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Phase Compensation Based Localization of Mixed
Far-Field and Near-Field Sources

Ye Tian, Member, IEEE, Xinyu Gao, Wei Liu, Senior Member, IEEE, and Hua Chen, Member, IEEE

Abstract—For mixed far-field (FF) and near-field (NF) source
localization, most existing algorithms are developed for the
scenario where the number of available data samples N is
much larger than the number of sensors )/. Different from
these methods, this letter attempts to deal with the scenario
where ) is large and of the same order of magnitude as N.
To obtain a satisfied performance in such a scenario, the phase
compensation result of the spike covariance matrix is first utilized
to construct a modified spectral function and successively realize
the DOA estimation of FF sources. Then, we exploit the oblique
projection operation to extract the NF sources. Finally, DOA
and range estimation for NF sources is achieved via two one-
dimensional (1-D) spectral searches, where the reconstructed
manifold vector combining the phase compensation result is used.
The effectiveness of the proposed algorithm is demonstrated by
computer simulations.

Index Terms—Source localization, far-field, near-field, phase
compensation, modified spectral function.

I. INTRODUCTION

IXED far-field (FF) and near-field (NF) source local-

ization is an important issue in array signal processing,
and several types of solutions have been introduced in litera-
ture, such as the higher order statistic (HOS) based algorithms
[1-4], the second-order statistics (SOS) based algorithms [5-
7], the mixed-order statistics (MOS) based algorithms [8], [9]
and the spatial differencing algorithm [10]. These algorithms
can yield excellent performance, provided that the number of
sensors M is small, whereas the number of data samples N
is sufficiently large.

However, in some applications, the number of available
data samples N is rather limited and of the same order as
M, such as in massive MIMO/large-scale array systems [11],
[12], or in scenarios where the signals are short-time stationary
[13]. In this situation, the performance of existing algorithms
mentioned above could degrade substantially, due to difficulty
in estimating their statistics effectively [14]-[16].

To tackle this challenge, a novel mixed source localization
algorithm is proposed in this letter, for scenarios where M
is relatively large and comparable with the number of data
samples N. Instead of applying the classical subspace based
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approach directly, the statistical analysis result obtained in the
general asymptotic theory (GAT) for the case of M, N — oo
with M/N = ¢ € (0,1) is exploited for mixed source local-
ization. In detail, the phase compensation result of the spike
covariance matrix is first exploited to construct a modified
spectral function, and 1-D search is then performed to obtain
DOA estimation of FF sources; secondly, the contribution of
FF sources is eliminated using the oblique projection operation
and DOA estimation of NF sources is achieved by splitting the
array manifold vector into two parts; finally, range estimation
of NF sources is obtained after substituting each estimated NF
DOA back into the modified 1-D spectral function.

Notations: Throughout this letter, boldface uppercase (low-
ercase) letters represent matrices (vectors). The superscripts
()T and () represent the transpose and conjugate transpose,
respectively. E{-}, spec(-), diag{-} and det[-] denote statisti-
cal expectation, eigenvalues of a matrix, diagonalization and
determinant, respectively. ||| stands for the Frobenius norm,
(a, b) the dot product of a and b, and I, the M x M identify
matrix. %5 and = denote almost certain convergence and
convergence in distribution, respectively. N(-) indicates the
normal distribution.

II. SIGNAL MODEL

Suppose K narrowband signals (including K; FF sources
and K — K; NF sources) impinge on a symmetric uniform
linear array (SULA) with M = 2L + 1 sensors, where the
distance d between adjacent sensors is equal to a quarter of the
carrier wavelength \. Let the center of array be the reference
point, and then the output x(¢) of the array can be modeled
as

x(t) = Apsp(t) + Ansn(t) +n(t) = As(t) +n(t), (1)
where A = [Ap, Ay], s(t) = [sL(¢),s5()]7, and

Ap=[a(f1,00), - ,a(fk,,0)], 2

Ay =[a(0k,+1,7K,41), -+ a0k, ri)], ()

a(Og,00) = [e IL=r 1, eI B 4)

a(g,ry) = [edTme=L700) g et Li0)] - (5)

sp(t) = [s1(t),..., 58, (D], (6)

sn(t) = [sk,11(t), ..., sx]", @)

n(t) = [n_p(t),...,n_1(t),no(t), n1(t),...,nL(®)]", ®)

wp = —0.57sinb, ¢, = 0.257dcos®0y, /1y, O and 7y are

DOA and range of the kth signal, respectively.



Throughout this letter, we make the following hypotheses:

1) The signals are statistically independent, zero-mean nar-
rowband stationary processes.

2) The noise is zero-mean, complex white Gaussian and
independent of all signals.

3) The number of sources K is known a priori or can be
estimated accurately by the LS-MDL criterion [17].

III. PROPOSED ALGORITHM
A. DOA Estimation Of FF Sources

Based on (1), the covariance matrix of the array output can
be expressed as

R, = E{x(t)x(t)} = AR;A" + %1,,, )

whose finite sample estimate can be calculated by
1
l _ H _ 3 A A
Rw——thzlxtxt —;: >\uu

where o*% is the variance of noise, 5\1 and 10; are the eigenvalues
in descending order and corresponding eigenvectors of R, re-
spectively. Further define AR¢ AT = AAT = ZK 1 QG ViV fI,
where «; and v; are the true eigenvalues and eigenvectors of
AAH respectively. When the sampled covariance matrix R,
is an unbiased estimator, the following relationship holds [18]

(10)

SpeC(Rm) = (a17"' , VK, 07 70)+Ufr21(17 71)
——
1x(M—-K) 1xM
9,01 [(677¢
Un( 72L+ ) ao_% +1, 1, ) )
1x(M—-K)
= (A, Aw). (1n

Unfortunately, it has been demonstrated in literature [19]
that when M and N both approach infinity at the same
rate, Eq. (11) does not hold, which means that the direct
application of 5\1 and 0; are not a good choice for our
case. Nevertheless, according to the asymptotic analysis [19],
AAF 4+ 521, can be described as a “spiked” covariance with
“spiked” eigenvalues M.+, Ak, which have the following
convergence characteristics in the GAT framework

1K (o tan)(ohctan) 2
(] s d ST ez onVE (g
k=1 oz (14 )3, otherwise.

Then, we can calculate the unbiased estimation of «y, as

ay = % {5\16 —62(1+c)+ \/[5\1@ —02(1+¢))?2 —462cy,
(13)
where 62 = =S, A is the maximum likelihood
estimator of JZ, and it is also biased in our case. Next,
we exploit the high-dimensional probabilistic theorem [18] to
show how to obtain an unbiased estimation of noise variance
with 62 and dy.
Theorem 1: Consider covariance matrix R, = AAT +
021y. Assume that M, N — oo, ¢ = M/N € (0,1), and

the largest eigenvalue specified by «y satisfies ap > 02,/c,
and then the following holds [18]

M- K
02\/_

2y — 2K 1
where b(o2) = \/S(K + 02> 1, )
This theorem shows that there is a negative bias between
62 and o2. Therefore, we apply the following bias-corrected
estimator &% to remove such negative bias, i.e.,

2y N(0,1),

(67 —op) + b(op) (14)

b6
a§:&2+M( ";{AQ\/_ (15)
where b(62) = \/g(K—F&,% S &—1) depends on the

spiked values .
Considering the phase transformation of eigenvectors asso-
ciated with the K largest eigenvalues, we get [19]

ap—0,.C 2
(g, vi)? 225 | Tlarroza Ok 2 0nVe (16)
0, otherwise,
which directly yields that v, = ;. 'y, where k € [1, K], and
¢k = (g, vi) can be interpreted as the phase transformation
between Uy and vy.

Subsequently, the following fact holds

K
kavk =Y @) aaf,  an
k=1

where @2 = -2
Pk = Gn(antolo)”
Based on the phase compensation and subspace theory, we

can derive the following modified spectral function as

K -1

o) (L — Y (&7

k=1

ne(6) = e )a(d, 0o)

(18)

Consequently, the DOAs {61, - , 0k, } of FF sources can

be estimated by finding K; peaks of the above modified
spectral function.

B. DOA Estimation of NF Sources

With the estimated DOAs of FF sources, we reconstruct its
corresponding array manifold matrix as

AF = [aF(é1)7"' aaF(éKl)]-

Let E(aa,) be an oblique projection matrix with range
space A r and null space A . For a large number of sensors,
it has been proven that the following convergence holds [20]

19)

]\/I—)OO

”E(AFAN) MAFAHH 0, (20)
which means that E(a . A ,) can be calculated by
1 .
Eapay) = MAFAﬁf (21)

provided that M is large.



Subsequently, by applying the oblique projection operation,
the signal component associated with NF sources is given by

i(t) = (IM - E(AFAN))X(t)

= ANSN(t) + (Ins — E(apay))n(t), (22)

whose finite sample estimate is Ry = + S | %(1)%(1).

Performing the eigenvalue decomposition (EVD) on Ry
yields

Ry = EsASEY + ExANEY, (23)

where ES = [él, e ;éK—Kl] and EN = [éK—K1+17 . ,é]u]
denote the M x (K — K;)-dimensional signal subspace
and the M x (M — K + K;)-dimensional noise subspace,
which correspond to the K — K largest eigenvalues Ag =
diag{[by,...,0k_x,]} and the left M — K + K; small
eigenvalues Ay = diag{[SK_K]_H, . ,SM]}, respectively.

Applying the same phase compensation scheme as (17),
we can obtain the unbiased estimation of eigenvectors of NF
sources, which satisfies

K—-K; _
EsES = ) (6) 'erey,
k=1

(24)

where (Zsk is the phase transformation between the estimated
value €, and true value ey.

In order to realize NF source localization efficiently, we
divide the array manifold vector ay (0, ) into two parts,
where the first part only contains the DOA information and
the other part contains both DOA and range information, i.e.,

ay (O, i) = V(0r)b(0k, 1), (25)
where b(6, ;) = [e?L79 . ei?  1]7, and
re—JLlwr ... 0 e 0T
0 eIk
V() = 0 0o 0 1|. @6
0 ... edlen
LT S

Following the orthogonality property between array mani-
fold vector and noise subspace, we have

a% (Hk, rk)ENEgaN (G'k, ’I’k)
= b (0, 1) VI (0,)ENELV (0)b (6, 1)

= b (0, re)P(0)b(0k, 1) = 0, (27)

where P(G) = VH(Gk)(IIM — EsEg)V(Gk)
Obviously, all(0y,rr)ExEfay (0, ) will be zero if
and only if P() is singular. In other words, the DOAs

{0k, 11, ,0x} of NF sources can be estimated by finding
K — K, peaks of the following spectral function

K—-K;
v (0) = {det [V () (Tar — D (67) el )V(0u)]}

k=1
(28)

C. Range Estimation of NF Sources

By substituting 0, into the NF array manifold vector
ay(Og,rx) {k = K1 +1,---, K}, the range estimation 7
of NF sources can be finally obtained by the following 1-D
spectral function

K
v (re) = (2" (Or, ) (Tar = Y (7)ot a(f, m)] Y,

k=1
(29)

where 0, and 7, are automatically paired.

IV. NUMERICAL SIMULATIONS

In this section, the performance of the proposed algorithm
is evaluated and also compared with those of the SOS-based
oblique projection algorithm [6], the spatial differencing algo-
rithm [10], and the Cramér-Rao bound (CRB). The additive
noise is white Gaussian with variance o2 = 1. Two FF sources
located at (10°,00), (12°,00) and two NF sources located at
(30°,2X) and (50°,2)\) impinge on an SULA with M sensors.
The number of samples is fixed at N = 80, and all the sources
are BPSK-modulated with equal power. The root mean square
error (RMSE) of DOA and range estimation obtained from the
average results of 1000 independent Monte-Carlo simulations
is employed to evaluate the performance.

In the first simulation, RMSE curves of DOA and range
estimation versus SNR are shown in Figs. 1 and 2, respectively.
The number of sensors is set to M/ = 61 and SNR is varied
from -5 dB to 25 dB. It can be seen that the proposed algorithm
has outperformed all other algorithms for both DOA and range
estimations, and its RMSEs are closer to the related CRBs.
Meanwhile, it can been further observed that the RMSE of FF
sources of different algorithms become the same in high SNR
regions, this is because the two closely-spaced FF sources can
be well separated under such a circumstance.

In the second simulation, we further assess the performance
of different algorithms with different number of sensors. The
SNR is set to 0 dB, and M varies from 31 to 71 at a step of 10.
The result is shown in Figs. 3 and 4, from which we can see
that the RMSEs of all algorithms decrease monotonically with
the number of sensors M. Again, the proposed algorithm has
achieved the best performance for the whole sensor number
range. In particular, it can also be seen that the more sensors
we have, the closer the RMSE of the proposed algorithm is
to CRB, which implies that the proposed algorithm is more
suitable for large-scale array scenarios. Moreover, due to the
use of the same FF estimator for the oblique projection and
the spatial differencing algorithms, we can see that they have
identical performance for FF DOA estimation.
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Fig. 1. RMSEs of DOA estimations for two FF and two NF sources versus

SNR, with M =61, N = 80.
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Fig. 2. RMSEs of range estimations for two FF and two NF sources versus
SNR, with M =61, N = 80.

V. CONCLUSION

In this letter, a novel localization algorithm for mixed FF
and NF sources has been proposed from the GAT perspective
when the number of data samples available is comparable
with the number of sensors. Based on the property of the
spike covariance matrix, three modified 1-D spectrum func-
tions utilizing the phase compensation result are successively
constructed. Compared with existing algorithms, an improved
performance can be achieved by the proposed solution, as
verified by numerical simulations.
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