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Performance of Downlink and Uplink Integrated

Sensing and Communications (ISAC) Systems
Chongjun Ouyang, Yuanwei Liu, and Hongwen Yang

Abstract—This letter analyzes the fundamental performance
of integrated sensing and communications (ISAC) systems. For
downlink and uplink ISAC, the diversity orders are analyzed
to evaluate the communication rate (CR) and the high signal-
to-noise ratio (SNR) slopes are unveiled for the CR as well as
the sensing rate (SR). Furthermore, the achievable downlink
and uplink CR-SR regions are characterized. It is shown that
ISAC can provide more degrees of freedom for both the CR
and the SR than conventional frequency-division sensing and
communications systems where isolated frequency bands are used
for sensing and communications, respectively.

Index Terms—Fundamental performance, integrated sensing
and communications (ISAC), rate region.

I. INTRODUCTION

Enabling share of spectrum and hardware resources, inte-

grated sensing and communications (ISAC) systems can per-

form dual-function sensing-communications within the same

time-frequency resource block, which is expected to play a key

role in the future wireless network market [1]–[4]. Recently,

ISAC has received considerable research attention due to

its superior hardware- and spectral-efficiency compared to

conventional frequency-division sensing and communications

(FDSAC) systems where isolated frequency bands are used for

sensing and communications, respectively [1]–[5].

Several works discussed the main features of ISAC and

analyzed its performance from an information-theoretic per-

spective [5]–[7]. Typical information-theoretic performance

metrics of ISAC include the estimation or sensing rate (SR)

for radar sensing and the communication rate (CR) for com-

munications. For more details about the performance of ISAC,

please refer to the recent overview paper [5] and references

therein. Yet, it is worthy of mentioning that most previous

ISAC researchers did not take account of the influence of

channel fading when analyzing the performance of ISAC [5]–

[7]. In addition, a rigorous discussion on the in-depth system

insights of ISAC, including the diversity order and the high

signal-to-noise ratio (SNR) slope, is still missing.

The aim of this letter is to analyze the performance of

downlink and uplink ISAC from an information-theoretic

perspective. To this aim, we discuss in detail the CR, SR, and

achievable CR-SR region of ISAC by taking into account the

capacity-achieving coding/decoding and the SR-optimal radar

C. Ouyang and H. Yang are with the School of Information and Commu-
nication Engineering, Beijing University of Posts and Telecommunications,
Beijing, 100876, China (e-mail: {DragonAim,yanghong}@bupt.edu.cn).

Y. Liu is with the School of Electronic Engineering and Computer Sci-
ence, Queen Mary University of London, London, E1 4NS, U.K. (e-mail:
yuanwei.liu@qmul.ac.uk). (Corresponding author: Yuanwei Liu)

CU 1

CU 2

CU 3

CU K

RT

RT

RT

BS

RT

RTRR

RT

RT

RT

U K

CU

U 2

(a) System model.

RT
CU

Receive Array

(N elements)

Transmit Array

(M elements)

RadCom BS

RT
CU

(b) RadCom BS.

Fig. 1: An ISAC system with K CUs and several RTs.

waveforming as well as the influence of channel fading. We

further analyze the high-SNR CR and SR in order to unveil the

diversity order and high-SNR slope. Theoretical analyses and

numerical results indicate that ISAC is capable of providing

more degrees of freedom for both the CR and the SR than

conventional FDSAC.

II. SYSTEM MODEL

In an ISAC system shown in Fig. 1(a), one radar-

communications (RadCom) base station (BS) serves K single-

antenna communication users (CUs) while simultaneously

sensing the radar targets (RTs) in the near environment. The

BS is equipped with two spatially widely separated antenna

arrays, i.e., M (M ≥ K) transmit antennas and N (N ≥ K)

receive antennas, whose structure is illustrated in Fig. 1(b).

In this letter, a structure of statistical multiple-input multiple-

output (MIMO) radar is considered, where the receive anten-

nas are widely separated [8]. In this case, we can ignore the

spatial correlation between receive antennas [8].

A. Downlink ISAC

The downlink ISAC (D-ISAC) comprises two stages. In the

first stage, the BS broadcasts the communication signal plus

radar waveform to the CUs and RTs. Accordingly, the received

signal at CU k ∈ K = {1, · · · ,K} is given by

yH

d,k = hH

d,k (Xd + S) + nH

d,k, (1)

where yd,k ∈ C

L×1 with the subscript “d” denoting down-

link transmission; hH

d,k ∈ C

1×M is the downlink channel

vector from the transmit array at the BS to CU k; nd,k ∼
CN (0, IL) is the additive white Gaussian noise (AWGN);

S = [s1 · · · sL] ∈ C

M×L (L ≥ M , L ≥ N ) is the radar

waveform with sl ∈ CM×1 (l ∈ L = {1, · · · , L}) representing

the waveform at the lth time slot; Xd = [xd,1 · · · xd,L] ∈ CM×L

is the communication signal matrix with xd,l ∈ CM×1 repre-

senting the downlink communication signal at the lth time slot.

Moreover, the communication signal and the radar waveform

http://arxiv.org/abs/2202.06207v2
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are subject to the power budget E{xHd,lxd,l} ≤ pc (∀l ∈ L) and

tr(SSH) ≤ ps, respectively, where pc and ps denote the com-

munication SNR and sensing SNR, respectively. Generally, pc

and ps should be subject to a sum power constraint. Yet, in this

letter, for brevity, we consider ps and pc are fixed values, which

can be treated as a case of fixed power allocation [6], [7]. The

influence of power allocation will be discussed in our future

works. In the second stage of the downlink ISAC, the BS aims

to extract environmental information from the reflected radar

echoes. Particularly, the signal received by the BS is given

by Y = GHXs + GH

c Xs + NH, where Xs = S + Xd ∈ CM×L;

G = [g1 · · · gN ] ∈ CM×N is the target response matrix (TRM)

of the RTs; N = [n1 · · · nN ] ∈ C

L×N is the AWGN; and

Gc ∈ C

M×N is the TRM of the CUs. Since all the CUs

are registered users in the system, it makes sense to assume

that Gc is estimated in advance with conventional estimation

algorithms and the signals reflected by the CUs, i.e., GH

c Xs,

are perfectly removed at the BS [1]–[3]. Thus, the following

signal is exploited to perform radar target sensing:

Yd = GH (S + Xd) + NH ∈ CN×L. (2)

Particularly, we assume that hd,k ∼ CN (0,Rk) with

Rk ∈ C

M×M denoting the transmit correlation matrix and

E{hd,khH

d,k′} = 0 (∀k′ 6= k). Besides, we have gn ∼
CN (0,RT) (∀n ∈ N = {1, · · · , N}) with RT ∈ CM×M be-

ing the transmit correlation matrix, E{gngHn′} = 0 (∀n 6= n′),

nn ∼ CN (0, IL) (∀n ∈ N ), and E{nnnH

n′} = 0 (∀n 6= n′).

Throughout this paper, full channel state information (CSI) of

CU k (∀k ∈ K) is assumed to be known to the BS and CU

k for the sake of discussing the performance upper bound of

communications [1]–[3]. Moreover, it is widely known that

the TRM G contains all the information of the RTs, such as

the direction of each RT, and thus the radar target sensing

can be regarded as the estimation of G [3], [8], [9]. Since G

needs to be sensed, the BS is assumed to know only the spatial

correlation matrix, RT. For the sake of brevity, we consider

the case of RT ≻ 0 throughout this letter.

B. Uplink ISAC

The uplink ISAC (U-ISAC) also includes two stages. Firstly,

the BS broadcasts the radar waveform S for sensing the nearby

environment. Secondly, the BS receives the radar waveform

reflected by the RTs and the communication messages sent

by the CUs simultaneously. The communication signals and

sensing signals are assumed to be synchronized perfectly at

the BS by the method in [4]. Besides, like the downlink case,

we assume the BS can remove the radar echoes reflected by

the CUs. Thus, the BS can decode the communication data as

well as sensing the radar target from the signal as follows:

Yu =
∑K

k=1
hu,kxHu,k + GHS + NH, (3)

where Yu =
[

yu,1 · · · yu,L

]

∈ C

N×L with the subscript “u”

denoting uplink transmission; hu,k ∈ CN×1 is the uplink chan-

nel vector from CU k to the receive antenna array of the BS;

xu,k = [xu,k,1, · · · , xu,k,L]
H ∈ C

L×1 is the message sent by

CU k subject to the power budget E{|xu,k,l|
2} ≤ pc (∀l ∈ L).

As explained earlier, the correlation between receive antennas

can be omitted, and thus we can assume hu,k ∼ CN (0, IN )
and E{hu,khH

u,k′} = 0 (∀k 6= k′). Besides, we assume the BS

knows the full information of hu,k (∀k ∈ K) and RT. After the

BS receives Yu presented in (3), it can leverage a successive

interference cancellation (SIC)-based framework to decode the

communication signal, xu,k, as well as sensing the TRM, G

[6]. Specifically, the BS first decodes xu,k by treating the radar

waveform as interference. Then, xu,k can be subtracted from

Yu and the rest part will be used for sensing.

III. DOWNLINK PERFORMANCE

A. Performance of Communications

In this letter, we assume only the statistical information of

the communication signal is used during the design of the radar

waveform. Thus, CU k can know the designed waveform in

advance and remove the term hH

d,kS from yH

d,k before decoding

the information bits. Besides, to analyze the performance

upper bound of communication signals, we exploit dirty paper

coding (DPC) to generate Xd, which can achieve the sum CR

capacity of broadcast channels. Under the uplink-downlink

duality, the maximal downlink sum CR is given by [10]

Rd = max∑
K

k=1
pk≤pc

log2 det

Å

IM +
∑K

k=1
pkhd,khH

d,k

ã

. (4)

1) Outage Probability: The outage probability (OP) of the

sum downlink CR is given by Pd = Pr (Rd < R), where

R denotes the target rate. Yet, Rd lacks any closed-form

solutions, which together with the fact that {hd,k}
K
k=1 are

independent but not identically distributed random vectors,

makes the quantitative analysis of Pd an intractable problem.

As a compromise, we assume all the CUs share the same

correlation matrix to glean further insights. In this case, the

following theorem can be found.

Theorem 1. When Rk = R (∀k ∈ K), the OP satisfies

limpc→∞ Pd = O
(

p−MK
c

)

. (5)

Proof: Please refer to Appendix A for more details.

Remark 1. When Rk = R (∀k), a diversity order of KM is

achievable for the sum communication rate of the CUs.

2) Ergodic Rate: The ergodic CR (ECR) of the CUs in

downlink transmission is given by Rd,c = E {Rd}. Let

Hd = [hd,1 · · ·hd,K ] ∈ C

M×K denote the concatenation of

the channels. Then, the following theorem can be found.

Theorem 2. The downlink ECR satisfies

lim
pc→∞

Rd,c = K log2
pc

K
+ E
¶

log2 det
Ä

HH

d Hd

ä©

. (6)

Proof: Please refer to Appendix B for more details.

Note that Ed = E

¶

log2 det
Ä

HH

d Hd

ä©

is a constant inde-

pendent of pc, which lacks any closed-form expressions. Yet,

when Rk = IM (∀k ∈ K), Ed can be calculated as follows.

Corollary 1. When Rk = IM (∀k ∈ K), we have Ed =
1

ln 2

∑K−1
t=0

Ä

∑M−t−1
a=1

1
a − C

ä

, where C is the Euler constant.

Proof: Please refer to Appendix B for more details.

Remark 2. A high-SNR slope of K is achievable for the

downlink sum communication rate.
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B. Performance of Sensing

Turn now to the sensing performance. The BS can use

the received signal presented in (2) to sense the TRM G.

The performance of radar target sensing is evaluated by the

SR that is defined as the sensing mutual information (MI)

per unit time [8]. In particular, the sensing MI is the MI

between the received signal Yd and the TRM G for a given

S [8]. There are two reasons for using the SR as the sensing

performance metric. The first reason is that the SR tells how

much environmental information can be extracted from Yd

with the view of information theory. The second reason is that

under our considered ISAC model where gn ∼ CN (0,RT),
nn ∼ CN (0, IL) (∀n ∈ N ), E

{

gngH

n′

}

= 0, E
{

nnnH

n′

}

= 0

(∀n 6= n′), and RT ≻ 0, the optimal radar waveform based

on maximizing the SR has the same estimation performance

as that based on minimizing the mean-square error (MSE)

in estimating the TRM G [9]. For more details about the

relationship between the SR (or the sensing MI) and the MSE,

please refer to [9]. In this letter, we assume that each waveform

symbol lasts 1 unit time. Thus, the SR can be calculated as

Id,L/L, where Id,L denotes the sensing MI over the duration

of L symbols. By definition, we have Id,L = I (Yd;G|S),
where I (X ;Y |Z) denotes the MI between X and Y condi-

tioned on Z . To simplify the expression of Id,L as well as the

subsequent analyses, we treat GHXd as interference, which

thus yields a sensing performance lower bound. Moreover,

from a worst-case design perspective [11], the aggregate

interference-plus-noise Z = GHXd + N ∈ C

N×L is treated

as the Gaussian noise. Since Xd is dirty paper coded, we have

E{xd,lx
H

d,l′} = 0 (∀l 6= l′) and xd,l ∼ CN (0M ,ΣHd
) (∀l ∈ L)

with tr (ΣHd
) ≤ pc, where ΣHd

is obtained by the iterative

water-filling method [10]. On this basis, we characterize the

sensing MI as follows.

Lemma 1. The sensing MI can be written as Id,L =
N log2 det(IL + σ−2SHRTS) with σ2 = 1 + tr (RTΣ) and

Σ = EHd
{ΣHd

} ≤ pc.

Proof: Please refer to Appendix C for more details.

We comment that Σ lacks any closed-form expressions,

which can be evaluated numerically. Based on Lemma 1,

the maximal downlink SR can be expressed as Rd,s =
1
L max

tr(SSH)≤ps
Id,L. Theorem 3 provides an exact expression

for Rd,s as well as its high-SNR approximation.

Theorem 3. The maximal downlink SR is given by

Rd,s = NL−1
∑M

m=1
log2

(

1 + σ−2λms⋆m
)

, (7)

where {λm > 0}Mm=1 denote the eigenvalues of RT and

s⋆m = max
¶

0, 1
ν − σ2

λm

©

with
∑M

m=1 max
¶

0, 1
ν − σ2

λm

©

=

ps. The maximal SR is achieved when SSH = UH

T∆
⋆UT,

where UH

Tdiag {λ1, · · · , λM}UT denotes the eigendecompo-

sition (ED) of RT and ∆
⋆ = diag {s⋆1, · · · , s

⋆
M}. When

ps → ∞, we can obtain

Rd,s ≈
NM

L

Å

log2 ps +
1

M

∑M

m=1
log2

Å

λm

Mσ2

ãã

. (8)

Proof: Please refer to Appendix D for more details.

Remark 3. A high-SNR slope of NM
L is achievable for the

maximal downlink SR.

C. Performance of FDSAC

Turn now to the performance of downlink FDSAC (D-

FDSAC) systems, where the total bandwidth is separated

into two sub-bands, one for sensing only and the other

for communications. It is assumed that α ∈ [0, 1] frac-

tion of the total bandwidth is used for communications.

Besides, the DPC and the optimal radar waveforming [8]

are exploited to generate communication and sensing signals,

respectively. In this case, the ECR is given by Rα
d,c =

E

¶

αmax∑K

k=1
pi≤pc

log2 det
Ä

IM +
∑K

k=1
pk

α hd,khH

d,k

ä©

. As

for radar sensing, the maximal downlink SR is Rα
d,s =

N(1−α)
L max

tr(SSH)≤ps
log2 det(IL + 1

1−αSHRTS). It is worth

noting that (Rα
d,c,R

α
d,s) can be analyzed in a similar way we

analyze (Rd,c,Rd,s). We find that Rα
d,c (or Rα

d,s) achieves a

smaller high-SNR slope than Rd,c (or Rd,s), whereas Rα
d,c

yields the same diversity order as Rd,c.

IV. UPLINK PERFORMANCE

A. Performance of Communications

At the lth time slot of uplink ISAC, the BS receives

yu,l =
∑K

k=1
hu,kxk,l + GHsl + nu,l, (9)

where nu,l ∼ CN (0, IN ) denotes the lth column of NH.

To approach the performance upper bound of communication

signals, we use the minimum MSE (MMSE)-SIC decoder

to detect the information bits, which is capacity-achieving

[10]. Moreover, from a worst-case design perspective [11], the

aggregate interference-plus-noise bl = GHsl + nu,l ∈ C

N×1

is treated as the Gaussian noise. Accordingly, the uplink sum

CR at the lth time slot is given by

Ru,l = log2 det(IN + pcHuHH

u W−1
l ), (10)

where Hu = [hu,1 · · · hu,K ] ∈ CN×K and Wl = E

¶

blb
H

l

©

=

̺2l IN with ̺2l = 1 +
∣

∣sHl RTsl
∣

∣. As a result, the uplink sum

CR can be simplified to Ru,l = log2 det(IN + pc̺
−2
l HuHH

u ).
It is worth mentioning that the uplink sum CR varies with the

index of time slot, l. For brevity, we leverage the expectation

of Ru,l with respect to l to evaluate the uplink performance

of communication signals, namely Ru = 1
L

∑L
l=1 Ru,l.

1) Outage Probability: The OP of the uplink sum CR

is given as Pu = Pr (Ru < R). Using similar steps as

those outlined in Appendix A, we characterize the high-SNR

behaviour of the OP as follows.

Theorem 4. In the high-SNR regime, the outage probability

satisfies limpc→∞ Pu = O
(

p−NK
c

)

.

Remark 4. A diversity order of KN is achievable for the

uplink sum communication rate.

2) Ergodic Rate: The uplink ECR of the CUs is given as

Ru,c = E {Ru}. Bearing the same idea built in Appendix B

in mind, we obtain Theorem 5.

Theorem 5. The ECR satisfies limpc→∞ Ru,c = K log2 pc +
1

ln 2

∑K−1
t=0

Ä

∑M−t−1
a=1

1
a − C

ä

− K
L

∑L
l=1 log2 ̺

2
l .

Remark 5. A high-SNR slope of K is achievable for the uplink

sum communication rate.
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B. Performance of Sensing

After decoding all the information bits sent by the CUs,

the BS can remove
∑K

k=1 hu,kxH

u,k from Yu in (3). The rest

part can be used for radar sensing [6], which is expressed as

Ys = GHS + NH. Following similar steps as those outlined in

Appendix C, we can get the maximal uplink SR as follows

Ru,s = NL−1max
tr(SSH)≤ps

log2 det
Ä

IL + SHRTS
ä

. (11)

By the method we derive Theorem 3, we obtain Theorem 6.

Theorem 6. The maximal uplink SR is given as

Ru,s = NL−1
∑M

m=1 log2 (1 + λma⋆m), where a⋆m =

max
¶

0, 1
ν −

1
λm

©

with
∑M

m=1max
¶

0, 1
ν −

1
λm

©

= ps. The

SR is maximized when SSH = UH

TΘ
⋆UT with Θ

⋆ =
diag {a⋆1, · · · , a

⋆
M}. When ps → ∞, we can obtain

Ru,s ≈
NM

L

Å

log2 ps +
1

M

∑M

m=1
log2

Å

λm

M

ãã

. (12)

Remark 6. The uplink SR achieves the same high-SNR slope,

namely NM
L , as the downlink SR.

C. Performance of FDSAC

Turn now to the uplink FDSAC (U-FDSAC) system

where the MMSE-SIC decoding and the optimal radar wave-

forming are exploited. The SR and the ECR are given

by Rα
u,s = N(1−α)

L max
tr(SSH)≤ps

log2 det
Ä

IL + 1
1−αSHRTS

ä

and Rα
u,c = E

¶

α log2 det
Ä

IN + pc

α HuHH

u

ä©

, respectively.

Note that (Rα
u,c,R

α
u,s) can be discussed in the way we discuss

(Ru,c,Ru,s). In particular, we find the high-SNR slope of Rα
u,c

(or Rα
u,s) is no larger than that of Ru,s (or Ru,c). Moreover,

we note that Ru,c yields the same diversity order as Rα
u,c.

Remark 7. The results in Section III-C and Section IV-C

demonstrate that the ISAC system achieves a larger high-SNR

slope than the FDSAC system in terms of both the CR and the

SR. In other words, ISAC can provide more degrees of freedom

[10] for both the CR and the SR than FDSAC.

V. RATE REGION CHARACTERIZATION

We now characterize the communication-sensing rate region

of the considered ISAC and FDSAC systems. As stated before,

we assume pc and ps are fixed values and do not consider the

influence of power allocation. In light of this and in order

to present the result with more generality, we now consider

another case that pc and ps are subject to the constraints

pc ∈ [0, ṗc] and ps ∈ [0, ṗs], where ṗc and ṗs denote the

maximal communication SNR and the maximal sensing SNR,

respectively. Let Rc and Rs denote the achievable ECR and

SR, respectively. Based on our previous discussions, for ISAC

systems, the achievable downlink rate region satisfies

{(Rc,Rs)|Rc∈ [0,Rd,c],Rs ∈ [0,Rd,s],pc∈ [0,ṗc],ps= ṗs} , (13)

whereas the achievable uplink rate region satisfies

{(Rc,Rs)|Rc∈ [0,Ru,c],Rs∈ [0,Ru,s],ps∈ [0,ṗs], pc= ṗc} . (14)

As for FDSAC systems, the downlink rate region satisfies
®

(Rc,Rs)

∣

∣

∣

∣

∣

Rc ∈ [0,Rα
d,c],Rs ∈ [0,Rα

d,s]

α ∈ [0, 1], pc = ṗc, ps = ṗs

´

, (15)
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whereas the uplink rate region satisfies
®

(Rc,Rs)

∣

∣

∣

∣

∣

Rc ∈ [0,Rα
u,c],Rs ∈ [0,Rα

u,s]

α ∈ [0, 1], pc = ṗc, ps = ṗs

´

. (16)

VI. NUMERICAL RESULTS

Numerical analysis is presented to evaluate the performance

of ISAC systems. The parameters used for simulation are listed

as follows: N = 2, M = 2, L = 4, and K = 2. The (i, j)th
element of RT is set as 0.7|i−j|, whereas the (i, j)th element

of Rk = R (∀k) is set as 0.8|i−j|.

Fig. 2(a) and Fig. 2(b) plot the OP and the ECR versus the

communication SNR, pc, respectively. As shown in Fig. 2(a),

ISAC achieves a lower OP than FDSAC for both downlink and

uplink transmissions. Besides, in the high-SNR regime, the

OP curves for ISAC and FDSAC are mutually parallel, which

suggests that these two systems achieve the same diversity

order. This observation agrees with the conclusions drawn in

Section III-C and Section IV-C. Note that the curve for p−4
c is

also provided to demonstrate the achievable diversity order. As

shown, in the high-SNR regime, the curves for OP are parallel

to the one for p−4
c , suggesting the achievable diversity order

obtained in the previous section is tight. Turn now to Fig. 2(b).

It can be observed that in the low-SNR regime, ISAC achieves

virtually the same ECR as FDSAC, whereas in the high-SNR

regime, ISAC achieves a higher ECR than FDSAC. The reason

lies in that the ECR of ISAC systems yields a larger high-SNR

slope than the ECR of FDSAC systems.

Fig. 3(a) and Fig. 3(b) plot the downlink and the uplink

SRs versus the sensing SNR, ps, respectively. As shown, the

SR curve of ISAC yields a larger high-SNR slope than the

SR curve of FDSAC. Besides, as Fig. 3(a) shows, in low and

moderate SNR regions, D-FDSAC achieves a higher SR than

D-ISAC. This is because the communication signal interferes

in D-ISAC’s sensing procedure, thus reducing the SR. Yet,

involving a larger high-SNR slope, the SR of D-ISAC will

exceed that of D-FDSAC as ps increases, which agrees with
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Fig. 4: Rate region. ṗc = 5 dB and ṗs = 10 dB.

the observation from Fig. 3(a). By contrast, as shown in Fig.

3(b), the SR of U-ISAC is higher than that of U-FDSAC in

regions of all SNR. This is because the communication signal

has no influence on U-ISAC’s sensing procedure under the

SIC-based framework [6].

Notably, it is challenging to provide a rigorous comparison

of the CR-SR regions achieved by ISAC and FDSAC. As a

compromise, we provide some numerical results in Fig. 4 for

a heuristic exploration. In particular, Fig. 4(a) compares the

downlink rate regions of ISAC (presented in (13)) and FDSAC

(presented in (15)). As shown in this graph, the achievable

rate region of D-FDSAC is entirely included in the achievable

rate region of D-ISAC, which highlights the superiority of D-

ISAC over conventional D-FDSAC. Fig. 4(b) compares the

uplink rate regions of ISAC (presented in (14)) and FDSAC

(presented in (16)). It can be observed that the rate region of

U-FDSAC is mostly covered by that of U-ISAC. However, as

Fig. 4(b) shows, in the high-ECR region, U-FDSAC yields a

slightly higher SR than U-ISAC.

VII. CONCLUSION

Communication and sensing performances of downlink and

uplink ISAC systems have been analyzed. Closed-form analyt-

ical results have been developed to characterize the OP, ECR,

SR, and CR-SR region, respectively. Simulation results have

been provided to demonstrate the accuracy of the developed

analytical results. Theoretical analyses have shown that ISAC

can provide more degrees of freedom for both the CR and the

SR than conventional FDSAC.

APPENDIX A

PROOF OF THEOREM 1

Since limpc→∞ Rd = log2 det(IK + pc

K HH

d Hd) [12], we

have limpc→∞ Pd = limpc→∞ Pr(det(IK+ pc

K HH

d Hd) < 2R).
According to [13], when Rk = R (∀k ∈ K), we can get

limpc→∞ Pd = O
(

p−MK
c

)

. Thus, the theorem is proved.

APPENDIX B

PROOF OF THEOREM 2

Since limpc→∞ Rd = log2 det(IK + pc

K HH

d Hd) [12], we

have limpc→∞ Rc,d = limpc→∞ E{log2 det(
pc

K HH

d Hd)} =

K log2
pc

K + Ed, where Ed=E{log2 det(H
H

d Hd)}. When Rk=

IM (∀k ∈ K), we can get Ed = 1
ln 2

∑K−1
t=0 (

∑M−t−1
a=1

1
a−C)

with the aid of [10]. Thus, the theorem is proved.

APPENDIX C

PROOF OF LEMMA 1

Denote Z = GHXd+N = [z1 · · · zN ]
H

, where zHn = gHnXd+
nH
n . It is worth noting that the row vectors of Z are mutually

independent, which satisfy E{znzHn} = E{XH

d RTXd} + IL
(∀n ∈ N ). As stated before, we have Xd = [xd,1 · · · xd,L],
where E{xd,lx

H

d,l′} = 0 (∀l 6= l′) and E{xd,lx
H

d,l} = ΣHd

(∀l ∈ L). It follows that E{XH

d RTXd} = E{tr (RTΣHd
) IL} =

tr (RTΣ) IL and thus E{znzHn} = σ2IL. Denote YH

d =
[

yd,1 · · · yd,N

]

∈ C

L×N , where yHd,n = gHnS + zHn. When zn
is treated as Gaussian noise following CN (0, σ2IL), we have

yd,n ∼ CN (0, SHRTS + σ2IL). Let h(x) denote the entropy

of the random variable x. It is worth noting that the columns

of YH

d are independent and identically distributed, and thus

I (Yd;G|S) = N(h(yd,n)− h(zn)). With the aid of [8], [10],

we can get Id,L in Lemma 1.

APPENDIX D

PROOF OF THEOREM 3

Note that log2 det(IL+
1
σ2 SHRTS) equals the MI of a virtual

MIMO channel ẏ = R
1/2
T ẋ + ṅ with E{ẋẋ

H} = SSH and ṅ ∼
CN (0, σ2IM ). Thus, when this MI is maximized, the eigenvec-

tors of SSH should equal the left eigenvectors of R
1/2
T , with the

eigenvalues chosen by the water-filling procedure [10], which

yields Rd,s =
N
L

∑M
m=1 log2

(

1 + 1
σ2 λms⋆m

)

. Here, {λm}Mm=1

denote eigenvalues of RT and s⋆m = max
¶

0, 1
ν − σ2

λm

©

with
∑M

m=1 max
¶

0, 1
ν − σ2

λm

©

= ps. When ps → ∞, we have ν →

0 and thus
∑M

m=1 max
¶

0, 1
ν − σ2

λm

©

= M
ν −

∑M
m=1

σ2

λm

=

ps. Hence, limps→∞ Rd,s = N
L

∑M
m=1 log2

(

λm

Mσ2

)

+
NM
L log2

Ä

ps +
∑M

m=1
σ2

λm

ä

. Thus, the theorem is proved.
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