achievability of the CRLB when the product of the number

of receiver antennas and the number of time slots approaches

infinity. The correctness of our result is verified through both

mathematical proofs and numerical simulations. In addition,

based on the sparsity structure established in this letter, our

analysis result can also be applied to the conventional point-

to-point mmWave system which is a special case of RIS-

assisted systems. However, it should be noted that although

it is the first result establishing the achievability of the CRLB

of channel estimation for RIS-assisted mmWave systems, our

scheme is complex and costs a lot of overhead. Thus, finding

a lower-complexity estimator that can simultaneously achieve

the CRLB is the future important work.

II. SYSTEM AND CHANNEL MODEL

A. System Model

We consider an RIS-assisted mmWave system, as illustrated

in Fig. 1, where the base station (BS) and the mobile station

(MS) are equipped with Ns and Nd antennas, respectively, and

the RIS is equipped with Nr reflecting elements. Although the

BS and the MS are equipped with a large number of antennas,

they can fit within the compact form because of the small

wavelength of mmWave. In this letter, to better illustrate our

results, we neglect the direct link from the BS to the MS.

Nevertheless, the extension to the scenario with the direct link

is straightforward. In addition, due to the inherent sparsity of

mmWave channels [13], there exists only a dominant line-of-

sight path and very few non-line-of-sight paths in the BS-RIS

link and the RIS-MS link. Then, the elevation (azimuth) angle-

of-departure (AoD) of the ith path at the BS and the RIS are

denoted as θi (φi) and γ′
i (µ′

i), respectively, and the elevation

(azimuth) angle-of-arrival (AoA) of the ith path at the RIS and

the MS are denoted as γi (µi) and ϑi (ϕi), respectively.

http://arxiv.org/abs/2012.14058v3
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Fig. 1. The RIS-assisted mmWave communication system with an Ns-antenna
BS, an Nd-antenna MS, and an RIS comprising Nr reflecting elements.

B. Channel Model

Due to the inherent sparse nature of mmWave channels, the

number of paths between the BS and RIS is small relative to

the dimensions of BS-RIS channel matrix G
′, and we assume

it is at most L′. Then, G′ can be modeled as follows:

G
′ =

√

NsNr

ρ′

L′

∑

i=1

αiar(γi, µi)a
H
s (θi, φi), (1)

where ρ′ denotes the average path-loss between the BS and the

RIS, αi is the propagation gain associated with the ith path, and

ar(γi, µi) and as(θi, φi) are the array response vectors at the

BS and RIS, respectively. We assume that the RIS deployed

here is an Nr,h ×Nr,w uniform planar array. Then, we have

as (θi, φi) = [ej(1−1)us , ej(2−1)us , · · · , ej(Ns−1)us ]T, (2)

ar (γi, µi) = ar,h (γi, µi)⊗ ar,w (γi, µi)

= [ej(1−1)ur,h , ej(2−1)ur,h , · · · , ej(Nr,h−1)ur,h ]T

⊗ [ej(1−1)ur,w , ej(2−1)ur,w , · · · , ej(Nr,w−1)ur,w ]T,
(3)

where ⊗ represents the Kronecker product, the directional

parameters: us = 2πd
λ sin(θi) cos(φi), ur,h = 2πd

λ cos(γi),
and ur,w = 2πd

λ sin(γi) cos(µi), d is the separation between

antennas (reflecting elements) at the BS (RIS), and λ is the

wavelength of transmitted signal. Similarly, we assume that

the number of paths between the RIS and MS is at most L′′.

Then, the RIS-MS channel matrix G
′′ is modeled as follows:

G
′′ =

√

NrNd

ρ′′

L′′

∑

i=1

βiad(ϑi, ϕi)a
H
r (γ

′
i, µ

′
i), (4)

where ρ′′ denotes the average path-loss between the RIS and

the user, βi is the propagation gain associated with the ith path,

and ad (ϑi, ϕi) is the array response vector at the MS, which

can be written as

ad (ϑi, ϕi) = [ej(1−1)ud , ej(2−1)ud , · · · , ej(Nd−1)ud ]T, (5)

where ud = 2πd
λ sin(ϑi) cos(ϕi). Based on the BS-RIS and

RIS-MS channel models established in (1) and (4), the overall

Nd ×Ns channel matrix H can be expressed as

H = G
′′
ΦG

′, (6)

where the diagonal matrix Φ = diag[ej̺] is the response at

the RIS 1, and the Nr dimensional vector ̺ = [̺1, · · · , ̺Nr
]T

represents the phase shifts of reflecting elements at the RIS.

Then, the received signals Y ∈ CNs×K at the BS over K

time slots can be expressed as

Y = U
H
s

[

H
H (UdX) +N

]

= U
H
s H

H
UdX+ Ñ,

(7)

where Ud and U
H
s are the transmit beamforming and receive

combining matrices, respectively, X represents the pilot signal

transmitted by the MS, Ñ is the additive white Gaussian noise

with the elements independently drawn from CN (0, σ2). The

ith columns of X and Ñ are corresponding to the ith time slot,

and we denote the transmit power as pMS = E{xH[i]x[i]}.

III. SPARSE STRUCTURE OF CASCADE CHANNEL

Before estimating the cascade channel H, the first problem

we are facing now is how to convert the estimation task into a

noisy sparse signal recovery problem since the representation

of H in (6) is not visibly sparse. To this end, pre-discretized

grids can be utilized to establish the sparse representation [12].

However, this method may cause grid mismatch and estimation

accuracy reduction. Another issue we should note is that even

mildly ill-conditioned sensing matrices can lead to estimation

failure in a compressed sensing problem [14], [15]. In order

to prevent these issues, we give the sparse representation by

expressing the cascade channel in the angular domain based

on suitable DFT bases. Thus, the beamforming matrices Ud

and U
H
s are set as the Nd ×Nd and Ns ×Ns spatial unitary

DFT matrices, respectively. A given path with the directional

parameters us and ud, which are defined under (3) and (5),

has almost all of its energy along the particular vectors [Us]:,m
and [Ud]:,n, and very little along all the others, if m and n

satisfy [10]:
∣

∣

∣

∣

us −
2π(m− 1)

Ns

∣

∣

∣

∣

<
2π

Ns
, (8)

∣

∣

∣

∣

ud −
2π(n− 1)

Nd

∣

∣

∣

∣

<
2π

Nd
. (9)

In order to illustrate visually, Fig. 2 plots a specific realization

for the channel magnitude in the angular domain. As seen from

it, the true channel is indeed sparse in the angular domain, i.e.,

it exhibits a few dominant coefficients. Consequently, the RIS-

assisted mmWave channel is inherently sparse in the angular

domain if expressed in suitable DFT bases.

Utilizing the DFT beamforming matrices Ud and U
H
s and

vectorizing the received signals Y at the BS yields

y = vec
{

U
H
s H

H
UdX+ Ñ

}

= vec(H̃H
X) + vec(Ñ)

(a)
=
(

X
T ⊗ INs

)

vec(H̃H) + vec(Ñ) = Υυ + n,

(10)

where H̃
H = U

H
s H

H
Ud is the cascade channel represented

in the angular domain, υ = vec(H̃H) is the sparse signal that

we need to recover, Υ = X
T ⊗ INs

denotes the measurement

1Since the RIS is a passive device, each reflecting element is usually
designed to maximize the signal reflection. Thus, we set the amplitude of
reflection coefficient equal to one for simplicity in this letter.
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Fig. 2. Angular-domain channel for Ns = 50, Nd = 50, and Nr = 40.
BS-RIS channel has 2 paths and RIS-MS channel has 2 paths.

matrix, n = vec(Ñ) is the additive Gaussian noise, and the

equality (a) follows from the relation of the vectorization of

the matrix product to the Kronecker product [16]. We assume

that υ is sparse with at most L ∝ L′ × L′′ non-zero entries

in unknown locations. The sparse-level L is actually a prior

information and is related to the number of paths. Once υ is

recovered, an estimate of H is readily obtained as follows:

Ĥ = Ud
ˆ̃
HU

H
s , (11)

where
ˆ̃
H

H = unvec (υ̂) and υ̂ is an estimate of υ. Moreover,

the estimate of vec(H) = (G′T ⊗G
′′) vec(Φ) [16] is enough

to configure the phase shifts at RIS because the beamforming

problem can be converted to an optimization problem which

maximizes ‖H‖2F = ‖ vec (H) ‖22 with respect to vec(Φ).

IV. ASYMPTOTIC ACHIEVABILITY OF THE CRAMÉR-RAO

LOWER BOUND VIA JOINT TYPICALITY ESTIMATOR

Many classical compressed sensing algorithms such as basis

pursuit (BP) [17] and orthogonal matching pursuit (OMP) [18]

can be utilized to recover the sparse signal υ. However, these

algorithms always choose the locally optimal approximation to

the actual sparse signal [17]–[21]. Thus, in this section, we uti-

lize the Shannon theory and the notion of joint typicality [22]

to asymptotically achieve the CRLB of the channel estimation

for RIS-assisted mmWave systems where the estimator has no

knowledge of the actual locations of the non-zero entries in υ.

To prove the asymptotic achievability of the CRLB, we first

state the following lemma.

Lemma 1. Let the set J ⊂ {1, · · · , NdNs} such that |J | = L

and ΥJ be the sub-matrix of the measurement matrix Υ with

the columns corresponding to the index set J . Then, we have

rank(ΥJ ) = L with probability 1.

Proof: First, we consider the rank of X
T. The (m,n)th

entry of it represents the pilot symbol transmitted by the nth

antenna at the mth time slot. Thus, all of the entries in it are

independent and designable. For simplicity, we set them as

independent and identically distributed (i.i.d.) and distributed

according to CN (0, 1). Let xi and xj be two columns of XT.

Utilizing the law of large numbers yields

x
H
i xj =

∑

k

x∗
k,ixk,j → 0, i 6= j, (12)

as K goes to infinity. Thus, the columns of XT are mutually

orthogonal with probability 1, i.e., XT is a full column rank

matrix when K > Nd. Then, due to INs
is a unit matrix,

it has a full column rank. By utilizing the rank property of

the Kronecker product: rank(Υ) = rank(XT) rank(INs
), we

prove the statement of this lemma.

Then, to establish the joint typicality-based channel estima-

tor, we need to define the notion of joint typicality. We adopt

the definition from [22] which is given as follows:

Definition 1. (δ-Jointly Typicality)

The received signal y collected over K time slots, and the set

of indices J ⊂ {1, 2, · · · , NdNs} with |J | = L are δ-jointly

typical, if rank(ΥJ ) = L and
∣

∣

∣

∣

1

KNs
‖Π⊥

ΥJ
y‖2 −

KNs − L

KNs
σ2

∣

∣

∣

∣

< δ, (13)

where ΥJ is the sub-matrix of the measurement matrix Υ with

the columns corresponding to the index set J , and Π
⊥
ΥJ

=

I−ΥJ (ΥH
JΥJ )−1

Υ
H
J is the orthogonal projection matrix.

Next, we establish the following proposition to show that the

proposed estimator can be applied to the considered problem.

Proposition 1. The joint typicality-based estimator can be

utilized to estimate the cascade channel in an RIS-assisted

mmWave system, i.e., solve the noisy sparse signal recovery

problem in Eq. (10). The detailed channel estimation steps are

illustrated in Algorithm 1.

Proof: The measurement matrix Υ in (10) is proved to

be full column rank in Lemma 1, which ensures that the sub-

spaces spanned by different L column vectors chosen from

the measurement matrix Υ are different. Based on Definition

1, if L column vectors are chosen correctly, there exists only

additive white Gaussian noise in the orthogonal complement.

Thus, the joint typicality-based estimator can be utilized to

solve the noisy sparse signal recovery problem in (10).

Algorithm 1 Joint Typicality-Based Channel Estimator

1: Input: The numbers of antennas Ns at the BS and Nd at

the MS, the pilot signal X, the received signal vector y,

and the maximal sparse-level L.

2: while index set Ji−1 is not δ-jointly typical with y do

3: ith iteration of all the possible
(

NdNs

L

)

L-dimensional

sub-spaces :

4: Determine whether the following inequality is satisfied.
∣

∣

∣

∣

1

KNs
‖Π⊥

ΥJi
y‖2 −

KNs − L

KNs
σ2

∣

∣

∣

∣

< δ

5: If it is satisfied, compute the estimate υ̂ by projecting

the received signal y onto the sub-space spanned by

ΥJi
.

υ̂ = (ΥH
Ji
ΥJi

)−1
Υ

H
Ji
y

6: end while

7: If there exists no set that is δ-jointly typical to y, it outputs

the zero vector.

8: Output: The channel estimate Ĥ
H = Us unvec(υ̂)U

H
d .
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In order to further prove that we can asymptotically achieve

the CRLB on the estimation error where the estimator has no

knowledge of the locations of the non-zero entries in υ, we

state the following lemmas.

Lemma 2. For any unbiased estimate υ̂ of υ, the Cramér-Rao

lower bound on the MSE is given as

E
{

‖υ̂ − υ‖2
}

≥ σ2 Tr
[

(ΥH
IΥI)

−1
]

. (14)

Proof: The likelihood function of the random vector y

conditioned on υ is

p(y;υ) =
exp

(

− 1
2σ2 ‖y −ΥIυI‖2

)

(2π)KNs/2σKNs

, (15)

where υI is the subvector of υ with elements corresponding

to the index set I. Then, by using (6) in [23], the CRLB can

be written as (14).

Lemma 3. (Lemma 2.3 of [24])

Let I = supp(υ) and rank(ΥI) = L. Then, for δ > 0, it

holds that

P

(∣

∣

∣

∣

1

KNs
‖Π⊥

ΥJ
y‖2 −

KNs − L

KNs
σ2

∣

∣

∣

∣

> δ

)

≤ 2 exp

(

−
δ2

4σ4

K2N2
s

KNs − L+ 2δ
σ2KNs

)

.

(16)

Let J be an index set such that |J | = L, |I ∩ J | < L, and

rank(ΥJ ) = L. Then, for δ > 0, it holds that

P

(∣

∣

∣

∣

1

KNs
‖Π⊥

ΥJ
y‖2 −

KNs − L

KNs
σ2

∣

∣

∣

∣

< δ

)

≤ exp





L−KNs

4

(
∑

k∈I\J |υk|2 − δ′
∑

k∈I\J |υk|2 + σ2

)2


 ,

(17)

where υk is the kth entry in υ and

δ′ = δ
KNs

KNs − L
. (18)

Proof: Please refer to [24] for the proof.

Finally, based on the above lemmas, we establish the asymp-

totic achievability of the CRLB in the following theorem.

Theorem 1. By utilizing the joint typicality-based channel

estimator given in Algorithm 1, the MSE of cascade channel

estimation in an RIS-assisted mmWave system asymptotically

achieves the CRLB as the product of the number of receiver

antennas and the number of time slots tends to infinity. This

bound can be asymptotically achieved whether the estimator

knows the location of the non-zero entries.

Proof: The MSE of the joint typicality estimator (aver-

aged over all possible measurement matrices) can be upper-

bounded as follows:

εδ(KNs) =E
{

‖υ̂ − υ‖2
}

≤

∫

Υ

‖υ‖2P(E0)dP (Υ)

+

∫

Υ

En|Υ

{

‖(ΥH
IΥI)

−1
Υ

H
I y − υ‖2

}

× P(I ∼ y)dP (Υ)

+

∫

Υ

∑

J 6=I

En|Υ

{

‖(ΥH
JΥJ )−1

Υ
H
J y − υ‖2

}

× P(J ∼ y)dP (Υ),

(19)

where P(·) represents the event probability defined over the

noise density, the event E0 represents the estimator does not

find any set δ-jointly typical to y, dP (Υ) represents the prob-

ability measure of the matrix Υ, and the inequality follows

from the Boole’s inequality. The second term is corresponding

to I and is the MSE of a genie-aided estimation where the

estimator knows supp(υ). We rewrite it as follows:
∫

Υ

En|Υ

{

‖(ΥH
IΥI)

−1
Υ

H
I y − υ‖2

}

P(I ∼ y)dP (Υ)

= En,Υ

{

‖(ΥH
IΥI)

−1
Υ

H
In‖

2
}

= EΥ

{

σ2 Tr(ΥH
IΥI)

−1
}

.
(20)

By using Lemma 2, we obtain that the second term in (19) is

the CRLB of the genie-aided cascade channel estimation.

Next, we show that the first and third term in (19) converge

to zero when KNs → ∞. By using Lemma 3, the first term

can be upper-bounded as
∫

Υ

‖υ‖2P(E0)dP (Υ)

≤ 2‖υ‖2 exp

(

−
δ2

4σ4

K2N2
s

KNs − L+ 2δ
σ2KNs

)

.

(21)

This term approaches to zero as KNs → ∞, since ‖υ‖2 grows

polynomially in Ns and the exponential term tends to negative

infinity as KNs → ∞. By using Lemma 3, the third term can

be upper-bounded as
∫

Υ

∑

J 6=I

En|Υ

{

‖(ΥH
JΥJ )−1

Υ
H
J y − υ‖2

}

× P(J ∼ y)dP (Υ)

≤ (Lσ2 + ‖υ‖2)

∫

Υ

∑

J 6=I

En|ΥP(J ∼ y)dP (Υ)

≤ (Lσ2 + ‖υ‖2) ×

∑

J 6=I

exp





L−KNs

4

(
∑

k∈I\J |υk|2 − δ′

∑

k∈I\J |υk|2 + σ2

)2


 .

(22)

This term tends to zero as KNs → ∞, since (Lσ2 + ‖υ‖2)
grows polynomially in Ns and (L −KNs) tends to negative

infinity as KNs → ∞.

V. NUMERICAL RESULTS

In this section, we numerically illustrate the result given in

Theorem 1. To verify whether the CRLB of cascade channel

estimation for RIS-assisted mmWave communication systems

can be asymptotically achieved when the product of time slot

number and receiver antenna number KNs tends to infinity,

Fig. 3 simultaneously plots the curves of the CRLB, the MSE

upper bound, and the performance of joint typicality estimator

versus the time slot number K with different signal-to-noise

ratios (SNRs) selected from the set of {20 dB, 30 dB, 40 dB}.

In this figure, the numbers of antennas at the BS and the MS

are both set as 5, and the number of reflecting elements at the
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Fig. 3. The performance of joint typicality-based channel estimator versus
the time slot number with different SNRs.

RIS is set as 10. The path numbers in the BS-RIS channel

and the RIS-MS channel are both set as 1. In addition, the

numerical results in Fig. 3 are obtained through 1, 000 Monte

Carlo trials. It is observed that the CRLB can be achieved

as the time slot number tends to infinity, which confirms

the result in Theorem 1. When we fix the time slot number

K and change receiver antenna number Ns, the curves are

similar to Fig. 3, and we omit it due to the space limitation.

It is encouraging not only because the CRLB of cascade

channel estimation for RIS-assisted mmWave systems can be

asymptotically achieved but also because we can decrease the

number of time slots consumed in channel estimation through

increasing the number of receiver antennas.

VI. CONCLUSION

In this letter, we consider the estimation of the cascade

channel in an RIS-assisted mmWave communication system.

By utilizing the joint typicality-based channel estimator, the

MSE of estimation can asymptotically achieve the CRLB as

the product of the number of receiver antennas and the number

of time slots tends to infinity, and this bound can be asymp-

totically achieved whether the estimator knows the locations

of the non-zero entries. To the best of our knowledge, it is the

first research which establishes the asymptotic achievability

of the CRLB of the cascade channel estimation for the RIS-

assisted mmWave systems. Our result also reveals that the

training overhead can be reduced through deploying more

receiver antennas. However, there is an important issue that our

established scheme is complex and costs a lot of overhead, thus

finding a lower-complexity estimator that can simultaneously

achieve the CRLB for RIS-assisted mmWave systems is an

important work in future studies.
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