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Multiuser MISO PS-SWIPT Systems: Active or
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Abstract—Reconfigurable intelligent surface (RIS)-based com-
munication networks promise to improve channel capacity and
energy efficiency. However, the promised capacity gains could
be negligible for passive RISs because of the double pathloss
effect. Active RISs can overcome this issue because they have
reflector elements with a low-cost amplifier. This letter studies the
active RIS-aided simultaneous wireless information and power
transfer (SWIPT) in a multiuser system. The users exploit
power splitting (PS) to decode information and harvest energy
simultaneously based on a realistic piecewise nonlinear energy
harvesting model. The goal is to minimize the base station (BS)
transmit power by optimizing its beamformers, PS ratios, and
RIS phase shifts/amplification factors. The simulation results
show significant improvements (e.g., 19% and 28%) with the
maximum reflect power of 10 mW and 15 mW, respectively,
compared to the passive RIS without higher computational
complexity cost. We also show the robustness of the proposed
algorithm against imperfect channel state information.

Index Terms—Reconfigurable intelligent surface (RIS), active
RIS, simultaneous wireless information and power transfer,
energy harvesting, beamforming.

I. INTRODUCTION

A reconfigurable intelligent surface (RIS), a metasurface

with numerous low-cost reflectors, can inherently manipulate

the propagation environment to enhance energy and spectrum

efficiency [1], [2]. RIS can be passive or active. The former

imparts a phase change only, whereas the latter changes both

the phase and amplitude of the incident radio frequency (RF)

signal. Both types avoid expensive RF components, which are

highly cost-effective. Thus, RIS may enable wireless fidelity

(WiFi), navigation, and a plethora of applications [2]. Passive

RIS and energy harvesting have also been considered [3].

However, the double pathloss from the product of the base

station (BS)-RIS channel and the RIS-user channel limits the

performance of the passive RIS networks [2]. Increasing the

number of reflecting may mitigate this loss but drives up the

cost. In response, active RIS has emerged [2], [4]–[6]. The

active RIS includes a negative resistance so that the reflectors

can not only reflect the RF signal but amplify it.

The benefits of active RISs have already been investigated

[4], [5]. Reference [4] compares the active and passive RIS

in a single-input multi-output (MISO) network and formulates

the signal-to-noise ratios (SNRs). The spectral efficiency of the

uplink is investigated in [7], where asymptotic and theoretical

performance bounds are derived. [5] develops resource alloca-

tions for a multiuser network by minimizing the BS transmit

power. Indoor and outdoor applications can deploy active
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RIS-aided systems with energy harvesting (EH) requirements,

such as smart homes and IoT networks. This deployment

improves the network energy efficiency, a critical benefit.

On the other, simultaneous wireless information and power

transfer (SWIPT) can help the same goals [8]–[10].

This letter aims to quantify the benefits of active RIS by

evaluating transmit power savings achieved by a network

resulting from its use. Accordingly, we design the system with

an active RIS (Fig. 1) to minimize the transmit power of the

BS. This optimization problem involves the BS beamformers,

power splitting (PS) ratios at the users, and active RIS phase

shifts/amplification factors. This problem is non-convex be-

cause of variable entanglement. We thus leverage the block

coordinate descent (BCD) method (also known as alternating

optimization), which divides the variables into two alternating

blocks. The first block comprises the BS beamformer weights

and the PS ratios, and the second block comprises the active

RIS phase shifts and amplification factors. The methods we

use to solve them are convex relaxation and a penalty-based

technique. We thus develop the intermediate power and phase

shift algorithm (IPPA) and the overall BCD algorithm. We also

show that performance gain for the active RIS over the passive

RIS comes with no additional computational complexity cost.

Notation: Vectors and matrices are indicated by boldface

lower-case and capital letters, respectively. For a square matrix

A, AH , AT , Tr(A), ||A||∗, and Rank(A) denote its Hermitian

conjugate transpose, transpose, trace, trace norm, and Rank,

respectively. A � 0 denotes a positive semidefinite matrix.

diag(·) is the diagonalization operation. The Euclidean norm

of x is ‖x‖, and the absolute value of x is |x|. ∇xf(x)
is the gradient vector over x. E[x] is the expectation of x.

A circularly symmetric complex Gaussian (CSCG) random

vector with mean µ and covariance matrix C is denoted by

∼ CM(µ, C). CM×N indicates M×N dimensional complex

matrices. O denotes the big-O notation.

II. SYSTEM MODEL

We consider a downlink communication system with a M
antennas BS and K single antenna users index by K =
{1, . . . ,K}. We propose an active RIS with N reflecting

elements to improve this communication link. At the users,

the received signal is split for information decoding (ID)

and EH. The BS uses each time-frequency resource block

simultaneously for transmitting to all the users. The flat-fading

channel gains from the BS-to-RIS, RIS-to-user k, and BS-

to-user k are denoted by G ∈ CN×M , hr,k ∈ CN×1, and

hb,k ∈ CM×1, respectively. All the channels undergo quasi-

static flat Rician fading and remain unchanged for several

symbols [9]. We also assume the RIS controller acquires all the

channel state information (CSI) during the channel estimation

http://arxiv.org/abs/2206.14326v1
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Figure 1: A multiuser MISO active RIS-assisted SWIPT system.

phase1. The system then adopts a codebook-based passive

beamforming approach, where the RIS selects the best beam

based on the received pilot sequences from the BS or users

[1].

The signal model of N elements passive RIS is given by

r = Θx, where Θ = diag(ejθ1 , . . . , ejθN ) is the reflection-

coefficients matrix at the RIS. With optimal RIS phase shifts,

coherent combining at the user yields a high array gain

proportional to N2, a fundamental motivation of employing

RIS [1]. However, when the direct link between the BS and

the user is strong enough, the array gain becomes marginal [2].

This loss of efficacy happens because of the double pathloss

effect, the product term of the BS-RIS channel and RIS-

user channel. For a network at 5 GHz, 10, 000 RIS elements

are required to make the reflection link as strong as the

direct link [2]. We thus consider an active RIS to overcome

this issue. Unlike passive RIS, the active RIS can amplify

the reflected signals2. Unlike full-duplex amplify-and-forward

(FD-AF) relays, active RISs lack RF components and signal

processing capabilities but only reflect and amplify the inci-

dent signals. Also, the performance of a FD-AF is limited by

self-interference. Thus, a detailed comparison between these

is an important future topic. Accordingly, the amplified and

reflected signal of the active RIS [2], [5] can be represented as

r = PΘx+PΘv+ν , where P = diag(p1, . . . , pN ) ∈ RN×N

denotes the amplification factor matrix of the active RIS with

each component greater than one. The second and third terms

are dynamic and static noise at the active RIS. In addition,

v ∼ CN (0N , σ2
vIN ) is related to the input noise and the

inherent device noise of the active RIS elements, while the

static noise ν is unrelated to P and is negligible [2], [5].

III. SYSTEM MODEL

The transmitted signal by the BS is given by x =
∑K

i=1 wisi, where wi ∈ C
M×1, ∀i ∈ K, denotes the BS

1If perfect CSI is not available, our results serve as theoretical performance
upper bounds for the considered system. Robust versions of our algorithm can
also be developed to reduce the effect of channel estimation errors, e.g., [10].

2To realize the active RIS platform, we assume an active reflection-type
amplifier, which active elements can equip, e.g., current-inverting converters,
asymmetric current mirrors, or some integrated circuits [2]

beamformers and si is the information symbol intended for

user i which satisfies E
[

|si|2
]

= 1, i ∈ K. Then, the received

signal at the active RIS is given by r̃ = PΘG
∑K

i=1 wisi +
PΘv. Subsequently, the received signal at user k becomes

yk =
∑K

i=1 h
H
k wisi + hH

r,kPΘv + zk, ∀k, where hH
k =

hH
r,kPΘG+ hH

b,k denotes the total channel gain from the BS

to user k. Also, zk ∼ CN (0, σ2
k) is the received complex

Gaussian noise at user k. By denoting ρk ∈ (0, 1) as the

PS ratio, the received signal at each user is divided into

two portions, where ρk portion is used for ID, and (1 − ρk)
remaining portion is utilized for the EH. Consequently, the

received signals for the ID and EH sections are given by

yID
k =

√
ρkyk + nk and yEH

k =
√
1− ρkyk, respectively,

where nk ∼ CN (0, δ2k) is the additional noise introduced

by the signal processing circuit of user k for the ID section

[9]. Hence, the received signal-to-interference-plus-noise ratio

(SINR) at user k can be written as

SINRk=

∣

∣hH
k wk

∣

∣

2

K
∑

i=1
i6=k

∣

∣hH
k wi

∣

∣

2
+ σ2

v‖hH
r,kPΘ‖2 + σ2

k +
δ2
k

ρk

, ∀k. (1)

Practical EH circuits have two major drawbacks. First,

the harvested energy does not linearly increase when the

input power increases; instead, it saturates. Second, when

the input power drops below the sensitivity level of the EH

circuit, the harvested energy is zero [9], [10]. To capture

these effects precisely, we employ the following piecewise

nonlinear EH model [11]: PNL
EH =

aP L
k+b

P L
k
+c
− b

c
, where P L

k

represents the linear input power to the EH section and

a > 0, b > 0, and c > 0 capture the saturation and

sensitivity thresholds of the EH circuit. By applying a best-

fit match with experimental data, a, b, and c can be esti-

mated. The harvested energy at user k can then be written

as P L
k = ηk(1 − ρk)

(

K
∑

i=1

∣

∣hH
k wi

∣

∣

2
+ σ2

v‖hH
r,kPΘ‖2

)

, ∀k,
where ηk ∈ (0, 1] is the energy conversion efficiency. We

assume ηk = 1 for all users.

IV. OPTIMIZATION PROBLEM

We aim to minimize the BS transmit power3 by jointly

optimizing the BS beamformers, PS ratios, and RIS phase

shifts/amplification factors. The optimization problem can be

formulated as

(P1) : minimize
wk,Θ,P,ρk

f1 =
K
∑

k=1

‖wk‖22, (2a)

s.t.

∣

∣hH
k wk

∣

∣

2

K
∑

i=1
i6=k

∣

∣hH
k wi

∣

∣

2
+σ2

v‖hH
r,kPΘ‖2+σ2

k+
δ2
k

ρk

≥γk, (2b)

3To realize the potential gain due to the use of an active RIS, a proper
amount of power is allocated to each active RIS element from the total budget.
Thus, compared to the passive RIS, the precise design of the BS beamformers
is more important such that the quality of service for each user can be fulfilled,
and the system power consumption is not excessive [5].
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K
∑

i=1

‖PΘGwi‖2 + σ2
v‖PΘ‖2 ≤ pmax, (2c)

PNL
EH ≥ ek, ∀k, (2d)

0 < ρk < 1, ∀k, (2e)

where γk and ek in (2b) and (2d) are the minimum SINR and

harvested energy requirements at user k, respectively. Con-

straint (2c) indicates the power constraints at the active RIS

with maximum reflect power, pmax. Constraint (2e) denotes the

PS ratio requirements. Following the similar approach in [9],

we rewrite the right-hand side of constraint (2d) in a tractable

form as follows: P L
k (P

NL
EH ) =

b−(PNL
EH + b

c
)c

PNL
EH

+ b
c
−a

. Accordingly, (P1)

can be recast as below

(P2) : minimize
wk,Θ,P,ρk

f1 =

K
∑

k=1

‖wk‖22, (3a)

s.t. (2b), (2c), (2e), (3b)

K
∑

i=1

∣

∣hH
k wi

∣

∣

2
+ σ2

v‖hH
r,kPΘ‖2 ≥ P L

k (ek)

1− ρk
, (3c)

(P2) is non-convex as the constraints contain entangled terms.

Thus, we cannot solve it by standard popular convex soft-

ware, e.g., CVX [12]. Therefore, we use a divide-and-conquer

method, namely the BCD algorithm. First, we optimize the BS

beamformers and PS ratios by applying semidefinite relaxation

(SDR) and successive convex approximation (SCA). Second,

we design the RIS phase shifts and amplification factors

given the output of the first part. This process iterates until

convergence.

A. Optimizing wk and ρk With Given Θ and P

Since P and Θ appears in product form, we equivalently

optimize Υ = PΘ = diag(p1e
jθ1 , . . . , pNejθN ) as the RIS

precoding matrix that facilitates the optimization problem. By

defining Wk = wkw
H
k and Hk = hkh

H
k ∀k, we have

(P3) : minimize
Wk,ρk

f2 =

K
∑

k=1

Tr(Wk), (4a)

s.t.
Tr(HkWk)

γk
−

K
∑

i=1
i6=k

Tr(HkWi)≥σ2
v‖hH

r,kΥ‖2+σ̃k, (4b)

K
∑

i=1

Tr(ΥGWiG
HΥH) + σ2

v‖Υ‖2 ≤ pmax, (4c)

K
∑

i=1

Tr(HkWi) + σ2
v‖hH

r,kΥ‖2 ≥
P L
k (ek)

1− ρk
, (4d)

0 ≤ ρk ≤ 1, Wk � 0, ∀k, (4e)

where σ̃k := σ2
k +

δ2k
ρk

, ∀k ∈ K. The rank-one constraint, i.e.,

Rank(Wk) ≤ 1, ∀k, is omitted to make (P3) a convex prob-

lem. (P3) is a standard semidefinite program (SDP) that can

be solved efficiently by using CVX [12]. For all Wk’s, it can

be shown that the optimal solution to (P3) satisfies rank-one

constraints [8]. Thus, eigenvalue decomposition (EVD) yields

a globally optimal solution. The computational complexity of

(P3) is given by O
(√

KM(K3M2 +K2M3)
)

[8].

B. Optimizing P and Θ with Given wk and ρk

To design the RIS precoding matrix, we transform the opti-

mization problem into a feasibility check problem. Let us first

define θ = (p1e
jθ1 , . . . , pNejθN )H ∈ CN×1. Furthermore,

to make the problem more tractable, we apply the change

of variables hH
b,kwi = ak,i, hH

r,kΥGwi = θHbk,i, where

bk,i = diag(hH
r,k)Gwi, Qk = diag(Gwk)(diag(Gwk))

H ,

and Zk = diag(hH
r,k)diag(hr,k), ∀k ∈ K. Then, (P1) can be

rewritten as follows

(P4) : Find θ, (5a)

s.t.

∣

∣θHbk,k + ak,k
∣

∣

2

K
∑

j=1
j 6=k

∣

∣θHbk,j + ak,j
∣

∣

2
+ σ2

vθ
HZkθ + σ̃k

≥ γk,

(5b)

K
∑

i=1

θHQkθ + σ2
vθ

Hθ ≤ pmax, (5c)

K
∑

j=1

∣

∣θHbk,j + ak,j
∣

∣

2
+ σ2

vθ
HZkθ ≥

P L
k (ek)

1− ρk
.

(5d)

Since (P4) holds quadratic inequality and equality constraints,

the whole problem is non-convex. Hereafter, we use the

SDR technique to transform (P4) into a convex problem.

We introduce θ̃ := [θT 1]T ∈ C
(N+1)×1 and Sk,j =

[bk,jb
H
k,j , bk,ja

H
k,j ; bH

k,jak,j , 0], ∀i ∈ K, respectively. Fur-

ther, we define T := θ̃θ̃
H ∈ C

(N+1)×(N+1), which requires

to satisfy T � 0 and Rank(T) = 1. Dropping the non-convex

rank-one constraint, (P4) is relaxed into

(P5) : Find T, (6a)

s.t.
Tr(Sk,kT) + |ak,k|2

γk
−

K
∑

j=1
j 6=k

Tr(Sk,jT)

−σ2
vTr(Z̃kT)≥ σ̃k, (6b)

K
∑

i=1

Tr(Q̃kT) + σ2
vTr(T) ≤ pmax, (6c)

K
∑

j=1

Tr(Sk,jT) + |ak,j |2 + σ2
vTr(Z̃kT) ≥ P L

k (ek)

1− ρk
,

(6d)

T � 0, (6e)

where Q̃k and Z̃k are matrices with extra zero rows and

columns. (P5) is an SDP that can be solved using CVX

[12]. To achieve a rank-one solution, we exploit the penalty-

based method [9], [10]. An equivalent form for the rank-one

constraint can be written as ||T||∗−||T||2 ≤ 0. We know that

the inequality ||T||∗ =
∑

i σi ≥ ||T||2 = max
i
{σi} holds for

any given T ∈ Hm×n, where σi is the i-th singular value of

T. The equality holds if and only if T has rank-one. We thus

have the following optimization problem:

(P6) : min
T

1

2µ
(||T||∗ − ||T||2), s.t. (6b)− (6e), (7a)
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Algorithm 1 Intermediate power and phase shift Algorithm

(IPPA)

Input: Set the iteration number j = 0, the convergence

tolerance ζ, and initialize T(0).

1: repeat

2: Calculate Ψ̃(T) according to (8).

3: Solve (P7) to obtain {T(j)}.
4: j ← j + 1;

5: until
|f

(j)
3 −f

(j−1)
3 |

f
(j−1)
3

≥ ζ

Output: return solution {T∗}.

Algorithm 2 Overall BCD Algorithm

Input: Set the iteration number i = 0, the convergence

tolerance ζ, and initialize T = T(0).

1: repeat

2: Solve (P3) for given T(i) to obtain {W(i)
k , ρ

(i)
k }.

3: Solve (P7) for given {W(i)
k , ρ

(i)
k } and denote the

solution as T(i+1) based on Algorithm 1.

4: Set i← i+ 1;

5: until
|f

(i)
1 −f

(i−1)
1 |

f
(i−1)
1

≥ ζ

Output: return solution {T∗}.

where µ is the penalty factor [9]. Specifically, for a sufficiently

small value of µ, solving (P6) yields a rank-one solution.

However, (P6) is not convex as its objective function is the

difference of two convex functions. To handle this, we resort

to the SCA technique by approximating Ψ(T) = ||T||2 with

its first-order Taylor series expansion, which is a global lower

bound as Ψ(T) is convex. The first-order Taylor series leads

to

Ψ(T) ≥ Ψ(Ti) + Tr

(

∇H
T
Ψ(Ti)(T−Ti)

)

, Ψ̃(T), (8)

where ∇T ‖Ti‖2 = ∇Tu
H
1 Tiu1 = ∇TTr

(

Tiu1u
H
1

)

=
u1u

H
1 , and u1 is the eigenvector corresponding to the largest

eigenvalue of Ti. While (P6) contains an objective function,

it is still a feasibility problem as any T that has rank-one

and satisfies the constraints is an optimal solution. Thus, we

enforce an optimal solution that optimizes SINR and harvested

energy margins while satisfying the rank-one constraint. To

achieve this goal, we propose two new slack variables, τk and

∆k as the “SINR residual” and “EH residual,” respectively

[8]. The new formulated optimization problem is given by

(P7) : minimize
T,τk,∆k

f3 =
1

2µ
(||T||∗−Ψ̃(T))−

K
∑

k=1

(ατk + β∆k) ,

(9a)

s.t. Modified–(6b), Modified–(6d), (6e), (9b)

τk, ∆k ≥ 0, ∀k, (9c)

where Modified–(6b) and Modified–(6d) are obtained from

(6b) and (6d) by substituting γk with γk + τk and P L
k (ek)

with P L
k (ek) + ∆k, ∀k ∈ K, respectively. Besides, α and

β are positive constants. The feasible set for both problems

(P6) and (P7) is the same. However, (P7) is more efficiently
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Figure 2: Convergence of Algorithm 2 (N = 20 and M = 10).

convergent [9]. The IPPA and the overall BCD algorithm

are summarized in Algorithm 1 and Algorithm 2, respec-

tively. The order of complexity for solving (P7) is given by

O(log(1/ǫ)((3K + 1)(N3.5 + 3KN2.5))), where ǫ > 0 is

the solution accuracy indicating that the active RIS does not

have a higher computational complexity than the passive RIS

[9]. Algorithm 2 iterations yield a non-increasing sequence of

objective values for (P2) with guaranteed convergence. Let us

consider {wk, ρk} and θ as the optimal solution of (P3) and

(P7), respectively. Then, we havef1(θ
(i+1),w

(i+1)
k , ρ

(i+1)
k ) =

f1(θ
(i),w

(i+1)
k , ρ

(i+1)
k ) ≤ f1(θ

(i),w
(i)
k , ρ

(i)
k ). Equality arises

as the objective is not a function of θ. So, as long as a feasible

θ is selected, equality remains valid. Inequality comes from

the fact that for given θ, the solutions {wk, ρk} are optimal.

As for the convergence, we have a sequence of non-increasing

objective values, which is guaranteed to converge.

V. SIMULATION RESULTS

Here are the parameters of simulation results to evaluate

Algorithm 2. The RIS has N active elements. All users are

randomly located in a cluster with center (3.5, 8) meters (m)

and radius 2.5 m. The AP location and the RIS location are

considered as (3.5, 0) m and (0, 8) m, respectively. The Rician

factor is set to 10 dB, K = 4, γk = 10 dB, pmax = 10
mW, ek = −20 dBm, σ2

k = −70 dBm, δ2k = −50 dBm,

σ2
v = −70 dBm, ζ = 10−3, and µ = 5 × 10−5 [9], [10].

The nonlinear EH model parameters are set to a = 2.463,

b = 1.635, and c = 0.826 [11]. We consider the pathloss

model L(d) = C0(
d
D0

)−κ, where C0 = −30 dB denotes the

pathloss at the reference distance D0 = 1 m, d indicates the

link distance and κ is the pathloss exponent, which is set

to 3 and 2.2 for the direct and reflected links, respectively.

For comparison, three benchmark system designs are studied,

namely, 1) Algorithm 2 with different maximum reflect power;

2) Algorithm 2 with random PS ratio (ρrnd); 3) Passive RIS;

4) Passive RIS with ρrnd; 5) Passive RIS with random phase

shifts (θrnd); 6) No RIS. For a fair comparison, the figures

report the total transmit power as the sum of the BS and active

RIS powers.

Fig. 2 shows the convergence behavior of Algorithm 2 for

different maximum reflected power of the RIS, pmax. All

the curves converge to a stationary point within less than

five iterations on average. Fig. (3a) plots the total transmit
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Figure 3: (3a) show the transmit power versus number of antenna at the BS, M , with N = 20. (3b) shows the transmit power versus
number of active elements at the RIS, N , with M = 10. (3c) represents the transmit power versus CSI error parameter, ξ, with M = 10

and pmax = 15 mW.

power versus the number of BS antennas, M , for different

benchmarks. When M increases, the transmit power decreases

for all the schemes. As well, Algorithm 2 outperforms others

in terms of transmit power and achieves better performance

by allocating more power to the active RIS. Thus, employing

it further reduces the total transmit power given an additional

maximum reflected power. However, it is significant to opti-

mize ρ because ρrnd increases the transmit power.

Fig. (3b) represents the impact of the number of elements,

N , at the active RIS on the total transmit power. As expected,

sufficient reflectors at the active RIS cause transmit power

reduction. When N grows, the multipath propagation between

the BS and the users increases, leading to the enhancement of

the received signal power at the user. Thus, to get the minimum

required SINR for users, the power at the BS decreases.

Indeed, with active RIS, the transmit power is reduced more

due to the signal amplification at the RIS. This fact reveals

that using the large or even massive elements at the active

RIS can be advantageous for the MISO PS-SWIPT systems.

Also, with N = 100, the active RIS with a maximum reflect

power of 10 mW can save the transmit power 19% compared

to the passive RIS. For the active RIS with a maximum reflect

power of 15 mW, the gain is 28%.

Obtaining CSI is a critical challenge for wireless networks,

and imperfect CSI is normal. Thus, it is important to study

the robustness of Algorithm 2 to CSI error. For that, we use

the following channel estimation model [10]: ĥ = h + e,

where h is the real channel and e is the estimation error with

Gaussian distribution and zero mean, i.e., e ∼ N (0, σ2
e). We

assume that the error variance satisfies σ2
e , ξ|h|2, where

ξ denotes the level of CSI error. Fig. (3c) shows the total

transmit power versus ξ, indicating that the transmit power

grows by increasing ξ. Specifically, for the active RIS scheme

with N = 40 and CSI error power of 10% of the channel gain

(i.e., ξ = 0.1), the performance of Algorithm 2 experiences a

loss of 5% compared to the ideal case without CSI error (i.e.,

ξ = 0). But, it exhibits strong robustness against CSI error.

VI. CONCLUSIONS

This letter studied the transmit power minimization problem

for a multiuser active RIS PS-SWIPT system. The BCD

algorithm was developed to optimize the BS beamformers,

RIS phase shifts/amplification factors, and PS ratios jointly.

Minimum requirements of data rate and harvested energy

based on the piecewise nonlinear EH model were considered.

We established the convergence of Algorithm 2 to a locally

optimal solution. Simulation results demonstrated that the

submitted designs perform better than the benchmarks. We

found that active RIS helps to overcome the double pathloss

effect and improve the EH capability of the users. It does so

while decreasing the total transmit power. This letter serves as

guidelines for many potential works on active RIS PS-SWIPT

systems, e.g., prototype development, channel estimation, EH

at the RIS, hardware design, and others.
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