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Abstract—Recently, deep learning-based image classification
and speech recognition approaches have made extensive use
of attention mechanisms to achieve state-of-the-art recognition,
which demonstrates the effectiveness of attention mechanisms.
Motivated by the fact that the frequency and time information of
modulated radio signals are crucial for modulation recognition,
this paper proposes a time-frequency attention mechanism for
convolutional neural network (CNN)-based automatic modulation
recognition. The proposed time-frequency attention mechanism is
designed to learn which channel, frequency and time information
is more meaningful in CNN for modulation recognition. We
analyze the effectiveness of the proposed attention mechanism
and evaluate the performance of the proposed models. Experi-
ment results show that the proposed methods outperform existing
learning-based methods and attention mechanisms.

Index Terms—Automatic modulation recognition, convolu-
tional neural network, time-frequency attention.

I. INTRODUCTION

A
UTOMATIC modulation recognition (AMR) is the task

of classifying the modulation mode of radio signals re-

ceived from wireless communication systems. It is an interme-

diate step between signal detection and signal demodulation.

As a step towards understanding what type of communication

scheme and emitter is present, AMR has been widely used in

practical civilian and military applications, such as cognitive

radio, spectrum monitoring, communications interference, and

electronic countermeasures.

In the past few years, due to the great success in com-

puter vision and natural language processing, data-driven

deep learning methods have also been applied to AMR,

showing great potential in improving recognition accuracy

and robustness. O’Shea et al. generated an open modulation

recognition dataset, called RadioML2016.10a, using GNU
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Radio in [1], and first proposed a deep neural network (DNN)

architecture for AMR in [2]. Later, various DNN architectures

were introduced to improve the recognition accuracy, such as

convolutional neural networks [3], recurrent neural networks

[4], and graph convolutional network [5]. Recently, a few deep

learning-based approaches considered the inherent properties

of radio signals and communication systems in modulation

recognition. Yashashwi et al. [6] proposed a learnable distor-

tion correction module to shift the frequency and phase of

signal according to its weights and jointly train with a CNN.

In [7], high-order statistics of radio signal was computed as

an additional signal representation to the CNN classifier. Zeng

et al. [8] exploited the time-frequency analysis of modulated

radio signals and proposed a CNN with the short-time discrete

Fourier transform (STFT). Wang et al. [9] proposed a multi-

cue fusion network by modelling spatial-temporal correlations

from modulated signal cues. Our work further leverages time-

frequency characteristics of time series during the design of

attention mechanism for modulation recognition.

In addition to DNNs, attention mechanisms have also been

used in a wide variety of DNN-based methods in computer

vision. A neural attention module can optimize the weights

of the input features by minimizing recognition errors. This

can hence enhance the important information and reduce the

interference caused by irrelevant information in learning-based

recognition frameworks. In [10], a squeeze-and-excitation (SE)

attention was proposed. It computes channel attention with the

help of 2D global pooling and provides notable performance

gains at a considerably low computational cost. In [11], Woo

et al. proposed a convolutional block attention module, which

sequentially implements channel attention and spatial attention

to enhance important parts of the input features. In contrast,

our attention mechanism attends features in channel, frequency

and time dimensions for improving the modulation recognition

performance of existing CNN-based models.

In this work, we propose a time-frequency attention (TFA)

mechanism to learn useful features from spectrogram images

in terms of channel, frequency and time, and improve the

recognition performance of existing methods. The channel

attention is performed first to learn weights regarding channel

importance in the input feature map, and then frequency

and time attention mechanisms are performed in parallel and

composited using learned weights for capturing both frequency

and time attention. In addition, we integrate the proposed TFA

mechanism into two CNN-based AMR models to improve

the performance of AMR. Moreover, we conduct ablation

experiments to analyze the effectiveness of the proposed TFA

mechanism, and compare the presented AMR models with
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three existing state-of-the-art (SOTA) AMR methods in [2],

[12], [13].

II. PROBLEM STATEMENT AND SPECTRUM

REPRESENTATION

This paper considers a simple single-input single-output

wireless communication system, where a symbol is converted

and transmitted to a receiver via a communication channel.

The data model of received signal A (C) is given as:

A (C) = F (B(C)) ∗ ℎ(C) + =(C), (1)

where B(C) denotes the transmission symbol, F is a modulation

function, ℎ(C) is the communication channel impulse response,

and =(C) is the additive white Gaussian noise. Given the

received signal A (C), AMR aims at decoding the modulation

function F . A discrete-time version of the continuous-time

signal A (C) can be obtained by sampling A (C) for = times with

a sampling rate 5B =
1
)B

i.e. A (=) = A (C) |C==)B ,−∞ < = < +∞.

Since the time-frequency analysis of a modulated signal can

reflect its frequency varies with time, which is an important

distinction among different modulated signals. In this work,

we exploit the insight from recent work [8] that spectrograms

can achieve richer time-frequency representation of signals,

and use STFT-based spectrogram to represent the signal about

frequency variation trend with time. The continuous signal A (C)

is first converted to discrete-time signal A (=) with sampling

frequency 5B , and then A (=) is windowed and transformed into

the frequency domain by applying the STFT, that is:

'(<, :) =

< +(!−1)∑

==< 

A (=)F(= − < )4− 9
2c:
!
=, (2)

where < and : denote the time frame and frequency bin

indices, respectively. F(=) denotes the window function, !

is the frame length, and  is the frame shift. The spectrogram

G is given as G = |'(<, :) |2, where each pixel corresponds to

a point in frequency and time.

III. AUTOMATIC MODULATION RECOGNITION

A. Time-Frequency Attention

We propose a TFA mechanism for extracting meaningful

channel, frequency, and time information of the spectrogram

inputs for AMR. The proposed TFA aims at devoting more

computing power to that small but important part of the data.

The overview of the proposed TFA is shown in Fig. 1. The

feature map generated from a convolutional layer is the input

feature map of TFA, later the refined feature map generated

by TFA is the input of next layer. The TFA contains three sub-

modules, namely channel attention module (CAM), frequency

attention module (FAM), and time attention module (TAM).

The CAM is used to exploit the inter-channel relationship of

features, and extract general information regarding channel

importance in the input feature map. The FAM focuses on

where is the important frequency information of the channel

attention refined feature map, and TAM focuses on where is

the important time information of the channel attention refined

feature map.
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Fig. 1. Overview of the proposed TFA mechanism integrated in a convolu-
tional layer.

Given an input feature map F ∈ '�×,×� from previous

convolutional layer, where � and , denote the height and

width, respectively, and � denotes the number of channels.

The TFA first uses CAM Mc to generate a channel refined

feature map Fc ∈ '�×,×� . Later, FAM Mf and TAM

Mt are performed on Fc in parallel. The parallel attention

operations are performed to generate a frequency refined

feature map Ff ∈ '�×,×� and a time refined feature map

Ft ∈ '�×,×� , respectively. After concatenation of the two

refined feature maps Ff and Ft, a convolution layer with 1×1-

sized kernel is applied to generate the final refined feature

map F
′ ∈ '�×,×� . Then F

′ is treated as the input of the

next layer. The overall process can be summarized as:

Fc = Mc(F) ⊗ F, Ff = Mf (Fc) ⊗ Fc, Ft = Mt(Fc) ⊗ Fc, (3)

F
′
= 5 1×1( [Ff ; Ft]), (4)

where ⊗ denotes element-wise multiplication. Multiplication

process enhances the important parts of input data and fade

out the rest according to the learned attention operations Mc,

Mf and Mt. 5
1×1 denotes a convolutional layer with 1×1-sized

kernel.

Fig. 2 shows the procedures of CAM, FAM, and TAM. The

CAM first performs global max-pooling and global average-

pooling on the input feature map to generate features that

denote two different contexts respectively. The features are

then used as the input of a shared network, which consists

of a multi-layer perceptron (MLP) comprising two densely

connected layers with �/8 and � neurons. The MLP is trained

with the network with same training settings. The outputs of

the shared network are element-wise added up. Then a sigmoid

function is performed to generate the channel attention map.

The operation Mc is given as:

Mc(F) = f("!%(�E6%>>; (F)) + "!%("0G%>>; (F))),

(5)

where f denotes the sigmoid function. The output channel

attention map Mc (F) ∈ '
1×1×� is multiplied by F to generate

a channel attention refined feature map Fc.

The FAM and TAM have similar procedures. The TAM

focuses on the x-axis of input spectrogram which represent

the time axes, and FAM focuses on y-axis which represent

the frequency axes. The channel refined feature map Fc is the

input of FAM and TAM. The FAM averages Fc along the

time axes to focus on the frequency feature Ff ∈ '�×1×�,

which is given by Ff = �E6%>>;1×, (Fc). Then, max-pooling
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Fig. 2. Flowchart of the three submodules in TFA. (a) Channel attention module. (b) Frequency attention module. (c) Time attention module.

and average-pooling are performed and then concatenated to

further extract the frequency feature. After that, three cascaded

3×3 convolutional layers and a sigmoid function are performed

to generate a frequency attention map Mf (Fc) ∈ '�×1×�.

Unlike FAM, TAM averages Fc along the frequency axes to

focus on the time feature Ft ∈ '1×,×� , which is given by

Ft = �E6%>>;�×1(Fc), and performs the same operations as

in FAM to generate a time attention map Mt (Fc) ∈ '
1×,×� .

The operations Mf and Mt are given as:

Mf (Fc) = f( 5
3×3
3 ( [�E6%>>; (Ff);"0G%>>; (Ff)])),

Mt(Fc) = f( 5
3×3
3 ( [�E6%>>; (Ft);"0G%>>; (Ft)])),

(6)

where 5 3×3
3

denotes 3 cascaded convolutional layers with 3×3-

sized kernel. The frequency attention map Mf (Fc) and time

attention map Mt (Fc) are multiplied by the input feature map

Fc to generate a frequency refined feature map Ff and a time

refined feature map Ft, respectively. After concatenating Ff

and Ft, a convolutional layer 5 1×1 is used to generate the

final refined feature map F
′ as shown in Fig. 1.

B. Network Architecture

We follow a CNN architecture similar to the one used in [8],

called spectrum CNN (SCNN), and investigate the designed

TFA block into the CNN architecture, called TFA-SCNN. Fig.

3 illustrates the overview of the framework TFA-SCNN. It

consists of one input layer, 4 convolutional layers integrated

with TFA, one densely connected layer, and an output softmax

layer. The input of the network is a spectrogram image with the

dimension of 100×100×3. The convolutional layers use 3×3-

sized kernel and the number of kernels of the 4 convolutional

layers is setting as 64, 32, 12, 8. The feature maps from

convolutional layers integrated with TFA are followed by

rectified linear unit (ReLU) [14] and a max-pooling layer

with a size of 2 × 2, except for the last one only followed

by ReLU. Specifically, the dimension of the feature maps

generated by TFA is 98× 98× 64, 47× 47× 32, 21× 21× 12,

8×8×8. The densely connected layer consists of 128 neurons.

The output of the network is the predicted modulation mode

of input. The network is trained using stochastic gradient

descent to minimize the cross-entropy loss function, that

is, w
∗
= argminW

1
#

∑#
8=1 L(w; G8, C8), with the number of

training examples # , the true labels C8 , and the predicted labels

G8 . L denotes the loss function, that is, L = −
∑"
9 V 9 ;>6(@ 9 ),

where " denotes the number of classes, V 9 is a binary

indicator with V 9 = 1 if G8 is C8 , otherwise V 9 = 0, and @ 9
denotes the predicted probability of belonging to class 9 .
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Fig. 3. Network architecture of the proposed TFA-SCNN.

IV. EXPERIMENTS

A. Dataset

We evaluate the proposed AMR framework on an open-

source dataset RadioML2016.10a [1] and its larger version

RadioML2016.10b. RadioML2016.10a consists of analog and

digital modulation methods, including 11 commonly used

modulations modes in communication systems, which are

8PSK, AM-DSB, AM-SSB, BPSK, CPFSK, GFSK, PAM4,

QAM16, QAM64, QPSK, and WBFM. RadioML2016.10a

includes 220000 modulated signals with 20 different signal-to-

noise ratios (SNRs) ranging from −20 dB to 18 dB, and 1000

signals per SNR per modulation mode. RadioML2016.10b

consists of 1200000 modulated signals with 20 different SNRs

ranging from -20 dB to 18 dB and 6000 signals per SNR per

mode. Each signal in the both datasets consists of complex

IQ. Unlike most deep learning-based AMR methods, where

IQ information is directly used as two-dimensional signals,

we generate one dimensional complex signal using the given

IQ information. To train, validate and test the learning-based

AMR models, in our experiments, for each modulation mode

per SNR, we randomly split the dataset into training set,

validation set and test set, the corresponding ratio is 7:1:2.

B. Experiment Setup

We use three experiments to analyze the effectiveness of the

proposed TFA mechanism and the recognition performance of

the proposed models. First, we study the effect of different

combination modes of the frequency and time attention mech-

anisms on recognition accuracy. Second, using the proposed
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model SCNN with no attention as a baseline, we evaluate

the performance of the proposed TFA on SCNN, called

TFA-SCNN. After that, we evaluate the performance of the

proposed model additionally with Gaussian filter-based noise

reduction [8], called TFA-SCNN2, and compare the proposed

TFA-SCNN and TFA-SCNN2 with the existing SOTAs with

open source code:

• IQ-CNN [2]: a CNN-based method, which uses IQ infor-

mation as the input.

• CLDNN [12]: a convolutional long short-term deep neural

networks (CLDNN)-based method with optimal parame-

ters for AMR.

• AAM-SCNN [13]: a baseline model with an adaptive

attention mechanism module (AAM).

For signal representation, we convert the complex signals

into spectrogram images using frame-based STFT, with a

95% overlapping Hamming window and a frame length of

40 samples. The resolution of the input spectrograms is

100×100×3. We normalize all spectrograms before processing,

and use root-mean-square prop (RMSprop) as the optimizer.

The learning rate starts with 0.0005 and is reduced by a factor

of 0.1 when validation loss does not drop within 10 epochs.

The training process is terminated when validation loss does

not drop within 15 epochs, and the model with the smallest

validation loss is saved and used for testing. All experiments

are implemented using Keras with Tensorflow backbone and

NVIDIA RTX 3090 GPU platform.

C. Experiment Results

Table I shows the results of the ablation experiments on

baseline model SCNN. The TFA outperforms all other variants

by a significant performance improvement. Whether cascaded

CAM-FAM or cascaded CAM-TAM, the recognition accuracy

is improved compared to SCNN without attention, which

indicates that the attention mechanism extracting meaningful

frequency or time features can improve recognition accuracy.

In addition, experiment results in Table I show that cascaded

FAM and TAM performs worse than the proposed parallel

architecture in TFA. The ablation study shows that simul-

taneous modelling of frequency and time importance from

spectrograms in CNN improves recognition accuracy.

TABLE I
ABLATION EXPERIMENT RESULTS ON RADIOML2016.10A

Attention Variant
Accuracy

−8 dB −2 dB 4 dB 10 dB

None 0.372 0.687 0.801 0.823

cascaded CAM-FAM 0.395 0.732 0.818 0.841

cascaded CAM-TAM 0.396 0.740 0.818 0.834

cascaded CAM-TAM-FAM 0.389 0.729 0.811 0.843

proposed 0.426 0.766 0.864 0.857

Fig. 4 shows the recognition accuracy comparison between

SCNN and TFA-SCNN versus SNR on RadioML2016.10a and

RadioML2016.10b. Compared to the baseline model SCNN,

the proposed TFA-SCNN has higher recognition accuracy.

Specifically, on RadioML2016.10a, the recognition accuracy

of TFA-SCNN is around 2% to 4% higher than those of the

SCNN when SNR is above 10 dB, and around 5% to 8%

higher than those of SCNN when SNR is between −8 dB

and 10 dB. On dataset RadioML2016.10b, the recognition

accuracy of TFA-SCNN is around 1% to 5% higher than those

of the SCNN when SNR is above 10 dB. The TFA-SCNN gets

around 3% to 9% higher accuracy than SCNN when SNR is

between −8 dB and 10 dB.

(a) Recognition accuracy on RadioML2016.10a

(b) Recognition accuracy on RadioML2016.10b

Fig. 4. Recognition accuracy of TFA-SCNN and SCNN.

Fig. 5 shows confusion matrices of TFA-SCNN and SCNN

at −2 dB SNR on RadioML2016.10a. The results show

that TFA is able to improve the recognition accuracy of

all modulation modes, especially for modes: 8PSK, AM-

DSB, and GFSK, getting around 15% to 24% performance

improvement. The confusion problem between WBFM and

AM-DSB is because that both of them belong to analog

modulation, and the signal data were generated using the same

audio source signal with silent segments, making some of their

spectrogram features more difficult to distinguish. Another

confusion problem is between 8PSK and QPSK, since the

main difference between 8PSK and QPSK is in phase, while

spectrograms are weak in representing phase information.

Next, we compare the recognition accuracy of TFA-SCNN

and TFA-SCNN2 with IQCNN, CLDNN, and AAM-SCNN

on RadioML2016.10a. The experiment results are shown in

Fig. 6. We observe that the presented models with TFA

(TFA-SCNN and TFA-SCNN2) perform better than the other

methods when SNR is above −14 dB. Specifically, TFA-SNN2

performs clearly better than the other methods when SNR is

above 2 dB, but the accuracy gets around 3% to 4% lower

than TFA-SCNN and AAM-SCNN at 18 dB SNR. This is
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(a) TFA-SCNN (b) SCNN

Fig. 5. Confusion matrices on RadioML2016.10a at −2 dB SNR.

consistent with the results of SCNN and SCNN2 in literature

[8], since the noise reduction algorithm has limited capability

to improve recognition accuracy when signals are severely

distorted and close to clean. In addition, the accuracy of TFA-

SCNN gets around 1% to 3% higher than that of AAM-SCNN

at all SNR levels, and it achieves a maximum recognition

accuracy of 92% at 18 dB SNR. This can be explained that the

TFA mechanism considers the inherent characters of the time-

frequency analysis and extracts important information in terms

of channel, frequency and time dimensions, while the AAM

mechanism pays attention to channel and spatial information.

Fig. 6. Recognition accuracy comparison on RadioML2016.10a.

TABLE II
COMPUTATIONAL COMPLEXITY COMPARISON

Model Training Time Inference Time Parameters

IQCNN 0.0383ms 0.0380ms 2830k

CLDNN 0.0477ms 0.0382ms 167k

AAM-SCNN 0.6163ms 0.0395ms 94k

SCNN 0.2071ms 0.0358ms 92k

TFA-SCNN 1.6798ms 0.0391ms 104k

Furthermore, we compare computational complexity be-

tween TFA-SCNN and SOTAs in terms of the average training

time, the average inference time and the amount of learned

parameters. The comparison results are shown in Table II.

TFA-SCNN with TFA block costs much more training time

(around 1.2ms) compared to the baseline model SCNN, but

the inference time of TFA-SCNN increases very little (around

0.003ms). TFA-SCNN has slightly more model parameters

than SCNN, but fewer parameters than IQCNN and CLDNN.

V. CONCLUSION

In this work, we presented a CNN-based framework for

automatic modulation recognition with a novel TFA mecha-

nism. The TFA is performed on input feature maps to generate

attention refined feature maps by learning feature representa-

tions for explicitly attending to important channel, frequency,

and time information. Experiment results demonstrated the

effectiveness of modelling TFA in the CNN front-end, and

the presented CNN models with TFA (TFA-SCNN and TFA-

SCNN2) outperform three existing learning-based methods

from literature. The proposed attention mechanism causes ad-

ditional computational burden than the baseline model SCNN,

but requires similar inference time as the other methods

and less learned parameters than IQ-CNN and CLDNN. The

performance improvement of the proposed frameworks is

incremental in the presence of complex channel environment

and low SNRs. As a future work, we plan to extend the method

to improve recognition performance at low SNRs using deep

learning-based signal enhancement techniques.
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