
 Page 1 of 1 

Federation University ResearchOnline 
https://researchonline.federation.edu.au 
Copyright Notice 

This is the peer-reviewed version of the following article: 

Vu, T. T., Ngo, H. Q., Dao, M. N., Matthaiou, M., & Larsson, E. G. (2022). Data Size-
Aware Downlink Massive MIMO: A Session-Based Approach. IEEE Wireless 
Communications Letters, 11(7), 1–1. 

Available online:  https://doi.org/10.1109/LWC.2022.3174829 

Copyright © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including reprinting/republishing this material 
for advertising or promotional purposes, creating new collective works, for resale or redistribution to 
servers or lists, or reuse of any copyrighted component of this work in other works. 

CRICOS 00103D RTO 4909  

See this record in Federation ResearchOnline at: 
http://researchonline.federation.edu.au/vital/access/HandleResolver/1959.17/191898 

https://researchonline.federation.edu.au/
https://doi.org/10.1109/LWC.2022.3174829
http://researchonline.federation.edu.au/vital/access/HandleResolver/1959.17/167343
http://researchonline.federation.edu.au/vital/access/HandleResolver/1959.17/191898
https://doi.org/10.1109/LWC.2022.3174829


ar
X

iv
:2

20
5.

04
36

9v
3 

 [
cs

.I
T

] 
 1

1 
M

ay
 2

02
2

1

Data Size-Aware Downlink Massive MIMO:

A Session-Based Approach
Tung T. Vu, Hien Quoc Ngo, Minh N. Dao, Michail Matthaiou, and Erik G. Larsson

Abstract—This letter considers the development of transmission
strategies for the downlink of massive multiple-input multiple-
output networks, with the objective of minimizing the completion
time of the transmission. Specifically, we introduce a session-based
scheme that splits time into sessions and allocates different rates
in different sessions for the different users. In each session, one
user is selected to complete its transmission and will not join
subsequent sessions, which results in successively lower levels
of interference when moving from one session to the next. An
algorithm is developed to assign users and allocate transmit
power that minimizes the completion time. Numerical results show
that our proposed session-based scheme significantly outperforms
conventional non-session-based schemes.

Index Terms—Massive MIMO, session-based, zero-forcing.

I. INTRODUCTION

We are witnessing an explosion of streaming and learning

applications, such as video streaming, live conferencing, and

federated learning [1]–[3]. Many of these applications require

computations by mobile users (UEs) [4], and the UEs have fixed

amounts of data to receive. To support these applications, it is

critical to design transmission schemes that achieve low latency.

It is of particular importance to design communication protocols

that minimize the completion time, defined as the time it takes

for a UE to receive all data destined for it.

To support the aforementioned applications, massive

multiple-input multiple-output (MIMO) can be used due to its

ability to offer high data rates to all UEs simultaneously [5]. To

reduce the completion time, conventionally, the achievable rates

of all the UEs are maximized via power allocation, and these

rates are kept constant during the whole transmission. Another

approach is to use different rates during the transmission

period [6]. When some UEs have already completed their

transmissions, other UEs will benefit by having less multi-

user interference and higher rates, which results in shorter

completion times. In this context, [6] studies the completion

time for two-user systems from an information-theoretic

perspective. However, general schemes for multi-user systems

that use different rates within the transmission period have not

been explored in the literature.

Contributions: Motivated by [6], we introduce a session-

based scheme to reduce the completion times of UEs for the

downlink of massive MIMO networks. In this scheme, UE
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data is transmitted with different rates in different sessions.

Specifically, in each session, UEs are assigned so that one UE

finishes its transmission and does not participate in subsequent

sessions. UEs with uncompleted transmissions are allocated

more power to obtain higher achievable rates, and complete

their transmissions faster. Herein, zero-forcing (ZF) processing

is used for data transmission. An algorithm is developed for

assigning UEs and allocating transmit power, with the objective

of minimizing the completion times of the UEs. Numerical

results show that the proposed session-based scheme signifi-

cantly reduces the completion times compared to conventional

transmission that relies on power control only.

A specific version of this session-based scheme was also

used in [7], although for a different objective and for a par-

ticular application. Herein, we substantially extend [7] to the

general problem of minimizing downlink completion times. If

the amounts of UE data in each session are given, then the

optimization problem reduces to power and rate control for

conventional transmission (with different rate constraints for

different users). However, optimizing the amounts of data per

session and the thresholds for the rate constraints over multiple

sessions is a new and challenging problem.

II. SYSTEM MODEL

We consider the downlink transmission in a massive MIMO

network, where an M -antenna base station (BS) serves K ≤
M single-antenna UEs simultaneously in the same frequency

band. Let Sk be the size of the data intended for UE k. We

focus on applications where Sk is fixed, such as mobile edge

computing and federated learning to name but a few [3], [8].

We assume that the transmission time is within one large-scale

coherence time,1 and the transmission is spans multiple small-

scale coherence blocks. A small-scale coherence block is the

time-frequency interval over which the channel is substantially

static, and is divided into two phases: channel estimation and

downlink payload data transmission.

Resource allocation, such as transmit power control, is typ-

ically performed to guarantee given quality-of-service targets.

We consider two conventional schemes: (i) Conventional non-

data size-aware scheme: This scheme allocates power such

that all users achieve the same rate [5]; and (ii) Conventional

data size-aware scheme: This scheme allocates power such that

each UE receives a rate proportional to the size of its data. This

is the traditional scheme used in wireless networks supporting

mobile edge computing or federated learning (see, e.g., [3], [8]

and references therein).

In both conventional schemes, the data rates are kept fixed for

the whole transmission. However, since K UEs have different

required data sizes, some UEs could complete their transmis-

sions before other UEs. Therefore, optimally, the data rates vary

temporally depending on how many active UEs remain in the
1The large-scale coherence time is the time during which the large-scale

fading coefficients remain substantially constant [3].

http://arxiv.org/abs/2205.04369v3
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system.2 The main question is how to allocate power and update

the UEs’ rates to reduce the completion times. Motivated by

this, we next propose the novel session based-scheme.

III. PROPOSED SESSION-BASED SCHEME

Our proposed scheme uses different rates in different time

periods for data transmissions. The transmission period during

which the rates are kept fixed is called a “session”. More

precisely, session i is defined as follows: (i) in session i, there

are K− i+1 active UEs; and (ii) at the beginning of session i,
the BS updates the rates for these active UEs. These rates will be

kept fixed until the end of this session, where one UE completes

receiving data from the BS. Thus, the BS transmits data to all K
UEs during K sessions. Fig. 1 illustrates the proposed session-

based transmission as well as conventional transmission for a

system with three UEs. Denote by ai the indicator that is defined

as

ak,i ,

{
1, if UE k is receiving data in session i,

0, otherwise.
(1)

Denote by Ki , {k|ak,i = 1} the set of Ki =
∑

k∈K ak,i UEs

assigned in session i ∈ K, where K = {1, 2, . . . ,K}. Then, we

have

ak,1 = 1,
∑

k∈K

ak,i = K − i+ 1, ak,i ≤ ak,i−1, ∀i, (2)

to ensure that all the UEs will be served in session 1. In each

subsequent session, one UE completes its transmission and will

not join the next sessions. As such, more power is allocated to

the UEs that have not yet completed their transmissions. Note

that, the conventional (non-session-based) schemes are special

cases of the proposed scheme when all UEs are served in session

1 with ak,1 = 1, ∀k.

Uplink channel estimation: In each small-scale coherence

block of length τc, each UE sends its pilot of length τp to the

BS. We assume that all pilots are mutually orthogonal, which

requires τp ≥ K .3 Denote by gggk=(βk)
1/2g̃ggk the channel vector

from UE k to the BS, where βk and g̃ggk are the large-scale fading

coefficient and small-scale fading vector, respectively. With min-

imum mean-square error (MMSE) estimation, the channel esti-

mate ĝggk of gggk is distributed according to CN (000, σ2
kIIIM ), where

σ2
k =

τpρpβ
2
k

τpρpβk+1 , and ρp is the normalized transmit power of each

pilot symbol [5, (3.8)]. Let ĜGGi , [ĝgg1, . . . , ĝggK−i+1], ∀k ∈ Ki,

be the matrix stacking the estimated channels of all participated

UEs in session i.
Downlink payload data transmission: In session i, the BS

uses ZF to transmit data to K − i+1 UEs. With ZF, the signal

transmitted by the BS is given by xxxi =
√
ρ
∑

k∈Ki
uuuk,i sk,i,

where ρ is the normalized transmit power at the BS; sk,i,
with E{|sk,i|2} = 1, is the symbol intended for UE k; and

uuuk,i=
√
ηk,iσ2

k(M−Ki)ĜGGi(ĜGG
H

i ĜGGi)
−1 eeek,Ki

is the ZF precod-

ing vector. Here, E{x} denotes the expected value of a random

variable x, and XXXH represents the conjugate transpose of a

matrix XXX . In the precoding vector, ηk,i is a power control

coefficient, and eeek,Ki
is the k-th column of IIIKi

. The transmitted
2A UE that completely receives data from the BS will become inactive.
3One can let only the participating UEs send their pilots in session i, i.e.,

τp = Ki to increase the small-scale coherence block length for payload data
transmission. However, since τc is normally much larger than K ≥ Ki in many
applications [3], letting all the UEs send their pilots, i.e., taking τp = K , has
a negligible impact on data rates. On the other hand, the channel estimation is
better when the pilot length τp = K > Ki, which potentially improves the
data rates.

One large-scale coherence time

(b) Conventional non-data size-aware scheme 

or Conventional data size-aware scheme

,

,

,

,

, ,

, ,

,

, ,

,

(a) Session-based scheme 

One large-scale coherence time

Fig. 1. One transmission period with three UEs.

power at the BS is constrained by E{|xxxi |2} ≤ ρ which is

equivalent to ∑

k∈Ki

ηk,i ≤ 1, ∀i ∈ K . (3)

We enforce

(ηk,i = 0, if ak,i = 0), ∀k, i (4)

to ensure that the BS will not allocate any power to UEs

that are not served in session i. The achievable rate at UE

k in session i is given by [5, Eq. (3.56)]: Rk,i(ηηηi) =
τc−τp
τc

B log2
(
1 + SINRk,i(ηηηi)

)
, where B is the bandwidth,

SINRk,i(ηηηi) =
(M−Ki)ρσ̂

2
kηk,i

ρ(βk−σ2
k
)
∑

ℓ∈Ki
ηℓ,i+1

(4)
=

(M−Ki)ρσ
2
kηk,i

ρ(βk−σ̂2
k
)
∑

ℓ∈K
ηℓ,i+1

is the effective downlink signal-to-interference-plus-noise ratio

(SINR), and ηηηi , {ηk,i}k∈K.

Completion time: Let Sk,i be the size of the data sent to UE

k in session i. Then, we have∑

i∈K

Sk,i = Sk, ∀k. (5)

Let ti be the time duration of session i. Then, the transmission

time tk,i of UE k ∈ K in session i is given by

tk,i=ak,iti, ∀k, i. (6)

Thus,

Sk,i=Rk,i(ηηηi)tk,i
(6)
=Rk,i(ηηηi)ak,iti

(4)
=Rk,i(ηηηi)ti, ∀k, i. (7)

Clearly, (7) also implies that (Sd,k,i = 0, if ak,i = 0), ∀k, i. The

completion time of UE k is the sum of its transmission times

across all sessions, i.e.,
∑

i∈K ak,iti. Let T̃c and Tc the large-

scale and small-scale coherence times, respectively. Since each

session spans multiple small-scale coherence blocks but always

fits within one large-scale coherence time, we have

Tc ≤ ti, ∀i (8)
∑

i∈K

ti ≤ T̃c. (9)

Remark 1. In this work, in order to focus on fundamental

principles of the proposed scheme, that is, UE assignment and

rate allocation, we consider independent Rayleigh channels. The

optimization and analysis of a session-based scheme tailored to

correlated channels is interesting, but analytically challenging

and beyond the scope of the paper. Thus, such designs are left

for future work.

IV. COMPLETION TIME MINIMIZATION

We address the minimization of the completion time of our

proposed session-based scheme, and specifically minimizing

the longest completion time among the UEs. For comparison,

we also include the completion time minimization for the

conventional schemes.
A. Proposed Session-Based Scheme

The problem of minimizing the completion time of UEs by

optimizing the UE assignment (aaa) and transmit power (ηηη) in the

session-based design is

min
xxx

max
k

∑

i∈K

ak,iti, (10a)
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s.t. (1) − (4), (5), (7) − (9)

0 ≤ ηk,i, ∀k, i, (10b)

where xxx , {aaa,ηηη,SSS, ttt}, SSS, {Sk,i}, aaa , {ak,i}, ttt , {ti} ∀k, i.
Finding a globally optimal solution to problem (10) is chal-

lenging due to the mixed-integer and nonconvex constraints (1),

(4), and (7). Thus, we instead propose an approach that is suit-

able for practical implementation. First, we replace constraint

(4) by

ηk,i ≤ ak,i, ∀k, i, (11)

and constraint (7) by

Sk,i ≤ Rk,i(ηηηi)ak,iti, ∀k, i (12)

Sk,i ≥ Rk,i(ηηηi)ak,iti, ∀k, i. (13)

We further replace constraints (12) and (13) by

r̂k,i ≤ Rk,i(ηηηi), ∀k, i (14)

r̃k,i ≥ Rk,i(ηηηi), ∀k, i (15)

t̂k,i ≤ ak,iti, ∀k, i (16)

t̃k,i ≥ ak,iti, ∀k, i (17)

Sk,i ≤ r̂k,i t̂k,i, ∀k, i (18)

Sk,i ≥ r̃k,i t̃k,i, ∀k, i, (19)

where r̂rr , {r̂k,i}, r̃rr , {r̃k,i}, t̂tt , {t̂k,i}, t̃tt , {t̃k,i} are

additional variables. We observe from (14)–(18) that Sk,i ≤
r̃k,i t̃k,i, ∀k, i. Thus, (19) is equivalent to

V1(r̃rr, t̃tt,SSS) ,
∑

k∈K

∑

i∈K

(r̃k,i t̃k,i − Sk,i) ≤ 0. (20)

Now, in order to handle the binary constraint (1), we note

that x ∈ {0, 1} ⇔ x ∈ [0, 1]& x− x2 ≤ 0 [9]. Thus, (1) can be

replaced by the following equivalent constraints:

V2(aaa) ,
∑

k∈N

∑

i∈K

(ak,i−a2k,i) ≤ 0 (21)

0 ≤ ak,i≤ 1, ∀k, i. (22)

Then, problem (10) is written into a more tractable form as

min
x̃xx

q (23a)

s.t. (2), (3), (5), (8), (9), (10b), (11), (14) − (18), (20) − (22)
∑

i∈K

t̃k,i ≤ q, ∀k, i, (23b)

where x̃xx , {xxx, r̂rr, r̃rr, t̂tt, t̃tt, q}, and q is an additional variable.

Let F , {(2), (3), (5), (8), (9), (10b), (11), (14) − (18), (20) −
(22), (23b)} be the feasible set of problem (23). We consider

the problem

min
x̃xx∈F̂

L(aaa, r̃rr, t̃tt,SSS, λ), (24)

where L(aaa, r̃rr, t̃tt,SSS, λ) , q+λ(γ1V1(r̃rr, t̃tt,SSS) + γ2V2(aaa)) is the

Lagrangian of (23), γ1, γ2 > 0 are fixed weights, and λ is the

Lagrangian multiplier corresponding to constraints (20), (21).

Here, F̂ , F \{(20), (21)}.

Proposition 1. The values V1,λ and V2,λ of V1 and V2 at the

solution of (24) corresponding to λ converge to 0 as λ → +∞.

Moreover, problem (23) has strong duality, i.e.,

min
x̃xx∈F

q = sup
λ≥0

min
x̃xx∈F̂

L(aaa, r̃rr, t̃tt,SSS, λ), (25)

and consequently, (23) is equivalent to (24) at the optimal

solution λ∗ ≥ 0 of the sup-min problem in (25).

Proof. See Appendix.
Theoretically, it is required to have V1,λ = 0 and V2,λ = 0
in order to obtain the optimal solution to problem (23). By

Proposition 1, V1,λ and V2,λ converge to 0 as λ → +∞. In

practice, it is sufficient to accept V1,λ ≤ ε, V2,λ ≤ ε for some

Algorithm 1 Solving problem (24)

1: Initialize: Set n=0 and choose a random point x̃xx(0)∈F̂ .

2: repeat

3: Update n = n+ 1
4: Solve (31) to obtain its optimal solution x̃xx

∗

5: Update x̃xx(n) = x̃xx∗

6: until convergence

small ε with a sufficiently large value of λ. In our numerical

experiments, for ε = 10−3, we see that λ = 1 with γ1 =
0.1, γ2 = 0.01 is enough to ensure that V1,λ ≤ ε, V2,λ ≤ ε.

This way of choosing λ has been widely used in the literature,

e.g., see [9] and references therein.

Problem (24) is still difficult to solve due to the nonconvex

constraints (14)–(18), and nonconvex parts V1(aaa), V2(r̃rr, t̃tt,SSS)
in the cost function L(aaa, r̃rr, t̃tt,SSS, λ). To deal with (14), we

observe that log
(
1 + x

y

)
≥ log

(
1 + x(n)

y(n)

)
+ 2x(n)

(x(n)+y(n))
−

(x(n))2

(x(n)+y(n))x
− x(n)y

(x(n)+y(n))y(n) , where x > 0, y > 0 [10, Eq. (76)].

Therefore, the concave lower bound R̂d,k,i(ηηηi) of Rd,k,i(ηηηi) is

given by R̂d,k,i ,
τc−τp
τc log 2B

[
log

(
1 +

Υ
(n)
i

Φ
(n)
i

)
+

2Υ
(n)
i

(Υ
(n)
i +Φ

(n)
i )

−
(Υ

(n)
i )2

(Υ
(n)
i +Φ

(n)
i )Υi

− Υ
(n)
i Φ

(Υ
(n)
i +Φ

(n)
i )Φ

(n)
i

]
, where Υi(ηk,i) , (M −

Ki)ρσ̂
2
kηk,i and Φi(ηηηi) , ρ(βk −σ2

k)
∑

ℓ∈K ηℓ,i+1. Then (14)

can be approximated by the following convex constraint

r̂k,i ≤ R̂k,i(ηηηi), ∀k, i. (26)

To deal with constraints (15), we observe that log
(
1 +

x
y

)
≤ log

(
x(n) + y(n)

)
+ x+y−x(n)−y(n)

x(n)+y(n) − log(y), where

x > 0, y > 0. Therefore, the convex upper bound R̃k,i(ηηηi)

of Rk,i(ηηηi) is expressed as R̃d,k,i ,
τc−τu,p

τc log 2 B
[
log

(
Υ

(n)
i +

Φ
(n)
i

)
+

Υi+Φi−Υ
(n)
i −Φ

(n)
i

Υ
(n)
i +Φ

(n)
i

− log(Φi)
]
. Thus, constraint (15) can

be approximated by the following convex constraint

r̃k,i ≥ R̃k,i(ηηηi), ∀k, i. (27)

Next, we observe that xy ≤ 0.25[(x+y)2−2(x(n)−y(n))(x−
y)+(x(n)−y(n))2] and −xy ≤ 0.25[(x−y)2−2(x(n)+y(n))(x+
y)+ (x(n) + y(n))2], ∀x ≥ 0, y ≥ 0, z ≥ 0 [3]. Therefore, (16)–

(18) can be approximated by the following convex constraints

t̂d,k,i + 0.25[(ak,i − td,i)
2 − 2(a

(n)
k,i + t

(n)
d,i )(ak,i + td,i)

+ (a
(n)
k,i + t

(n)
d,i )

2] ≤ 0, ∀k, i (28)

0.25[(ak,i + td,i)
2 − 2(a

(n)
k,i − t

(n)
d,i )(ak,i − td,i)

+ (a
(n)
k,i − t

(n)
d,i )

2]− t̃d,k,i ≤ 0, ∀k, i (29)

Sd,k,i+0.25[(r̂d,k,i− t̂d,k,i)
2−2(r̂

(n)
d,k,i+ t̂

(n)
d,k,i)(r̂d,k,i+ t̂d,k,i)

+ (r̂
(n)
d,k,i + t̂

(n)
d,k,i)

2] ≤ 0, ∀k, i. (30)

Similarly, the convex upper bounds Ṽ1(aaa), Ṽ2(r̃rr, t̃tt,SSS) of the

nonconvex parts V1(aaa), V2(r̃rr, t̃tt,SSS) are respectively given by

Ṽ1(r̃rr, t̃tt,SSS),
∑

i∈K

∑

k∈N

0.25[(r̃d,k,i+ t̃d,k,i)
2

−2(r̃
(n)
d,k,i− t̃

(n)
d,k,i)(r̃d,k,i− t̃d,k,i)+(r̃

(n)
d,k,i− t̃

(n)
d,k,i)

2−4Sd,k,i]

Ṽ2(aaa),
∑

i∈K

∑

k∈N

(ak,i − 2a
(n)
k,i ak,i + (a

(n)
k,i )

2).

At iteration (n+1), for a given point x̃xx
(n)

, problem (24) can

finally be approximated by the following convex problem

min
x̃xx∈F̃

L̂(aaa, r̃rr, t̃tt,SSS, λ) (31)
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where L̂(aaa, r̃rr, t̃tt,SSS, λ) , q + λ(γ1Ṽ1(aaa) + γ2Ṽ2(r̃rr, t̃tt,SSS) and

F̃ , {{(2), (3), (5), (10b), (11), (22), (23b), (26), (27) − (30)} is

a convex feasible set. In Alg. 1, we outline the main steps to

solve problem (24). Starting from a random point x̃xx ∈ F̂ , we

solve (31) to obtain its optimal solution x̃xx
∗
, and use x̃xx

∗
as an

initial point in the next iteration. The algorithm terminates when

an accuracy level of ε is reached. Alg. 1 will converge to a Fritz

John solution of problem (24) (hence (23) or (10)). The proof

of this fact is rather standard, and follows from [9, Proposition

2].

Note that Problem (10) is constructed using the achievable

rates (5) that depend only on the large-scale coefficients βk.

Before the downlink transmission, the BS solves (10) to obtain

the session durations, per-session user assignments, data rates,

and transmit powers. Therefore, no extra signalling overhead to

schedule UEs/rates and no optimization algorithm are required

during the transmission.

B. Conventional Schemes

The conventional schemes can be considered as special cases

of the session-based scheme with only one session. Thus, all

variables in the conventional schemes can be directly obtained

from the session-based scheme by dropping the index i. More

precisely, the power constraint at the BS and the achievable rate

of UE k in the conventional schemes are, respectively, given by∑

k∈K

ηk ≤ 1 (32)

and Rk(ηηη) =
τc−τp
τc

B log2
(
1 + SINRk(ηηη)

)
, where ηηη ,

{ηk}k∈K are power control coefficients, and SINRk(ηηη) =
(M−K)ρσ2

kηk

ρ(βk−σ2
k
)
∑

ℓ∈K
ηℓ+1

. Note that since Tc is in order of millisec-

onds, and the conventional schemes have only one session, the

completion times of UEs is normally larger than Tc, which is

confirmed in the numerical results in Section V.

1) Conventional Data Size-Aware Scheme: The correspond-

ing problem of completion time minimization is

min
ηηη

max
k

Sk

Rk(ηηη)
(33a)

s.t. (32)

0 ≤ ηk, ∀k, (33b)

Sk/Rk(ηηη) ≤ T̃c. (33c)

Problem (33) can be transformed into epigraph form as

min
yyy

z (34a)

s.t. (32), (33b)

Sk/rk ≤ z ≤ T̃c, ∀k (34b)

rk ≤ Rk(ηηη), ∀k, (34c)

where yyy , {ηηη,rrr, z}, rrr , {rk}, ∀k, and z are additional

variables. Using the same approach to deal with constraint

(14), we obtain the concave lower bound R̂k(ηηη) of Rk(ηηη) as

R̂k ,
τc−τd,p
τc log 2 B

[
log

(
1+ Υ(n)

Φ(n)

)
+ 2Υ(n)

(Υ(n)+Φ(n))
− (Υ(n))2

(Υ(n)+Φ(n))Υ
−

Υ(n)Φ
(Υ(n)+Φ(n))Φ(n)

]
, where Υ(ηk) , (M − K)ρσ2

kηk, Φ(ηηη) ,

ρ(βk − σ2
k)

∑
ℓ∈K ηℓ + 1. Then, constraints (34c) can be ap-

proximated by the following convex constraint

rk ≤ R̂k(ηηη), ∀k. (35)

Now, at iteration (n+1), for a given point yyy(n), problem (34)

can be approximated by the following convex problem:

min
yyy∈H̃

z, (36)

Algorithm 2 Solving problem (34)

1: Initialize: Set n=0 and choose a random point yyy(0)∈H.

2: repeat

3: Update n = n+ 1
4: Solve (36) to obtain its optimal solution yyy∗

5: Update yyy(n) = yyy∗

6: until convergence

where H̃ ,{(32), (33b), (34b), (35)} is a convex feasible set. In

Alg. 2, we outline the main steps to solve problem (34). Let H ,

{(32), (33b), (34b), (34c)} be the feasible set of problem (34).

Starting from a random point yyy ∈ H, we solve (36) to obtain

its optimal solution yyy∗, and use yyy∗ as an initial point in the next

iteration. The algorithm terminates when an accuracy level of

ε is reached. Since H̃ satisfies Slater’s constraint qualification

condition, Alg. 2 converges to a Karush–Kuhn–Tucker solution

of (34) (hence (33)) [11, Theorem 1].

2) Conventional Non-Data Size-Aware Scheme: This scheme

does not take into account the size of the UE data. The

completion time is reduced by improving the rates of all UEs.

To this end, the scheme aims to maximize the lowest rate of all

UEs, which leads to the following problem

max
ηηη

min
k

Rk(ηηη) (37a)

s.t. (32), (33b).
The optimal solution to problem (37) can be written in closed-

form as ηk =
1+ρ(βk−σ2

k)

ρσ2
k

(
1
ρ

∑
ℓ∈K

1

σ2
ℓ

+
∑

ℓ∈K

βℓ−σ2
ℓ

σ2
ℓ

) [5, Tab. 5.4].

3) Heuristic Small-Scale-Fading-Based Scheme: In each

small-scale coherence block, greedy user scheduling and power

allocation to (approximately) maximize the lowest rate are

performed. Specifically, if the data queue of a UE becomes zero,

this UE will be no longer scheduled in the subsequent small-

scale coherence block. This way, the remaining UEs at later

small-scale coherence blocks will have more power and higher

transmission rate, which eventually contributes to reducing the

longest completion time. The optimal power control for the

max-min rate problem is ηk = 1/ck/(
∑

k∈K(1/ck)), where

ck = ρ|gggTk uuuk |2.

V. NUMERICAL RESULTS

We consider a square-shaped cell of size D × D, where

D = 0.25 km. The BS is at the center, and the UEs are

randomly located. We set τc = 200 samples. The large-scale

fading coefficients, βk, are modeled as in [12], βk[dB] =
−148.1 − 37.6 log10

(
dk

1 km

)
+ zk, where dk ≥ 35 m is the

distance between UE k and the BS, and zk represents shadow

fading, which has zero mean and 7 dB standard deviation.

We take the bandwidth to B = 100 MHz and the noise

power to σ2
0 = −92 dBm. Let ρ̃ = 1 W and ρ̃p = 0.1 W

be the maximum transmit power of the BS and uplink pilot

sequences, respectively. The maximum transmit powers ρ and

ρp are normalized by the noise power. The sizes of the UE data

are taken to monotonically increase from UE 1 to UE K with

a step ∆, i.e., Sk+1 = Sk + ∆. Here, S1 = 0.125 MB and

∆ = 0.5 MB. We set Tc = 1ms and T̃c = 10s.

Fig. 2 compares the completion time per UE of the pro-

posed session-based (SB) scheme to those of the conventional

data size-aware (ConDA), non-data size-aware (ConNoDA)

schemes, and heuristic scheme on the small-scale fading time

scale (SmallScale). The results in Fig. 2 are obtained using 200
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Fig. 2. Comparison of the proposed scheme with baseline schemes.

channels. The maximum completion time of UEs of ConNoDA

is smaller than T̃c and the minimum is larger than Tc. As seen,

in terms of 90%-likely performance, the session-based scheme

significantly outperforms ConDA, ConNoDA, and SmallScale

when M/K is small. Specifically, the 90%-likely completion

time per UE of SB with K = 25,M = 40 is 0.48s, which

is 2 − 3 times smaller than those of SmallScale, ConDA and

ConNoDA. For the case of (K = 25,M = 75) where M/K is

already large, the inter-user interference is relatively small, and

hence, the improvement by our session-based scheme becomes

smaller. The baseline schemes can outperform the proposed

scheme in some cases but only in terms of less-than-25%-

likely performance. Fig. 2 also shows the advantage of joint

optimization of user assignment, time, and rates over the small-

scale allocation approach.

VI. CONCLUSION

In this work, we have proposed a session-based scheme for

the massive MIMO downlink, where the BS knows, a priori, the

amount of data sent to the UEs. We formulated an optimization

problem for assigning UEs to sessions and allocating power

to minimize the completion time of the UEs. Utilizing suc-

cessive convex approximation techniques, we proposed a novel

algorithm to solve the formulated problem. Numerical results

showed that our session-based scheme can significantly reduce

the completion time compared with conventional schemes.

APPENDIX

The proof basically follows the arguments in [9] with some

modifications for our setting. Denote by Lλ the optimal value of

problem (24) corresponding to λ. Also, denote by q∗ the optimal

value of problem (23). Then q∗ < +∞ due to the compactness

of F . By a duality gap between the optimal values of problem

(23) and its dual problem,

sup
λ≥0

Lλ = sup
λ≥0

min
x̃xx∈F̂

L(aaa, r̃rr, t̃tt,SSS) ≤ q∗ = min
x̃xx∈F̂

max
λ≥0

L(aaa, r̃rr, t̃tt,SSS).
It follows that, for all λ ≥ 0,

Lλ ≤ q∗ < +∞. (38)

For each λ ≥ 0, let V1,λ ,
∑

k∈K

∑
i∈K((r̃k,i)λ(t̃k,i)λ −

(Sk,i)λ) and V2,λ ,
∑

k∈N

∑
i∈K((ak,i)λ − (ak,i)

2
λ)) be the

values of V1 and V2 at the optimal solution (aaaλ, r̃rrλ, t̃ttλ,SSSλ) of

(24) corresponding to λ. We see from (14)–(18) that V1,λ ≥ 0
and from (22) that V2,λ ≥ 0. Set Vλ , γ1V1,λ + γ2V2,λ and let

qλ be the value of q corresponding to λ. Next, let 0 ≤ λ1 < λ2.

By the definition of Lλ1 and Lλ2 ,

Lλ1 = qλ1 + λ1Vλ1 ≤ qλ2 + λ1Vλ2 , (39)

Lλ2 = qλ2 + λ2Vλ2 ≤ qλ1 + λ2Vλ1 , (40)

from which we have λ1Vλ1 + λ2Vλ2 ≤ λ1Vλ2 + λ2Vλ1 , and

so Vλ2 ≤ Vλ1 . This means Vλ is decreasing as λ is increasing.

Since Vλ = γ1V1,λ + γ2V2,λ ≥ 0 for all λ ≥ 0, we obtain that

Vλ → V ∗ ≥ 0 as λ → +∞. From (39) and (40), we also have

that λ2qλ1 + λ1qλ2 ≤ λ2qλ2 + λ1qλ1 , which yields qλ2 ≥ qλ1 .

Therefore, as λ → +∞, qλ is increasing and hence bounded

from below. Now, if V ∗ > 0, then Lλ = qλ + λVλ → +∞ as

λ → +∞, which contradicts (38). Thus, we must have V ∗ = 0,

that is, Vλ → 0 as λ → +∞, which implies that V1,λ → 0 and

V2,λ → 0 as λ → +∞.

Finally, let x̃xxλ be the value of x̃xx corresponding to λ. Then

x̃xxλ ∈ F̂ . Since F̂ is bounded, there exists a cluster point x̃xx∗ of

{x̃xxλ}λ as λ → +∞. We assume, without loss of generality, that

x̃xxλ → x̃xx∗. Then, aaaλ → aaa∗, r̃rrλ → r̃rr∗, SSSλ → SSS∗, and t̃ttλ → t̃tt∗.

It follows that V1,λ → (V1)∗ ,
∑

k∈K

∑
i∈K((r̃k,i)∗(t̃k,i)∗ −

(Sk,i)∗), V2,λ → (V2)∗ ,
∑

k∈N

∑
i∈K((ak,i)∗ − (ak,i)

2
∗)),

Vλ → V∗ , γ1(V1)∗+γ2(V2)∗, and qλ → q∗. As shown above,

(V1)∗ = 0, (V2)∗ = 0, and V∗ = 0. Therefore, (r̃rr∗, t̃tt∗,SSS∗)
and (aaa∗) satisfy (20) and (21), respectively. This together with

x̃xx∗ ∈ F̂ implies that x̃xx∗ ∈ F , and so x̃xx∗ is a feasible point of

(23). As such, q∗ ≥ q∗. Next, the definition of Lλ implies that,

for all λ ≥ 0, supλ≥0 Lλ ≥ Lλ = qλ + λVλ ≥ qλ. By letting

λ → +∞, supλ≥0 Lλ ≥ q∗ ≥ q∗. Combining with (38), yields

supλ≥0 L̃(λ) = q∗ = q∗. We conclude that (25) holds and that

x̃xx∗ is an optimal solution of (23), which completes the proof.
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