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Closed-Form and Asymptotic BER Analysis of the
Fluctuating Double-Rayleigh with Line-of-Sight

Fading Channel
Aleksey S. Gvozdarev , Member, IEEE,

Abstract—Recently, a generalization of the double-Rayleigh
with line-of-sight channel fading model taking into account
shadowing of the line-of-sight component has been proposed.
In this research, a closed-form analysis of the average bit
error rate for MPSK/MQAM modulations is performed. The
derived solution is accompanied by proposed numerically effi-
cient approximation and all possible asymptotic expressions that
correspond to extreme channel parameters. Lastly, a numerical
simulation was performed that demonstrated the correctness of
the derived results.

Index Terms—Fading channel, error rate, double-Rayleigh,
line-of-sight, shadowing.

I. INTRODUCTION

NOWADAYS, the communication link quality of the mod-
ern ad-hoc systems is mainly limited by the wireless

signal propagation effects. Thus the choice of channel model
heavily impacts the predicted overall system performance.

Recently, a novel fluctuating double-Rayleigh with line-
of-sight (fdRLoS) fading channel model was proposed [1].
It generalizes the double-Rayleigh with line-of-sight (LoS)
model [2] by including the Gamma-distributed shadowing of
the LoS component, and covers such physical scenarios as
the "pipe-like"/keyhole channel [3], propagation via diffracting
street corner [4], amplify-and-forward relay [5], free-space
optical communication through a turbulent medium [6] and
Vehicle-to-vehicle (V2V) communications [7].

The original work by Lopez-Fernandez et al. [1] states
the results for the probability density function (PDF) and
cumulative distribution function (CDF), expressed for integer
values of LoS shadowing parameter; and outage probability,
derived via the obtained CDF. The problem with the obtained
expressions is that they are formularized in a way that does
not make further analytical derivations possible. Moreover,
for similar models, experimental results demonstrate that
the shadowing parameter efficiently can be non-integer and
generally less than 1 (including the so-called hyper-Rayleigh
regime [8]), which can not be deduced from the results in
[1]. Furthermore, the average bit error rate (ABER) analysis
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quantifying the communication link quality for such a channel
is not present.

Motivated by the problems stated above, in this letter a
closed-form expression for the ABER is derived for the fdR-
LoS channel model with arbitrary parameters. It is succeeded
with the computationally efficient approximation obtained by
truncating the derived solution, and the truncation error is
estimated. Then the asymptotic expressions of the ABER for
all possible extreme cases are evaluated: (a) high signal-to-
noise ratio (SNR), (b) extremely high/low shadowing; and (c)
extremely strong/weak LoS component. Finally, to validate
the correctness and accuracy of the analytical work, computer
simulation was performed, and the obtained numerical results
were studied. It was found out that specifically for the hyper-
Rayleigh regime, the minimum ABER is achieved when the
total power of multipath components equals the power of LoS
component.

II. PRELIMINARIES

A. Channel model: physical and statistical description

Let us start with a brief description of the proposed in [1]
fluctuating double-Rayleigh with line-of-sight fading channel
model. It is generally assumed that the signal propagating
within the wireless channel can be represented as the combina-
tion of the line-of-sight component that undergoes shadowing
with average magnitude 𝜔0 and uniformly distributed phase
𝜙 ∼ 𝑈 [0, 2𝜋) (for conformity one uses the initial notation
given in [1]) and double-Rayleigh fading (dRf) component
𝜔2𝐺2𝐺3:

𝑆 = 𝜔0
√︁
𝜉𝑒 𝑗 𝜙 + 𝜔2𝐺2𝐺3. (1)

Here 𝜉 is the shadowing parameter following Gamma distri-
bution normalized to have unit power and shape coefficient
𝑚; 𝜔2 is the average magnitude of the fluctuating double-
Rayleigh component; and 𝐺2, 𝐺3 are the zero-mean complex
normal random variables (i.e., 𝐺2, 𝐺3 ∼ CN(0, 1)).

Assuming that the channel is normalized (i.e., E|𝑆 |2 = 1)
and noticing that |𝐺2 |2 follows exponential distribution with
unit mean value (see [1]), the probability density function
of the instantaneous signal-to-noise ratio 𝛾 (defined in terms
of the average signal-to-noise ratio 𝛾̄ and the squared signal
envelope |𝑆 |2, i.e., 𝛾 = 𝛾̄ |𝑆 |2) is given by (see [1])

𝑓𝛾 (𝛾) =
∫ ∞

0
𝑓𝛾𝑥 (𝛾 |𝑥)𝑒−𝑥d𝑥 (2)

ar
X

iv
:2

20
6.

10
99

5v
1 

 [
cs

.I
T

] 
 2

2 
Ju

n 
20

22

https://orcid.org/0000-0001-9308-4386


2

where 𝑓𝛾𝑥 (𝛾 |𝑥) is the conditional probability density function
conditioned on 𝑥 = |𝐺3 |2 and defined as

𝑓𝛾𝑥 (𝛾 |𝑥) =
𝑚𝑚 (1 + 𝑘𝑥)
(𝑚 + 𝑘𝑥)𝑚𝛾̄𝑥

𝑒
− 1+𝑘𝑥
𝛾̄𝑥

𝛾
1𝐹1

(
𝑚, 1,

𝑘𝑥 (1 + 𝑘𝑥)
𝑘𝑥 + 𝑚

𝛾

𝛾̄𝑥

)
,(3)

where 1𝐹1 (·) denotes the confluent hypergeometric function
[9], 𝛾̄𝑥 = 𝐾+𝑥

𝐾+1 𝛾̄, 𝑘𝑥 = 𝐾
𝑥

, 𝐾 =
𝜔2

0
𝜔2

2
is the Rician K-factor, and

𝑚 is responsible for LoS shadowing intensity.
It should be specifically emphasized that due to the complex

substitutions, (2) does not have a closed-form solution for ar-
bitrary values of parameters, although [1] presents a simplified
result for the case of 𝑚 ∈ Z+. Its weak point is that it does
not cover a practically highly valuable case of 0.5 ≤ 𝑚 < 1,
which constitutes the heaviest fading scenario (the so-called
hyper-Rayleigh, see [8], [10]).

B. System performance metrics

The primary metric, assumed herein to characterize wireless
communication link quality in the presence of fading, is the
average bit error rate. It is defined in terms of the instantaneous
BER (i.e., BER (𝛾)) averaged over the stochastic variations of
the instantaneous signal-to-noise ratio with the PDF 𝑓𝛾 (𝛾):

ABER = 𝛿1

𝛿3∑︁
𝑗=1

∫ ∞

0
𝑄(

√︁
2𝛿2, 𝑗𝛾) 𝑓𝛾 (𝛾)d𝛾, (4)

with 𝑄(·) being the Gauss Q-function. If should be noted
that (4) is the so-called “BER unified approximation“ (see
[11]) and holds true for a wide variety of modulation
schemes with the set of coefficients

{
𝛿1, 𝛿2, 𝑗 , 𝛿3

}
explic-

itly defined for specific modulation (see, for instance, [11],
[12]): for M-QAM

{
4(1−1/√𝑀)

log2 𝑀
,

3(2 𝑗−1)2

2(𝑀−1) ,
√
𝑀
2

}
, for M-PSK{

1
max(2,log2 𝑀 ) , 2 sin2

(
(2 𝑗−1) 𝜋
𝑀

)
,max

(
1, 𝑀4

)}
.

Thus the problem of the closed-form analytical ABER
description efficiently boils down to the solution of the integral
𝐽𝑄 =

∫ ∞
0 𝑄(

√︁
2𝛿2, 𝑗𝛾) 𝑓𝛾d𝛾.

Even though the problem is typical for such a formulation
and has been numerously studied [12]–[16], the availability
of the close-form solution highly depends on the form of
𝑓𝛾 (𝛾). It must be pointed out that due to the novelty of
the assumed model, the solution of 𝐽𝑄 up to now doesn’t
exist, and because of the discussed earlier complexity of
the PDF (2) cannot be directly obtained from the existing
results. Moreover, if numerical integration in 𝐽𝑄 is utilized,
this procedure is highly sensitive to the parameter values, and
for large 𝑚 or 𝑘 is unstable, which means that higher working
accuracy and precision make the solution time-consuming.

III. DERIVED RESULTS

Let us derive the closed-form solution for the integral 𝐽𝑄
by using the moment generating function (MGF) approach.
First, a conditional MGF for the PDF (3) is evaluated (valid
for arbitrary 𝑚), and the conditional version of 𝐽𝑄 is obtained,
which is further averaged with the help of (2). The result is
given by the following Theorem 1.

Theorem 1. For the fluctuating double-Rayleigh with line-of-
sight fading channel the following statements hold true:

• the closed-form expression of the integral 𝐽𝑄 for arbitrary
positive values of the shadowing parameter 𝑚 is given by (5)
(see at the bottom of the page), where 𝐺

1,0:1,1:1,1
0,1:1,1:1,1 (·) is the

extended generalized bivariate Meijer G-function EGBMG1

and 𝑚̂ =

{
𝑚, 𝑚 ∉ Z+0
𝑚(1 + Δ), 𝑚 ∈ Z+0

, with Δ being the infinitesimal

shift;
• the computationally efficient approximation of the ABER (4)
is given by ABER ≈ 𝛿1

∑𝛿3
𝑗=1 𝐽𝑄 (𝐿, 𝑁), where 𝐽𝑄 (𝐿, 𝑁) is the

truncated version of (5) with (𝐿, 𝑁) remaining terms, and
the induced truncation error (err(L,N) = 𝐽𝑄 − 𝐽𝑄 (𝐿, 𝑁)) is
upper-bounded by (6) (see at the bottom of the page).

Proof: For proof see APPENDIX I.
The formulated results help to form a solid ground for fur-

ther closed-form analysis as well as numerical optimization of
the wireless communication system performance functioning
in the presence of fdRLoS channels. From the practical point
of view, the proposed approximation is given in terms of the
double series the converge very quickly, and for moderate 𝑚,
even a single term is enough to deliver at least 3-digit accuracy
(see Section IV for numerical examples).

Moreover, in real-life applications, it is important to un-
derstand to what extent the channel impacts ABER. This can
be estimated by evaluating the performance for the extreme
fading conditions, i.e., for all possible range of channel pa-
rameters, which is given by the following Theorem 2.

Theorem 2. In the extreme cases, the integral 𝐽𝑄, defining
the limiting performance of the assumed modulation schemes
for the fdRLoS channel, is given by:

1EGBMG is defined in terms of the double Mellin-Barnes integral
(see equation (13.1) in [17]) with the integration contours L𝑠 , L𝑡 in the
corresponding domains of complex variable 𝑠 and 𝑡 chosen in such a
way to separate the specific singularities of the integrand. For practical
implementation, computation methods and procedures see [18], [19]

𝐽𝑄 =
sin(𝑚̂𝜋)

4𝜋

∞∑︁
𝑙=0

∞∑︁
𝑛=0

(
1
2

)
𝑙+𝑛

(2)𝑙+𝑛

(
𝑚̂(𝐾+1)

𝛾̄ 𝛿2, 𝑗𝐾+𝑚̂(𝐾+1)

)𝑛+𝑚̂
𝑙!𝑛!

𝐺
1,0:1,1:1,1
0,1:1,1:1,1

(
—
0

���� 1 − 𝑚̂ − 𝑛
0

���� 𝑚̂ − 𝑙
0

���� 𝑚̂𝛾̄𝛿2, 𝑗

𝛾̄𝛿2, 𝑗𝐾 + 𝑚̂(𝐾 + 1) ,
𝛾̄𝛿2, 𝑗

𝐾 + 1

)
. (5)

ABERerr (𝐿, 𝑁) ≤ 𝛿1

𝛿3∑︁
𝑗=1

𝐾+1
𝛾̄ 𝛿2, 𝑗

𝑒
𝐾+1
𝛾̄ 𝛿2, 𝑗

4
(
𝐾+1
𝛾̄ 𝛿2, 𝑗

+ 𝐾
𝑚

)𝑚+𝑁 Γ

(
𝑚 − 𝐿, 𝐾 + 1

𝛾̄𝛿2, 𝑗

) �������2𝐹1

(
1
2
, 1; 2;

𝐾 + 1
𝛾̄𝛿2, 𝑗

)
−

𝐿∑︁
𝑙=0

𝑁∑︁
𝑛=0

(1/2)𝑙+𝑛 (1 − 𝑚)𝑙 (𝑚)𝑛
(2)𝑙+𝑛

(
𝐾+1
𝛾̄ 𝛿2, 𝑗

) 𝑙+𝑛
𝑛!𝑙!

�������(6)
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• in the case of the high SNR regime (i.e., 𝛾̄ → ∞)

𝐽𝑄
��
𝛾̄→∞ ∼ (𝐾 + 1)

4𝛾̄𝛿2, 𝑗
Γ(𝑚)𝑈

(
𝑚, 1

𝐾

𝑚

)
, (7)

where 𝑈 (·) is the Tricomi confluent hypergeometric function;
• in the case of the strong dominant component (i.e., 𝐾 → ∞)

𝐽𝑄
��
𝐾→∞ ∼ 1

2
√
𝜋

Γ

(
𝑚 + 1

2

)
Γ(𝑚 + 1)

2𝐹1

(
1
2 , 𝑚;𝑚 + 1; 𝑚

𝑚+𝛾̄ 𝛿2, 𝑗

)
(
1 + 𝛾̄ 𝛿2, 𝑗

𝑚

)𝑚 , (8)

where 2𝐹1 (·)𝑙 is the Gauss hypergeometric function;
• in the case of the weak dominant component (i.e. 𝐾 → 0)

𝐽𝑄
��
𝐾→0 ∼ 1

2
−
√
𝜋

4
𝑈

(
1
2
, 0

1
𝛾̄𝛿2, 𝑗

)
= (9)

=
1
2
− 𝑒

1
2𝛾̄ 𝛿2, 𝑗

4𝛾̄𝛿2, 𝑗

(
𝐾1

(
1

2𝛾̄𝛿2, 𝑗

)
− 𝐾0

(
1

2𝛾̄𝛿2, 𝑗

))
,

where 𝐾0 (·), 𝐾1 (·) are the modified Bessel functions;
• in the case of the weak shadowing (i.e. 𝑚 → ∞) and
heaviest shadowing (i.e. 𝑚 → 1/2)

𝐽𝑄
��
𝑚→1/2

= 𝐽𝑄 (𝐿, 𝑁, 𝑚 = 1/2), 𝐽𝑄
��
𝑚→∞ ∼ 𝐽𝑄𝑚∞, (10)

where 𝐽𝑄 (𝐿, 𝑁, 𝑚 = 1/2) is defined by the truncated version of
(5) and 𝐽𝑚∞ is defined in (18).

Proof: For proof see APPENDIX II.
It should be noted that all of the special functions used in

(7)-(10) are readily accessible in all modern computer algebra
systems for further numeric and analytical computations.

To the best of the author’s knowledge, the ABER analysis
of the fdRLoS channel is absent in current scientific literature
and the results (5)-(10) are novel and have not been reported
previously.

IV. SIMULATION AND RESULTS

To verify the correctness of the derived closed-form solution
(see Theorem I) and approximations (see Theorem II) numeric
simulation was performed. For all the plots (see Fig.1-2), the
results obtained with the help of the derived solution (solid
coloured lines) are accompanied with the results derived via
numerical integration in (4) (point markers) and simulation
(diamond-shaped markers). It is clear that the results accu-
rately match each other. Channel parameters were chosen in
such a way to take into consideration: hyper-Rayleigh fading
0.5 ≤ 𝑚 < 1 (this is the case of 𝑚 = 0.5) and light fading (𝑚 =

3.5 and 𝑚 = 3 in Fig. 1 and 2 respectively); and strong/weak
dominant component (𝐾 = 10 dB/−10 dB). Moreover, the
computations were performed both for PSK and lower order
QAM modulations, as well as for high-dimensional QAM
(actively employed in modern communication standards). The
shift Δ (used to account for integer values of 𝑚, see Proof of
Theorem 1) was set to 10−5.

To study the discrepancy between the closed-form solution
and its approximation proposed in Theorem I, an analysis of
the relative truncation error ABERerr (N,N)

ABER was carried out (see
Table I), where ABERerr (N,N) was evaluated with (6) and
ABER with numerical integration in (4) assuming 𝐾 = 5 dB
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Fig. 1. ABER versus 𝛾̄:solid lines - proposed analytical solution (5), point
markers - numeric integration in (4), dashed lines - proposed asymptotic
solution (7), diamond-shaped markers - numeric simulation.
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Fig. 2. ABER versus 𝑘 for 𝛾̄ = 30 dB: solid lines - proposed analytical
solution (5), point markers - numeric integration in (4), dashed blue lines -
proposed asymptotic solution for 𝐾 → ∞ (8), dashed black lines - proposed
asymptotic solution for 𝑚→ ∞ (9).

TABLE I
RELATIVE TRUNCATION ERROR FOR VARIOUS MODULATIONS AND FADING

𝑁
m=0.5

QAM-64
m=2.5

QAM-64
m=0.5

QAM-1024
m=2.5

QAM-1024
1 1.64742 · 10−2 1.55984 · 10−1 2.17328 · 10−2 1.07278 · 10−1

2 5.87588 · 10−4 6.005 · 10−2 1.01106 · 10−3 2.3618 · 10−2

3 3.30798 · 10−5 1.39152 · 10−2 6.71084 · 10−5 2.45898 · 10−3

4 2.37544 · 10−6 4.83533 · 10−3 5.80182 · 10−6 6.02779 · 10−4

5 1.97965 · 10−7 2.03268 · 10−3 6.39829 · 10−7 2.9732 · 10−4

and 𝛾̄ = 20 dB. It is clear that for strong shadowing (i.e.,
𝑚 = 0.5) only a single term in (5) is enough (i.e. 𝐿 = 𝑁 = 0)
(irrespective of the modulation order), and for moderate 𝑚

the truncation with 𝐿 = 𝑁 = 4 helps to deliver at least 3-
digit accuracy and speed up the calculation (up to 2-4 times,
depending on 𝑚), compared to the numerical integration in (4).

For all of the plots, the results obtained with the proposed
solution and numeric integration are succeeded by the derived
asymptotics: high-SNR asymptotics (7) in Fig. 1 (see dashed
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black lines), strong/weak dominant component asymptotics
(8)/(9) (see dashed blue/black lines in Fig. 2), and light/heavy
shadowing asymptotics (10) (see dashed blue/black lines in
Fig. 2).

It can be seen (see in Fig. 1) that for the fdRLoS channel
fading deeply impacts the overall system performance: for
hyper-Rayleigh case (i.e. 𝑚 = 0.5, 𝐾 = 0 dB), even lower-
order modulation (QPSK or QAM-4) for high SNR loses
about 10 dB. Moreover, 𝛾̄ can be easily connected to the
relative (to some reference spacing 𝑑0) distance between the
transmitter and the receiver 𝑑, accounting for the path loss
(via path loss exponent 𝛼), antenna characteristics and the
average channel attenuation (𝜒), for example, in the following
form 𝛾̄ = 𝛾̄tr + lg (𝜒 (𝑑0/𝑑)𝛼). Here 𝛾̄tr (expressed in decibels)
is the average SNR at the transmitter output. Thus such a
connection with the carried out analysis can help estimate
system performance for distance dependant attenuation.

In practice channel parameters are usually unknown and are
estimated on-the-go from the measurements, and the inference
quality has a crucial effect on the overall system performance.
Thus it important to know how great is the impact of the
estimated parameters variation on the assumed quality metric.
For instance, if the impact is negligible (i.e., asymptotic regime
in the corresponding parameter), coarse yet fast inference
procedures and algorithms are preferred; otherwise, more
complex methods (which are usually slower) are needed.

Fig. 2 demonstrates that scenarios with 𝐾 ≤ −20 dB and
𝐾 ≥ 30 dB can be assumed as almost asymptotic for any 𝑚
and constellation size. Moreover, it was found out that in the
case of 𝑚 < 1 fdRLoS channel exhibits specific performance:
𝐾 → ∞ actually delivers higher ABER than 𝐾 → 0; moreover,
minimum ABER is observed when the total power of multipath
components is equal to the LoS component (i.e. 𝐾 ≈ 0 dB).

It can be observed that the impact of shadowing parameter
𝑚 in case of weak LoS component is tangible only for
𝑚 ≤ 2 irrespective of the modulation order. But for large 𝐾
asymptotics cannot be reached even with 𝑚 = 20 (see Fig. 2).
In addition, it is clear that the rate of change of the ABER
curve with the increase of 𝑚 is limited. One can see that the
derived asymptotics (7)-(10) excellently describe the ABER
floor, which exists due to the shadowed fading nature of the
channel.

V. CONCLUSIONS

The letter presents a closed-form and asymptotic analysis
for the average bit error rate of a communication system in
the presence of the fluctuating double-Rayleigh with the line-
of-sight channel. The derived expressions are valid for arbi-
trary (integer/noninteger) channel parameters and expressed in
terms of classical special functions readily accessible in most
modern computer algebra systems. The proposed asymptotic
bounds cover all possible fading scenarios. All the derived
expressions are verified by comparing with the brute-force
numerical integration and demonstrated high correspondence
with one another.

APPENDIX I
PROOF OF THEOREM 1

Proof: To prove Theorem 1, one starts with the fact that
the conditional MGF of 𝛾𝑥 (i.e. M𝛾𝑥 (𝑝 |𝑥) = E{𝑒𝑝𝛾𝑥 }) can
be represented as a Laplace transform of the conditional PDF
(3). Applying equation (3.35.1.1) (see [20]) and performing
simplifications yields:

M𝛾𝑥 (𝑝 |𝑥) = −
( 𝑚

𝑚 + 𝐾

)𝑚 (𝐾 + 1)
𝛾̄ 𝑝

(
1 − (𝐾+1)

𝛾̄ 𝑝

)𝑚−1(
1 − 𝑚(𝐾+1)

¯𝛾 (𝐾+𝑚𝑥) 𝑝

)𝑚 (11)

It can be noted that the (11) is given in the form of a
factorized power-type MGF (see [14]), thus applying Lemma 2
from [14] and denoting 𝜓1 = 𝐾+1

¯𝛾𝛿2, 𝑗
and 𝜓2 = 𝜓1 + 𝐾

𝑚
yields:

𝐽𝑄 =
𝜓1
4

∫ ∞

0

𝐹
(2)
𝐷

(
1
2 ; 1− 𝑚, 𝑚; 2; 𝜓1

𝜓1+𝑥 ,
𝜓1
𝜓2+𝑥

)
(𝜓1 + 𝑥)1−𝑚 (𝜓2 + 𝑥)𝑚

𝑒−𝑥d𝑥, (12)

where 𝐹 (2)
𝐷

(·) is the Lauricella hypergeometric function of two
variables [9]. Noticing that 𝐹 (2)

𝐷
(·) = 𝐹1 (·) (with 𝐹1 (·) being

the Appell function) and that its arguments are less that 1
(since 𝜓2 > 𝜓1), it can be represented with the convergent
series (see equation (16.13.1) in [9]). Since 𝐹 (2)

𝐷
can be upper-

bounded (see (2.15) in [21]), yielding a finite majorization,
and the summation can be assumed as an integration with
the respect to the counting measure, the Fubini’s theorem
guarantees that the order of the summation and the integration
can be interchanged. Thus reorganizing the multipliers, 𝐽𝑄 can
be written as:

𝐽𝑄 =

∞∑︁
𝑙=0

∞∑︁
𝑛=0

(1/2)𝑙+𝑛 (1 − 𝑚)𝑙 (𝑚)𝑛
4𝜓−𝑙−𝑛−1

1 (2)𝑙+𝑛𝑛!𝑙!

∫ ∞

0

(𝜓1 + 𝑥)𝑚−𝑙−1

(𝜓2 + 𝑥)𝑚+𝑛 𝑒
−𝑥d𝑥︸                          ︷︷                          ︸

𝐽1 (𝑙,𝑛)

.(13)

Applying the relations between the integrands and Meijer G-

functions: (1+𝑥)𝛼 = 1
Γ(𝛼)𝐺

1,1
1,1

(
1 + 𝛼

0

���� 𝑥) , 𝑒−𝑥 = 𝐺 1,0
0,1

(
—
0

���� 𝑥)
for the case of ∀𝑚 ∉ Z+0 the integral 𝐽1 can be evaluated in
terms of the extended generalized bivariate Meijer G-function
(see equation (13.1) in [17]):

𝐽1 (𝑙, 𝑛)=
(
𝜓1
𝜓2

)𝑚 𝜓−𝑙−1
1 𝜓−𝑛

2
Γ(1 − 𝑚 + 𝑙)Γ(𝑚 + 𝑛) ×

×𝐺1,0:1,1:1,1
0,1:1,1:1,1

(
—
0

���� 1 − 𝑚 − 𝑛
0

���� 𝑚 − 𝑙
0

���� 1
𝜓2
,

1
𝜓1

)
. (14)

Collecting (12) and (13), reorganizing the summands and
applying the fact that (1−𝑚)𝑙 (𝑚)𝑛

Γ(1−𝑚+𝑙)Γ(𝑚+𝑛) = sin𝑚𝜋
𝜋

yields the
desired form (5).

Finalizing the proof of the first part of the statement, it can
be noted that (13) is monotone in 𝑚 and its rate of change
is small enough (see Section IV). To expand the solution
to all possible positive values of 𝑚 (including integers), one
proposes to perform an infinitesimal shift Δ of the parameter
𝑚 in case 𝑚 ∉ Z+0 . Thus the resultant solution is valid for
arbitrary values of 𝑚, as it is demonstrated in Section IV.

Truncation of the closed-from solution (5) to 𝑁, 𝐿-terms in-
troduces the error err(𝐿, 𝑁) =∑∞

𝑙=𝐿+1
𝑛=𝑁+1

(1/2)𝑙+𝑛 (1−𝑚)𝑙 (𝑚)𝑛
4𝜓−𝑙−𝑛−1

1 (2)𝑙+𝑛𝑛!𝑙! 𝐽1 (𝑙, 𝑛),
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that can be estimated as follows. Integral 𝐽1 (𝑙, 𝑛) can be
upper-bounded by 𝐽1 (𝐿, 𝑁), and since its denominator is
increasing in 𝑥, then 𝐽1 (𝐿, 𝑁) ≤

∫ ∞
0

(𝜓1+𝑥)𝑚−𝐿−1

𝜓𝑚+𝑁
2

𝑒−𝑥d𝑥 =

𝑒𝜓1Γ(𝑚−𝐿,𝜓1)
𝜓𝑚+𝑁

2
, where Γ(·, ·) is the upper incomplete gamma-

function. The residual series can be represented as
∑∞
𝑙=𝐿+1
𝑛=𝑁+1

=∑∞
𝑙=0
𝑛=0

−∑𝐿
𝑙=0

∑𝑁
𝑛=0. Assuming that 𝜓1 < 1 (needed for con-

vergence), the first series represent Gauss hypergeometric
function 2𝐹1 (1/2, 1; 2;𝜓1), thus (6) follows.

APPENDIX II
PROOF OF THEOREM 2

Proof: Assuming that 𝛾̄ → ∞, integral (12) can be
simplified to the following form:

𝐽𝑄
��
𝛾̄→∞ ∼ 𝜓1

4

∫ ∞

0

𝑥𝑚−1

(𝜓1 + 𝑥)1−𝑚 ( 𝐾
𝑚
+ 𝑥)𝑚

𝑒−𝑥d𝑥. (15)

It follows from the fact that if 𝛾̄ → ∞, then 𝜓1 → 0 and
𝜓2 → 𝑘/𝑚, hence the first term of the Taylor series expansion
of the 𝐹 (2)

𝐷

(
1
2 ; 1− 𝑚, 𝑚; 2; 𝜓1

𝜓1+𝑥 ,
𝜓1
𝜓2+𝑥

)
in the vicinity of 0 will

be 𝐹1

(
1
2 ; 1− 𝑚, 𝑚; 2; 0, 0

)
= 1. Applying the result (13.4.4)

from [9] helps to state that 𝐽𝑄
��
𝛾̄→∞ ∼ (𝑘+1)

4𝛾̄ 𝛿2, 𝑗
Γ(𝑚)𝑈

(
𝑚, 1 𝑘

𝑚

)
,

where 𝑈 (·) is the Tricomi confluent hypergeometric function.
To prove the limiting performance as 𝐾 → ∞ one can notice

that 𝜓1/𝐾 → 1/𝛾̄ 𝛿2, 𝑗 and 𝜓2/𝐾 → 1/𝛾̄ 𝛿2, 𝑗 + 1/𝑚, thus

𝐽𝑄
��
𝐾→∞∼

∫ ∞

0

𝐹1

(
1
2 ; 1 − 𝑚, 𝑚; 2; 1, 𝑚

𝛾̄𝛿2, 𝑗+𝑚

)
4
(

𝑚
𝛾̄𝛿2, 𝑗+𝑚

)−𝑚 𝑒−𝑥d𝑥. (16)

Note that in this case Appell function can be
simplified, i.e. 𝐹1

(
1
2 ; 1 − 𝑚, 𝑚; 2, 1, 𝑚

𝛾̄𝛿2, 𝑗+𝑚

)
→

2√
𝜋

Γ(𝑚+1/2)
Γ(𝑚+1) 2𝐹1

(
1/2, 𝑚;𝑚 + 1; 𝑚

𝑚+𝛾̄ 𝛿2, 𝑗

)
. This yields the desired

asymptotics (8). It should be specifically pointed out that
hereinafter limit and integral operations can be interchanged
via dominated convergence theorem since the integrand
exhibits a point-wise convergence with the respect to the
limiting parameter, and (as it was mentioned in Appendix I)
𝐹1 (·) can be upper-bounded yielding an integrable expression.

For the case of 𝐾 → 0 one can note that 𝜓2 →
𝜓1 = 1

𝛾̄ 𝛿2, 𝑗
. Since the arguments of the Appell function

coincide one can make use of the relation (13.4.4) from
[9], i.e. 𝐹1 (𝑎; 𝑏1, 𝑏2; 𝑐; 𝑧, 𝑧) = 2𝐹1 (𝑎, 𝑏1 + 𝑏2; 𝑐; 𝑧). Note that
2𝐹1 (1/2, 1; 2; 𝑧) = 2

𝑧
(1 −

√
1 − 𝑧). Then after simplifications

𝐽𝑄
��
𝐾→0 ∼ 1

2
− 1

2

∫ ∞

0

√︄
𝛾̄𝛿2, 𝑗𝑥

1 + 𝛾̄𝛿2, 𝑗𝑥
𝑒−𝑥d𝑥. (17)

Evaluating the last integral with the help of equality
(13.4.4) [9] yields (9). The second form of this asymptotics
can be evaluated by relating the Tricomi 𝑈 (·) function with
the modified Bessel functions (see [9]).

To find the asymptotic expression for 𝑚 → ∞, hence 𝜓2 →
𝜓1, one again uses the limiting property of Appell function
(see case 𝐾 → 0) and perform the linear argument transforma-
tion of the obtained hypergeometric function 2𝐹1 (𝑎, 𝑏; 𝑐; 𝑧) =

(1− 𝑧)−𝑏2𝐹1 (𝑐 − 𝑎, 𝑏; 𝑐; 𝑧
𝑧−1 ). Noticing that 2𝐹1 ( 3

2 , 1; 2;−𝑧) =
2
𝑧
(1 − (

√
1 + 𝑧)−1) and that lim𝑚→∞

(
𝜓1+𝑥

𝜓1+𝐾𝑚 +𝑥

)𝑚
= 𝑒

− 𝐾
𝑥+𝜓1 , the

asymptotics can be obtained in the following form

𝐽𝑄
��
𝑚→∞ ∼ 1

2

∫ ∞

0
𝑒
− 𝐾
𝑥+𝜓1

(
1−

√︄
𝛾̄𝛿2, 𝑗𝑥

(𝐾 + 1) + 𝛾̄𝛿2, 𝑗𝑥

)
𝑒−𝑥d𝑥.(18)

Although the solution of the last integral can not be obtained
in closed form, it can be easily calculated numerically via fast
and stable procedures.
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