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Abstract—In this paper, a code-domain nonorthogonal multiple
access (NOMA) technique based on an algebraic design is studied.
We propose an improved low-density spreading (LDS) sequence
design based on projective geometry. In terms of its bit error
rate (BER) performance, our proposed improved LDS code
set outperforms the existing LDS designs over the frequency-
nonselective Rayleigh fading and additive white Gaussian noise
(AWGN) channels. We demonstrated that achieving the best BER
depends on the minimum distance.

Index Terms—Nonorthogonal multiple access (NOMA), low-
density spreading (LDS), sparse code multiple access (SCMA).

I. INTRODUCTION

I
N previous generations of wireless communications, or-

thogonal multiple access (OMA) techniques were predom-

inant. In OMA systems, users are assigned resources that

are orthogonal to one another, such as orthogonal frequency

division multiple access (OFDMA), orthogonal time division

multiple access (OTDMA) or code division multiple access

(CDMA) where the spreading signatures were mutually or-

thogonal. Ideally, in OMA systems the presence of multiple

users does not cause interference to any of the users that

occupy the channel. However, the capacity of an OMA system

is limited by the number of available orthogonal resources [1].

Future wireless networks are required to support a wide

range of use cases. One such use case is to provide communi-

cation capabilities to a massive number of low-power Internet-

of-Things (IoT) devices [1]. Due to the limitations of OMA,

supporting a large number of users over a common channel

while achieving the required level of service quality may not

be possible. In rank-deficient cases, where the number of active

communication devices exceeds the number of orthogonal

resources, nonorthogonal multiple access (NOMA) systems

are proposed [1]. In NOMA systems, users are assigned

multiple orthogonal resources and the resources are assigned

to multiple users. When users transmit simultaneously, each

user may experience some multiple-access interference (MAI)

if the same resource is used by two or more transmitters

simultaneously. For mitigating the MAI, many researchers
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have proposed a sparse allocation of these resources so as to

take advantage of efficient sparse signal processing techniques.

For example, the message passing algorithm (MPA) can be

used to iteratively perform multiuser detection (MUD) in a

NOMA system using sparsely assigned resources. NOMA

techniques can be categorized into power-domain multiplexed

NOMA (PDM-NOMA) and code domain multiplexed NOMA

(CDM-NOMA) [1]. A few of the strong contenders of CDM-

NOMA are low-density spread CDMA (LDS-CDMA) [2],

low-density spread orthogonal frequency-division multiplexing

(LDS-OFDM) [3], and sparse code multiple access (SCMA)

[4].

A number of studies have been undertaken to design

spreading code sets for sparse spreading based NOMA [5]–

[7]. In [5] the authors proposed an LDS structure based on

LDPC codes, where the user’s symbols are arranged in such

a way that the interference seen by each user on each chip

is different, while in [8], the authors designed the spreading

sequences based on an LDPC indicator matrix. In general,

signatures having a unity scalar magnitude are designed by

maximizing their minimum Euclidean distance. Similar to the

minimum distance criterion based LDS code design of [8],

the authors of [6] consider the maximization of the minimum

Euclidean distance for QAM constellations. Notably, they

design signature matrices that have factor graphs exhibiting

very few short cycles and large superposed signal constellation

distances. In [7], the authors optimize the degree distribution

of the LDS signature matrix.

Combinatorial structures with balanced incomplete block

design (BIBD) can allow a large number of users employing

few resources. As an example, authors in [9] proposed a

multiple tone frequency shift keying (MT-FSK) waveform

design based on BIBD. A specific highly structured BIBD

called the Steiner triple system (STS) is well studied for low

density parity-check (LDPC) constructions [10]. Steiner de-

signs used as sparse codes have better interference properties,

which provide higher user/bandwidth efficiency and variable

code rates. Motivated by this, Wu et al. [11] proposed a

STS-based LDS signature set design, whose incidence matrix

supports superposition based multiuser communications. By

using algebraic code construction methods, the authors in [12],

[13] proposed a power-imbalanced LDS design of nonzero

entries for a given factor graph with the aid of Eisenstein

integers1. Compared to the design of conventional antipodal

1Eisenstein integers are complex number of the form I = 0 + 1l, where

0, 1 ∈ N and l =
−1+8

√
3

2 = 4
2c8

3 is a primitive cube root of unity.
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spreading sequences for classic CDMA, designing the LDS

sequences for NOMA systems is more complicated, since the

design should be implemented under the sparsity constraint of

the signature matrix. In the literature, there is a little work on

the design of optimal signature matrix designs that maximize

the minimum Euclidean distance.

In this paper, we study an LDS design constructed using

lines and quadrics from certain finite projective planes. More

explicitly, our new contributions are summarized as follows:

1) We propose a novel LDS design based on algebraic

scheme. Explicitly, our design constructs the incidence

matrices by applying Singer’s Theorem.

2) We demonstrate that our proposed code sets achieve

TSC asymptotically by comparing with the widely

known Welch bound. Furthermore, we provide a proof

that the maximum minimum Euclidean distance of the

column vectors is
√

2.

The rest of the paper is organized as follows. In Section

III, we discuss the preliminaries. In Section IV, we introduce

the facts from projective geometry that are required for our

construction. We provide the actual design of our spreading

codes in Section V, along with a theoretical analysis of

the properties of our code matrices. After illustrating our

simulation results in Section VI, our conclusions are drawn

in Section VII.

II. SYSTEM MODEL

First of all, perfect chip synchronization among all the

transmitters is assumed. In our multiple-access system the

users’ symbols are multiplexed after spreading them using

the LDS codes. Mathematically, we can formulate the system

model as

y =

 ∑

:=1

c:3:G: + n

= CDx + n, (1)

where  is the number of the users, 3: is the :-th user’s

amplitude, G: ∈ X: is the :-th user’s symbol to be transmitted

from the constellation alphabet, X: , C = [c1, c2, . . . , c ] ∈
C
!× is the column-normalized LDS code matrix, | |c: | | = 1

for 1 ≤ : ≤  , n ∈ C!×1 is an !-dimensional complex-valued

AWGN vector with variance of f2 and D is a diagonal matrix

hosting the users’ amplitudes. We assume that the constellation

alphabet of each user is identical, i.e., X: = X, ∀: and the

cardinality of the constellation is " = |X|.

III. PRELIMINARIES

A. Desiderata

We are interested in “overloaded” spreading matrices, i.e.,

matrices for which  > !. Additionally, in order to achieve

good LDS spreading sets, we would like for the maximum

cross-correlation and the total squared correlation of our

matrices to be low; ideally, these quantities should be as close

to the Welch bounds as possible.

IV. BACKGROUND FROM PROJECTIVE GEOMETRY

A. Definitions and Basic Facts

Let P be a finite projective plane of order :. Enumerate

the points and lines of P using the integers from the set

{0, 1, ..., :2 + :}. Then the incidence matrix of P relative to

this enumeration is the (:2+:+1)×(:2+:+1) matrix � = [18 9 ]
such that 18 9 = 1 if point 8 is on line 9 and 18 9 = 0 otherwise.

The smallest nontrivial projective plane is the projective

plane of order 2, which is also known as the Fano plane.

Relative to a certain enumeration of its points and lines, the

incidence matrix for the Fano plane is as follows:

I7 =



0 0 0 1 0 1 1

1 0 0 0 1 0 1

1 1 0 0 0 1 0

0 1 1 0 0 0 1

1 0 1 1 0 0 0

0 1 0 1 1 0 0

0 0 1 0 1 1 0



. (2)

Incidence matrices of projective planes will be our starting

point for our construction of overloaded code matrices for

LDS.

B. Singer’s Theorem

In this section, we discuss a well-known theorem first

proven by J. Singer in 1938 [14].

Theorem 4.1: [14] Let @ be a prime power, let + = F
3
@,

and let U be a generator of F@3 . Then there exists a labelling

of %(+) such that the resulting incidence matrix is circulant.

The first column of this matrix is obtained as follows: we set

the entry in row 8, col 0 to be 1 if Tr(U8) = 0 and to be 0

otherwise.

I13 =



1 0 0 0 1 0 0 0 0 0 1 0 1

1 1 0 0 0 1 0 0 0 0 0 1 0

0 1 1 0 0 0 1 0 0 0 0 0 1

1 0 1 1 0 0 0 1 0 0 0 0 0

0 1 0 1 1 0 0 0 1 0 0 0 0

0 0 1 0 1 1 0 0 0 1 0 0 0

0 0 0 1 0 1 1 0 0 0 1 0 0

0 0 0 0 1 0 1 1 0 0 0 1 0

0 0 0 0 0 1 0 1 1 0 0 0 1

1 0 0 0 0 0 1 0 1 1 0 0 0

0 1 0 0 0 0 0 1 0 1 1 0 0

0 0 1 0 0 0 0 0 1 0 1 1 0

0 0 0 1 0 0 0 0 0 1 0 1 1



(3)

We will use Singer’s Theorem to construct the incidence

matrix of %(F3
3
). Note that G3 + 2G + 1 is irreducible over

F3. and therefore the Galois field F33 can be constructed as

F33 = F3 [G]/〈G3+2G+1〉. In fact, it turns out that G3+2G+1 is a

primitive polynomial over F3, which means that G+〈G3+2G+1〉
is a generator of F∗

33 (i.e., U = G + 〈G3 + 2G + 1〉). The cyclic

group F∗
33/F∗3 induces an automorphism group of %(F3

3
) which

acts sharply transitively on points and hyperplanes [15].

In order to use Singer’s theorem to construct our incidence

matrix, we need to be able to compute Tr(U8) for 0 ≤ 8 ≤
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(32 + 3), i.e., 0 ≤ 8 ≤ 12, as described in [15]. This can

be accomplished by first constructing a dictionary between

the additive and multiplicative representations of the elements

of F∗
27
. Here are the values we found for the trace function:

Tr(U0) = 0, Tr(U1) = 0, Tr(U2) = 2, Tr(U3) = 0, Tr(U4) = 2,

Tr(U5) = 1, Tr(U6) = 2, Tr(U7) = 2, Tr(U8) = 1, Tr(U9) = 0,

Tr(U10) = 2, Tr(U11) = 2, and Tr(U12) = 2. Therefore, the

incidence matrix for %(F3
3
) is as shown in (3).

C. Quadrics

Let & be a non-degenerate quadric in %(F3
@). Define the

incidence vector g& of & as follows. Let the entry in the 8-th

row equal 1 if U8 ∈ & and 0 if U8 ∉ &.

Theorem 4.2: [15] Let @ be a prime power, and let A ∈
(Z/(@2 + @ +1)Z)∗. If @ is even, let A be such that A−1

= @ +1;

if @ is odd, let A be such that A−1
= 2. Then there exists a non-

degenerate quadric & in %(F3
@) whose incidence vector g& is

obtained as follows. Let gℓ be the first column of the incidence

matrix of %(F3
@) (obtained using Singer’s construction). Then

the A8-th row entry of g& (where A8 is reduced modulo @2+@+1)

is the same as the 8-th row entry of gℓ .

Let @ = 2, we have A−1
= 2 + 1 = 3 where A = 3−1

= 5.

The first column of I7 is [0, 1, 1, 0, 1, 0, 0]) . Hence, g& =

[0, 0, 0, 1, 0, 1, 1]) . When @ = 3, we have A−1
= 2 where A =

2−1
= 7. The first column in the incidence matrix of %(F3

3
) we

derived earlier is [1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0]) . So, g& =

[1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0]) . .

Theorem 4.3: Let @ be a prime power, and let & be a non-

degenerate quadric in %(F3
@). Then the lines of %(F3

@) intersect

& in sets of sizes 0, 1, and 2 and with multiplicities �, �, and

�, respectively, where

� =
@2 − @

2
, � = @ + 1, and � =

@2 + @
2

.

V. PROPOSED LDS CODE DESIGN

A. LDS Construction

In the following section, we describe the proposed algorithm

as shown in Table I.

TABLE I

LDS design algorithm

Input: !;
1: Construct incidence matrix, I!
2: Compute g&
3: Generate vector g′

&
from g&

4: C← [I! g& g′
&
]

5: Negate and normalize C
Output: C

First, we generate the incidence matrix I! of the projective

plane %(F3
@). Next, append g& vector to incidence matrix I! .

Now, identify every line ℓ that intersects & in two points.

Then, in the columns corresponding to such lines, we negate

one of the entries corresponding to either of the points of

intersection. Perform a downward cyclic shift on g& to obtain

a vector g′
&

that has a suitably small number of nonzero entries

in common with g&. It follows from the circulant structure of

the incidence matrix I! that the dot product of g′
&

with the

columns of the I! also equal either 0, 1, or 2. The next step

is to negate entries of the incidence matrix so that the dot

product of g′
&

with its columns is less than or equal to 1. For

example, the LDS code construction of size of 7×9 are given

as follows:



0 0 0 1 0 1 1 0

1 0 0 0 1 0 1 0

1 1 0 0 0 1 0 0

0 −1 −1 0 0 0 1 1

1 0 1 1 0 0 0 0

0 1 0 1 −1 0 0 1

0 0 1 0 1 1 0 1



.

Next, we obtain a downward cyclic shift (by one position) on

g& to obtain the vector g′
&

= [1, 0, 0, 0, 1, 0, 1]) . Note that

g& · g′& = 1. In the last step of the construction process adjoin

g′
&

to the matrix, negating entries so that the dot product of

any two columns is less than or equal to 1, and normalize all

of the columns. Therefore, LDS code of size 7×9 is obtained

as follows:

(1/
√

3)



0 0 0 1 0 1 1 0 1

1 0 0 0 1 0 1 0 0

1 1 0 0 0 1 0 0 0

0 −1 −1 0 0 0 1 1 0

1 0 −1 −1 0 0 0 0 1

0 1 0 1 −1 0 0 1 0

0 0 1 0 1 −1 0 1 1



.

Using our proposed algorithm in Table I, we can construct

LDS code set having size of 13 × 15 as follows:

(1/2)



1 0 0 0 1 0 0 0 0 0 1 0 1 1 0
1 1 0 0 0 1 0 0 0 0 0 1 0 0 1
0 1 1 0 0 0 1 0 0 0 0 0 1 0 0
1 0 1 1 0 0 0 1 0 0 0 0 0 0 0
0 1 0 1 1 0 0 0 1 0 0 0 0 0 0
0 0 1 0 1 1 0 0 0 1 0 0 0 0 0
0 0 0 1 0 1 1 0 0 0 1 0 0 0 0
0 0 0 0 −1 0 1 −1 0 0 0 1 0 1 0
0 0 0 0 0 −1 0 1 −1 0 0 0 −1 1 1
−1 0 0 0 0 0 1 0 1 −1 0 0 0 0 1
0 1 0 0 0 0 0 1 0 1 1 0 0 0 0
0 0 1 0 0 0 0 0 1 0 −1 −1 0 1 0
0 0 0 1 0 0 0 0 0 1 0 −1 1 0 1



.

B. Analysis

Let us consider the (@2+@+1)×(@2+@+2) matrices obtained

by performing the first stage of the process outlined in Section

V-A. As for our future LDS code design development, we are

working on deriving some theoretical results for the code sets

having greater number of users by performing the second step

(or, even by performing further iterations) of our proposed

construction process. Therefore, the theoretical results of such

overloaded matrices will be necessarily built upon our analysis

of proposed code matrices that have lower number of users.

Consider a (@2 + @ + 1) × (@2 + @ + 2) matrix obtained by

performing the first stage of the procedure outlined in IV-B.

Since any two lines in a projective plane intersect one another

in exactly 1 point, it follows that the cross-correlation of any

two columns indexing lines in the plane equals ±1/(@+1). Due

to the fact that a quadric intersects a line in 0, 1, or 2 points

and the way we assign signs to some of the entries in our

construction, it follows that the cross-correlation of g& with

a column indexing a line is less than or equal to 1/(@ + 1)



IEEE WIRELESS COMMUNICATIONS LETTERS, VOL. 1, NO. 1, DEC. 2021 4

in absolute value. Hence, the maximum cross-correlation of

our code matrix is 1/(@ + 1). Therefore, relative to the size of

the alphabet used to construct our sequences and the number

of nonzero entries appearing in each row and column of the

matrix, the maximum cross-correlation of our code matrix is

optimal. The vectors in our code matrix have length @2 + @ +1

and contain only @ + 1 nonzero entries. The larger @ results in

more sparseness in our proposed vectors.

To consider the total squared (TSC) correlation criteria, we

examine how close our code matrices come to the Welch

bound,

TSC ≥  
2

!
=
(@2 + @ + 2)2
@2 + @ + 1

= O(@2).

Since our vectors have unit length, the correlations of the

vectors with themselves contribute @2 + @ + 1 to the TSC.

Consider the contributions to the TSC provided by pairs of

columns corresponding to lines. Any two lines intersect in

exactly one point.

Finally, consider the contribution of the correlations of g&
with the columns indexing lines. For the columns indexing

lines that do not intersect & or that intersect & in 2 points,

the contribution of this cross-correlation to the TSC is 0. By

Theorem 4.3, there are exactly @ + 1 columns indexing lines

that intersect & in 1 point. The cross-correlations of g& with

these lines contribute exactly (@ + 1) · 1/(@ + 1)2 = 1/(@ + 1)
to the TSC. Hence,

TSC = (@2 + @ + 2) + (@
2 + @ + 1) (@2 + @)

2(@ + 1)2
+ 1

@ + 1

Therefore, TSC of our code matrices asymptotically equal to

the Welch bound.

It is clear from the discussion about cross-correlation given

above that the Hamming distance between any two vectors

in the (@2 + @ + 1) × (@2 + @ + 2) code matrix constructed

using our procedure is either 2(@ + 1), 2@, or 2(@ − 1).
When the Hamming distance is 2(@ + 1), the Euclidean

distance is
√

2(@ + 1)/(@ + 1) =
√

2. When the Hamming

distance is 2@, the Euclidean distance is either
√

2@/(@ + 1)
or

√
(2@ + 4)/(@ + 1). Note we have signed certain elements

in the columns, when the Hamming distance is 2(@ − 1), the

Euclidean distance is
√

2(@ − 1) + 4

@ + 1
=

√
2(@ + 1)
@ + 1

=
√

2.

Therefore, the maximum minimum Euclidean distance of the

column vectors in our code matrix is
√

2. Note that this

Euclidean distance is not equivalent to the superimposed

vectors minimum Euclidean distance.

VI. COMPARISONS WITH OTHER ALGEBRAIC LDS

DESIGNS

In this section, we assess the performance of our proposed

LDS code sets against the LDS sets in [12], for quadrature

amplitude modulation (QAM) signaling. We observed that

when the non-zero positions of the LDS code sets generated

according to [12] are different than those of the proposed

LDS code sets, the bit error rate (BER) performance of the

former deteriorates substantially. Therefore, while generating

the LDS codes of sizes 7 × 9 and 13 × 15 based on [12], the

non-zero entries are kept in the same positions as those in

the proposed LDS sets; however, the values of the non-zero

entries are obtained by following the exact procedure outlined

in [12]. It should also be noted that, the proposed LDS code

-2 0 2 4 6 8 10
10-3

10-2

10-1

100

B
E

R

Fig. 1. Uncoded BER performance of LDS and SCMA in frequency-
nonselective Rayleigh fading.

sets are not necessary uniquely decodable (UD) under QAM

signaling; as such, the BER performance will have an error

floor under the maximum-likelihood (ML) detection over the

additive white Gaussian noise (AWGN) channel. Due to this

0 2 4 6 8 10
10-6

10-4

10-2

B
E

R

Fig. 2. BER Performance of LDS and SCMA with Turbo Coding in AWGN.

reason we observed that the proposed LDS codes perform

much better over the Rayleigh fading channels as opposed to

AWGN channel as shown in Figs. 1 - 3. In addition, the BER

hinges not only on the minimum distance criterion, but also

on the average Gaussian separability margin [16]. Simulations

were performed over the AWGN and Rayleigh fading channels

with the fading rate of the symbol duration. We can apply

transmitter precoding scheme for frequency selective channels
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[16]. In our simulations, we utilized LDS spreading codes

of sizes 7 × 9 and 13 × 15, SCMA [17] of size 4 × 6 and

the corresponding information rates in case of 4QAM are

[!�( = 2A · 1B · 9/7 = 0.86, and [!�( = 2A · 1B · 15/13 = 0.77

bits/s/Hz, where 1B = 2 bits/symbol and 2A = 1/3 code rate, re-

spectively. Therefore, the corresponding unrestricted Shannon

limits are calculated by using the upper bound log2 (1 + WV)
as �1/#> = (2[!�( − 1)/[!�(, �1/#> = 0.947 (−0.24 dB)
and �1/#> = 0.916 (−0.38 dB) for [!�( = 0.86 and

[!�( = 0.77 where W denotes signal-to-noise ratios (SNR)

and V =  /! denotes the overload factor, respectively. Fig.

-4 -2 0 2 4 6 8
10-6

10-4

10-2

B
E

R

LDS 7  9 in [12]
LDS 7  9 proposed
LDS 13  15 in [12]
LDS 13  15 proposed
SCMA 4  6

Fig. 3. BER Performance of LDS and SCMA with Turbo Coding in
Frequency-nonselective Rayleigh Fading.

1 shows that when no error control coding is used, SCMA

performs better than LDS using our proposed LDS codes at

high �1/#0 in Rayleigh fading. However, we also note that

the BER performance of our proposed LDS scheme performs

better at low �1/#0. When Turbo coding with the rate of

1/3, generator polynomials of 1 + G + G2, 1 + G2 + G3, a

feedback connection polynomial of 1 + G + G2 and interleaver

is used; however, our proposed LDS technique outperforms

SCMA in Rayleigh fading as demonstrated in Fig. 3. This is

because the energy per code bit to single sided noise spectral

density ratio at the input to the decoder is low. At a BER

of 10−3, LDS using our proposed spreading codes provides

approximately a 3 dB improvement over SCMA in Rayleigh

fading. In all of our simulations, we used message passage

algorithm (MPA) detector for SCMA and probabilistic data

association (PDA) [18] multiuser detector for all LDS codes.

The reason we used PDA detector as its performance is similar

to other best low-complexity detectors. In contrast to the PDA,

the MPA does not need to perform any matrix inversion, but

its complexity increases exponential by both with the size

of the symbol alphabet " and number of non-zero positions

of the spreading waveform 3 5 . Fortunately matrix inversion

required by PDA can be carried out quite efficiently with the

aid of the Sherman–Morrison–Woodbury formula at an overall

complexity order of O( 3).

VII. CONCLUSION

In this paper, we conceived an improved low-density spread-

ing (LDS) sequence design based on an algebraic scheme.

We developed a novel LDS construction based on projective

geometry. In terms of its bit error rate (BER) performance,

our proposed improved LDS code set outperforms the existing

LDS designs over the frequency-nonselective Rayleigh fading

and additive white Gaussian noise (AWGN) channels. We

demonstrated that achieving the best BER depends on the min-

imum distance. Our future research will consider developing

a theory for the overloaded cases that has greater number of

users than the proposed construction.
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