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On the Scalability of Duty-Cycled LoRa Networks
with Imperfect SF Orthogonality

Yathreb Bouazizi, Graduate Student Member, IEEE, Fatma Benkhelifa, Member, IEEE, Hesham ElSawy, Senior
Member, IEEE, and Julie A. McCann, Member, IEEE

Abstract—This papers uses stochastic geometry and queuing
theory to study the scalability of long-range (LoRa) networks,
accounting for duty cycling restrictions and imperfect spreading
factor (SFs) orthogonality. The scalability is characterised by the
joint boundaries of device density and traffic intensity per device.
Novel cross-correlation factors are used to quantify imperfect SF-
orthogonality. Our results show that a proper characterisation
of LoRa orthogonality extends the scalability of the network.
They also highlight that for low/medium densities decreasing
the SF extends the spanned spectrum of sensing applications
characterised by their traffic requirements (i.e. sensing rate).
However, for high density (> 104 nodes/Km2), the Pareto frontiers
converge to a stability limit governed by the SF allocation scheme
and the predefined capture thresholds. The results further evince
the importance of capturing threshold distribution among the SFs
to mitigate the unfair latency.

Index Terms—LoRa, SF-Allocation, Stochastic Geometry,
Queuing Theory, Coverage Probability, Stability Analysis.

I. Introduction

Long-Range (LoRa) is a license-exempt low power wide
area (LPWA) technology that has attracted the attention
of commercial stakeholders due to its low-cost-low-energy
advantage.cThe academic community has also become in-
creasingly interested in LoRa as its efficiency maximization
presents many challenges. The predicted massive deployment
of Internet of Things (IoT) devices raises scalability concerns.
Therefore understanding LoRa’s limits in terms of device
density and bounds on traffic requirements per device is
fundamental. To address such concerns, several models have
been developed to mathematically characterize LoRa’s scala-
bility [1]–[4]. However, they are primarily focused on spatial
coverage analysis and overlook the temporal component of the
traffic, assuming a saturated buffer. Such assumption ignores
the practicalities of the temporal evolution of packet generation
and accumulation in devices buffers. Traffic temporal aspects
are typically described using discrete-time Markov chains
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(DTMCs). Such DTMCs are used to characterize latency in
LoRa networks and to develop optimized transmission policies
for the nodes [5], [6]. However, the analysis in [5], [6] is
based on simplified collision models that neglect spatial traffic
behaviours (e.g., network geometry and mutual interference)
and limit the network size to a few nodes, which is not practi-
cal for applications with massive ubiquitous connectivity. The
work in [5] analyzes the Medium Access (MAC)-layer perfor-
mance of LoRa devices. Assuming perfect-orthogonality1, the
network is modelled as the aggregation of independent sub-
networks.Each sub-network operates on a different spreading
factor (SF), which fails to capture the actual interaction
between SFs that are, in reality, not perfectly orthogonal [7]–
[10]; and makes the analysis optimistic. Indeed, as highlighted
in [9] SFs’ imperfect orthogonality has non-negligible impact
on LoRa throughput. The authors in [6] propose a DTMC
model that accounts for LoRa Duty Cycle (DC) restrictions.
However, by following a node-centric approach, they ignore
interference, making their model oblivious to LoRa physical
layer attributes (e.g., channel, distance, interference). Their
restrictive assumption that no queuing events are allowed at
the node level implies that events happening during the node’s
DC state will be discarded, resulting in data loss.

To the best of the authors’ knowledge, this paper is the first
to bridge the gap between stand-alone queuing approaches and
scalability-oriented analysis for LoRa networks. We propose
a novel inclusive spatiotemporal model where queuing theory
(QT) and stochastic geometry (SG) are combined via a 2D
DTMC that tracks the node’s data buffer and protocol state.
A more realistic mutual interference scenario is adopted by
accounting for SF-imperfect orthogonality. From the temporal
perspective, practical DC restrictions are incorporated into
the DTMC. Under different SF-orthogonality assumptions,
the per-SF scalability-stability trade-off is characterized using
Pareto frontiers. Further, the impact of network parameters on
the Per-SF latency is studied.

A. Notation & Organization

We use lowercase/uppercase bold math fonts to denote
vectors/ matrices. LX/EX denote the Laplace/expectation of X.
The probability complement is denoted as (.). The paper is or-
ganized as follows; Section II details the system model, while
Section III is dedicated to the analytical framework.Numerical
results and the conclusion are presented in sections IV and V.

1Perfect-orthogonality assumes that only same spreading factors interfere.
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II. SystemModel

A. Spatial Distribution and Propagation model

We consider a single-cell2 LoRa network where nodes
are randomly scattered around the gateway according to a
homogeneous Poisson Point Process (PPP) ΦL of intensity
λL. Each node is assigned a given SFq and shares the same
bandwidth (BW) to communicate to a central gateway. To
account for the traffic requirements and DC states, let Φ̃L

be the thinned process of concurrently transmitting nodes.
The subset of active nodes using SFq is Φ̃L,q. We denote
∆ = [δ1, . . . , δq, . . . , δN] the activity vector of different SFs.

In line with the characteristics of low-mobility smart sensing
applications, the realization of the network is random yet
static, while the fading realization and data generation vary
with time. We consider a power-law path-loss propagation
model where the signal attenuates with the propagation dis-
tance at the rate αr−η, η > 2 is the path-loss exponent, and α
is the frequency dependant factor. Further, we have Rayleigh
block fading channels with unit-mean exponentially distributed
gains i.e. gi ∼ exp(1). For tractability reasons, channel gains
are assumed to be independent of space and time dimensions.

B. Channel Access and Queuing Model

We assume a time-slotted system. All LoRa nodes sense for
the same application characterized by packet size L and per-
slot data arrival rate a ∈ [0, 1] linked to the sensing frequency.
At each device, packets are generated according to a geometric
distribution with parameter a. The generated packets are stored
in a First In First Out (FIFO) queue. The head of the line
packet is transmitted at the beginning of the slot. As this
paper’s objective is to explore LoRa uplink transmissions, we
assume error-free DL communications.

C. LoRa Physical Parameters and Operations

LoRa relies on an adapted chirp spread spectrum modulation
scheme. A LoRa device transmitting at SFq has 2SFq symbols
{0, ..., 2SFq − 1} each of SFq bits. There are two main assump-
tions in the literature about the interaction between LoRa SFs:
"Perfect orthogonality" that only accounts for the interference
from nodes using the same SF [2], [5], [6] and "Imperfect
orthogonality" [1], [3], [4], [9], [10] all SFs interfere. While
the former assumption overestimates the performance, the
latter is a worst-case scenario that does not account for the
different SFs’ impact on the mutual interference magnitude.
To mitigate this, [1], [3] used partial temporal overlap for
power equalisation purposes in the SINR formulations. Our
study examines a more realistic and practically more useful
interference scenario of imperfect orthogonality. We use the
orthogonality coefficients βq1,q2 summarized in Table I and
obtained using cross-correlation functions analysis. For more
details about their derivations and verification, please refer to
[8], which comprehensively studies LoRa modulation.

Let N be the total number of available SFs ranging from
SF1 to SFN . Since LoRa symbol duration is expressed as ts,q =

2While multi-cell topologies could better depict dense LoRa deployments
especially in mobility scenarios, single-cell LoRa systems still have their
significance for deployments in small towns and for naturally-clustered
sensing applications such as building, industrial, and agricultural monitoring.

βq1 ,q2 7 8 9 10 11 12
7 1 0.104 0.062 0.041 0.029 0.021
8 0.104 1 0.073 0.043 0.029 0.020
9 0.062 0.073 1 0.052 0.030 0.020

10 0.041 0.043 0.052 1 0.037 0.021
11 0.029 0.029 0.030 0.037 1 0.026
12 0.021 0.020 0.020 0.021 0.026 1

Tab. I: LoRa Spreading Factor Orthogonality Coefficients
2S Fq

BW , lq the time on-air (ToA) of packet transmission using
SFq, doubles from SFq to SFq+1. As a license-free technology,
LoRa is subject to restrictions on access to the shared medium.
These restrictions vary between the bands and can be based
on DC regimes. LoRa DC can be 1% or 10%. We fix DC to
1%3 where each transmission during lq is followed by a silent
duration 99 × lq. The adopted system slot is T1 = 100 × l1.
This choice implies that each node transmits no more than
once per slot ∀ SFq [11]. As LoRa DC duration is a function
of the ToA, each transmission using SFq will be followed by
nq DC logical sub-states, DCq = {DCq,1, ...,DCq,nq }, with nq =

2q−1 − 1 for q > 1 n1 = 0. The SFs are allocated to the
nodes following a distance-dependant scheme4 where each SF
occupies a restricted region of width [ dq−1−dq ] (e.g., Equal-
Interval-Based (EIB), Equal-Area-Based (EAB) [1], [3]). Each
SF experiences interference from the concurrently transmitting
SFs (CoSF+Inter-SF) with an orthogonality coefficient βq1,q2 .

III. Spatiotemporal Framework

The proposed framework relies on integrated SG and QT
models. SG allows us to derive the coverage probability
considering the nodes’ spatial distribution while QT tracks the
evolution of the nodes’ MAC state and determines the nodes’
activities. These activities control the interference intensity
needed for the coverage probability. The following subsections
detail the SG and QT frameworks as well as the iterative
solution to solve the interdependence between them.

A. Macroscopic Coverage Analysis with Stochastic Geometry

The received signal to interference and noise ratio (SINR) at
the gateway from the desired LoRa node, located at r0 = ∥x0∥

and using SFq0 is given by:

SINR(r0, q0) =
Pg0αr−η0

I + σ2 , (1)

where P the transmit power, I is the aggregate interference
, and σ2 is the variance of the additive white Gaussian noise
(AWGN). In the dBm scale, σ2 is given by σ2 = −174+NF+
10 log(BW), where NF is the noise figure of LoRa receivers
and BW is the bandwidth. I is expressed as:

I =
∑
q∈Q

∑
x j∈Φ̃L,q\x0

Pα∥x j∥
−ηβq0,qg j, (2)

A LoRa gateway successfully decodes a packet if it has a free
decoding path [10]5 and the instantaneous SINR surpasses a

3The scalability of (Listen before talk) LBT-based networks available for
LoRa frequency plan KR920 is deferred for a future work.

4The distance-based division of the cell justifies the assumption that devices
within each SFq-region exhibit i.i.d steady state queue distribution,

5In this study, we assume unsaturated demodulating paths. The assignment
policies of demodulating paths and the impact of their saturation are out the
this paper’s scope and will be explored in a future work.



3

capture threshold γq. We denote Γ = [γ1, γ2...γN].
ps(r0, q0, γq0 ) = P{SINR(r0, q0) ≥ γq0 } = e−ρq0σ

2
LI(ρq0 ), (3)

with P{·} being the probability operator and ρq0 =
γq0 rη0
Pα

.
Theorem 1. Considering a distance-based SF allocation,
the coverage probability, defined as the spatially averaged
transmission success probability of SFq0 , is expressed as:

pq0 =

∫ dq0

dq0−1

ps(r0, q0, γq0 )
2r0

d2
q0
− d2

q0−1

dr0, (4)

ps(r0, q0, γq0 ) = e−ρq0σ
2

N∏
q=1

e−2πδqλL(J(dq)−J(dq−1)), (5)

J(x) = x2

2 2F1

(
1, 2
η
; 1 + 2

η
;− xη

b

)
, b = αρq0Pβq0,q, and 2F1 (·)

the Gaussian hypergeometric function [12].

Proof. The proof is in Appendix A. □

Remark 1. The study in this paper can be extended to the
multi-cell scenario by recalling the stochastic geometry model
proposed in [1] where a Matern Cluster Process (MCP) is
adopted to depict LoRa multi-gateway topologies.

B. Microscopic Device-Level Queuing Theory Analysis

Since a single packet can arrive and/or depart from a buffer
at a given time slot, each device is characterised by a quasi-
birth death (QBD) process [13]. The transition matrix of the
DTMC tracks the number of packets at the device buffer and
is given, for each SFq, by :

Pq =



Bq Cq 0 0 0 . . .

Eq Aq,1 Aq,0 0 0
. . .

0 Aq,2 Aq,1 Aq,0 0
. . .

...
. . .

. . .
. . .

. . .
. . .


, (6)

where Aq,0, Aq,1 and Aq,2 track the buffer when it increases by
one level, stays in the same level, and decreases by one level,
respectively. The matrices Bq, Cq, and Eq track the transition
within level 0, from level 0 up to level 1, and from level 1 down
to level 0, respectively. Following the Matrix Analytic Method
(MAM) [13], we construct the Pq. Each device is perceived
as a Geo/PH/1 queue represented by the DTMC in Fig.1. The
PH-type parameters are the (nq + 1) × (nq + 1) matrix Fq and
the 1 × (nq + 1) initialisation vector βq = [0, 1, 0, · · · , 0]. The
transitions at level 0 are captured by Mq,0. Let sq = e − Fqe.

Fq =


0 p̄q 0 . . . 0
0 0 1 . . . 0
...
. . .

. . .
. . .

...
0 . . . 0 0 1
1 . . . 0 0 0


,Mq,0 =


1 0 0 . . . 0
0 0 1 . . . 0
...
. . .

. . .
. . .

...
0 . . . 0 0 1
1 0 . . . 0 0


.

(7)
As such, the matrices forming Pq have the following ex-

pressions: Aq,1 = asqβq + āFq, Aq,2 = āsqβq, Aq,0 = aFq,
Bq = āMq,0, Cq = aMq,0, and Eq = Aq,2. Before analysing the
steady state distribution, we check the conditions that ensure
stable queues. A stable queue needs to satisfy a departure
rate that is higher than the packet arrival rate [13]. The
stability check is hence conducted by studying the stationary
distribution vector πq of the matrix Aq = Aq,0 + Aq,1 + Aq,2.

Phase
ā a apq + āp̄q

L
e
v
e
l

0
P
a
c
k
e
t

1
P
a
c
k
e
t

2
P
a
c
k
e
t
s

āpq

Empty Buffer Duty-Cycling Transmittable

Fig. 1: DTMC of a LoRa node transmitting with SFq

πq is the unique solution of the equation πq = πqA with the
normalisation condition πqe = 1.
Lemma 1. For a data buffer to be stable, it needs to satisfy:
πqAq,2e > πqAq,0e where πq = (sqβq + Fq − I + eeT )−1e.

Proof. Follows from Solving the system of equations πq =

πqA and πqe = 1 by recalling [Lemma 1, [14]] and using
Aq,2, Aq,1, and Aq,0. □

We define the invariant probability vector with regard
to Pq as xq =

[
xq,0 . . . xq,i . . .

]
such that xq,i =[

xq,i,0 . . . xq,i,nq+1

]
, where xq,i,m is the probability of having

i packets in the buffer while being at phase m of the DTMC for
SFq. We obtain xq by solving the system of equations defined
by xq = xq Pq and the normalization condition xqe = 1.
Theorem 2. The steady state probabilities xq of a LoRa node
using SFq is given by:

xq,i =


xq,0Cq

(
I − Aq,1 − Rq Aq,2

)−1
× Eq

(
I − Bq

)−1
, if i = 0,

xq,0Cq

(
I − Aq,1 − Rq Aq,2

)−1
, if i = 1,

xq,1Ri−1
q , if i > 1,

(8)
with the normalisation condition xq,0e + xq,1

(
I − Rq

)−1
e = 1

being satisfied, and Rq is the MAM rate matrix expressed as:
Rq = aFq(I − asqβq − āFq − aFqeβq)−1. (9)

Proof. Following [13, section 5.8], we solve the following
system of equations:(

xq,0 xq,1

)
=

(
xq,0 xq,1

) (Bq Cq

Eq Aq,1 + Rq Aq,2

)
,

Using xq,i = xq,i−1Rq, the steady state probabilities of the upper
levels is deduced. Rq is the minimum non-negative solution
of the quadratic equation: Rq = Aq,0 + Rq Aq,1 + R2

q Aq,2. Since
Aq,2 is of rank 1 [13], Rq is explicitly obtained as in (9). □

Let φq = [φq,1, ....φq,(nq+1)] be the marginal distribution of the
phases with nonempty data buffers where φq,m, corresponds to
transmittable or DC states of SFq.
Corollary 1. The activity probability of SFq is given by δq =
φq,1, with φq a sub-stochastic vector written as:

φq =
∑
i≥1

xq,i = xq,1

(
I − Rq

)−1
. (10)
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Proof. When Lemma 2 is satisfied, Rq has a spectral radius
less than 1. Hence, the geometric series generated by Rq

converges and the proof follows. □

Remark 2. If Lemma 1 is not satisfied, the probability to have
empty buffer is nullified. Hence, φq = πq and δq = πq,1.
Remark 3. For the case q = 1, the Geo/PH/1 system in (6)
boils down to a Geo/Geo/1 with:

P1 =


ā a

āp1 ā p̄1 + ap1 ap̄1
āp1 ā p̄1 + ap1 ap̄1

. . .
. . .

. . .

 . (11)

If p1 > a, P1 is stable and x1 is given by:

x1,i =


p1−a

p1
, if i = 0,(

p̄1a
p1ā

)i x0
p̄1
, if i ≥ 1.

(12)

The activity probability is δ1 = x̄1,0.

C. Iterative Algorithm and KPIs

The coverage probability pq in (5) requires different δq
obtained from the DTMC steady state. On the other side, pq
is used in Fq. To resolve such interdependence, an iterative
solution detailed in Algorithm 1 is proposed.

The Pareto stability frontiers are characterised by the set of
parameters Sq = {{λL, γq, a} ∈ R2 × [0, 1],πqAq,2e > πqAq,0e}.
Operating within this region ensures a service rate higher than
the arrival rate and guarantees finite packet delays.

We denote Wq the duration of a randomly selected packet
from its generation to its successful delivery. For a stable
system, the average latency per SF (including the packet on
service) for Geo/PH/1 (Geo/Geo/ for q = 1) is obtained,
following the steps in [13, Ch.5.4, Ch.5.8], as:

E
[
Wq

]
=


aax0

(pq−a)2 +
1
pq
, for q = 1,

xq,1(I−Rq)−2e
a , for q > 1.

(13)

IV. Numerical Results

Monte Carlo simulations, with 104 iterations, are used to
validate pq by spatially averaging over the active nodes. We
consider a random, yet fixed instantiation of a LoRa network,
where SFs are assigned following an EIB scheme. In each
simulation step, channel gains are instantiated, packets arrive
following a geometric distribution, DC states are updated, and
transmissions occur whenever the device buffer is nonempty,
and its DC is satisfied. Unless otherwise stated, R = 1 km,
η = 3, Γ1 = [−20,−23,−26,−29,−32,−35] (dB), a = 0.02
(packets/slot), λL = 103/km2, P = 14 dBm, and NF= 6 dBm.

In Fig.2a, we plot the analytical and simulated coverage
probability of each SF versus different SINR thresholds. Fig.2a
shows the achieved reliability level of different SFs as the
capture threshold varies. The reliability is improved as the SF
decreases. To maintain stable buffers, higher SF needs lower
capture thresholds. A good agreement between analytical
(Lines) and simulation (Markers) is shown. Moreover, Fig.2a
compares the three assumptions of orthogonality as well as the
case of saturated buffer. We can clearly see that ignoring traffic
dynamics will lead to an aggressive interference scenario
making,hence, the coverage prediction pessimistic.

Algorithm 1: Computation of φq and pq∀q

Data: N, λL, Γ, a, ϵ
Initialisation: k = 0, xq,0 and φq s.t. xq,0e + φqe = 1∀q;
while max

q
{∥φ(k+1)

q − φ(k)
q ∥} ≥ ϵ do

for q in Q do
1. Evaluate pq following Eq.1 and using ∆(k+1);
2. Construct Fq and hence Aq using pq;
3. Obtain πq from Lemma 1 to check stability:
if Stable then

3.1 Calculate R(k+1)
q using (9);

3.2 Solve xq,0 and xq,1 using Theorem 2;

3.3 Compute φ(k+1)
q = xq,1

(
I − R(k+1)

q

)−1
;

else
3.4 Set xq,0 = 0 and φ(k+1)

q = πq

end
end
Increment k ;

end
Return Rq ← R(k+1)

q , φq ← φ
(k+1)
q ,∀q

Fig.2b represents the Pareto stability region for each SF. The
result clearly shows the compromise between the scalability
(number of deployed devices) and stability, i.e. going for
higher density requires a decrease in arrival rate to maintain
unsaturated buffers and consequently finite delay to deliver
packets. Even with lower sensitivities, higher SFs can drasti-
cally hinder the traffic load. Indeed, SFs> 10 fail to accom-
modate sensing applications with an arrival rate higher than
0.13 packets/slot, even for densities as low as 10 nodes/km2.
The rationale behind this is that higher SFs spend a longer
time in DC, leading to nodes vacating their buffers less often
and consequently compromising the stability of the network.

By examining Fig.2b, an aspect worth analysing is that
the maximal arrival rate stabilising the buffers for all the
SFs converges to the same value, that of the lowest SF. Two
main reasons come into play to explain this behaviour. First,
the threshold distribution Γ1 improves higher SFs’ capture
capabilities compared to γq = −21 dB. Second, as the density
increases, the interference effect becomes more prominent;
and although higher SFs transmit less often due to their
longer DC, their spatio-temporal intensity (i.e. interferers/time)
becomes comparable to that of lower SFs given the static
EIB SF allocation scheme. A valuable conclusion drawn from
the previousf analysis is that SF allocation is a determining
factor for LoRa scalability. As such, SF assignment strategies
that adapt to the nodes environment (i.e. channel conditions,
interference severity, etc...) merit future scalability study.

Fig.2b also illustrates the impact of different orthogonality
assumptions (perfect βq1,q2 = 0, and imperfect βq1,q2 = 1
∀{q1, q2}) on the stability frontiers. A proper orthogonality
quantification would extend the scalability limits allowing a
more accurate planning for massive LoRa networks. Indeed,
while the different assumptions leads to the same Per-SF
maximum arrival rate for densities < 20 nodes/km2, the dif-
ference between becomes more noteworthy for λ ∈ [102−104]
nodes/km2, a range that spans densities in practical deploy-
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Fig. 2: Coverage probability versus capture thresholds , Stability frontiers (λL, a) and Per-SF average latency

ment scenarios. For a traffic arrival rate of 10−3 packets/slot,
the maximum density is 2 × 104 nodes/km2 with imperfect-
orthogonality, instead of 105 nodes/km2 with βq1,q2 .

Fig.2c shows the impact of density and capture thresholds
on the latency. For SFs< 10, the average latency is resilient
to the increase in density and remains less than 3 slots
in all cases. The impact of higher density, implying more
mutual interference, is more notable on SF= 12, as latency
reaches 74 slots for λL = 103 nodes/km2. A γq ≥ −18
dB makes the buffers of devices with SF∈ {11, 12} overflow
leading to unbounded delays. As such, an SF∈ {11, 12} fails
to accommodate even best-effort delay-tolerant applications.
Increasing γq from −22 dB to −18 dB makes the latency of
SF= 10 jumps from 6 to 26 slots. Thus, a proper distribution
of the capture thresholds among the SFs would mitigate the
unfairness in terms of latency between them.

V. Conclusion

This paper proposes a joint scalability-stability analysis of
LoRa. The proposed model accounts for various random fac-
tors (channel, interference, etc.), includes key LoRa parameters
(imperfect-orthogonality, DC), and adopts a more accurate
quantification of imperfect-orthogonality. The stability fron-
tiers of each SF are analysed. The results show the compromise
between the network stability and scalability illustrated by the
limits of nodes’ density and per-device traffic rate that a LoRa
SF can accommodate. They also highlight the importance of
SF adaptation and capture thresholds distribution toward a
massive LoRa network and improved latency.
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Appendix A
Laplace Transform of I

During a generic time slot, we have:
LI{s} = Eϕ,G

[
e−s

∑
q∈Q

∑
x j∈Φ̃L,q\x0

Pα∥−ηβq0 ,qg j∥x j
]

(a)
= Eϕ

[ N∏
q=1

∏
x j∈Φ̃L,q\x0

1
1 + sPβq0,qα∥x j∥

−η

]
(b)
≈

N∏
q=1

[
Ex

∏
x j∈Φ̃L,q\x0

1
1 + sPβq0,qα∥x j∥

−η

]
(c)
=

N∏
q=1

e
−2πδqλL

∫ dq
dq−1

( sPβq0 ,qαr−η

1+sPβq0 ,qαr−η

)
rdr
, (14)

where (a) follows the moment generating function (MGF) of
the unit-mean exponential distribution with independence of
channel gains from the space and time (b) is an approximation
obtained using Fortuin–Kasteleyn–Ginibre (FKG) inequality,
(c) follows the probability generating function (PGFL) of Φ̃L.
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