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Abstract—This letter investigates the employment of vector-
perturbation (VP) precoding to convey simultaneously informa-
tion and energy in multiple-user multiple-input single-output
(MU-MISO) downlink channel. We show that the conventional
VP in addition to the information capacity benefits that provides
to linear channel inversion techniques, it enhances the harvested
energy at the receivers due to the extended symbol constellation.
To further boost harvesting performance, the proposed modified
VP technique (named VP-EH) designs the VP integer offsets in
order to maximize the delivered power. The proposed scheme
incorporates an integer least square problem to find the closest
lattice point to a point which is given by a Rayleigh quotient
optimization problem. Finally, a convex combination between
conventional VP and VP-EH is proposed to achieve a trade-
off between maximizing information or energy. Theoretical and
simulations results validate that VP is a promising technique
to simultaneously convey information and energy in MU-MISO
systems.

Index Terms—Vector perturbation, wireless power transfer,
SWIPT, sphere encoder, average harvested power.

I. INTRODUCTION

S
IMULTANEOUS wireless information and power transfer

(SWIPT) exploits the dual use of radio-frequency (RF)

signals to ensure communication and energy sustainability in

low power devices. Over the last few years, it has attracted

a tremendous attention from the academia/industry and its

potential benefits have been studied from different perspectives

and communication scenarios [1]. Specifically, a scenario of

high practical interest is the integration of SWIPT in multiuser

multiple-input single-output (MU-MISO) downlink systems,

where a multiantenna access point (AP) aims to transfer

simultaneously information/energy to single-antenna termi-

nals. Existing solutions consider linear precoding schemes

that mainly employ channel inversion at the transmitter side

(e.g., zero-forcing (ZF)) or non-linear information theoretic

approaches that refer to dirty-paper coding (DPC) and suffer

from a higher complexity [2].

A fundamental weakness of the linear channel inversion

techniques is that their associated MU-MISO capacity does

not scale as the number of antennas and users increase

simultaneously [3]. To overcome this limitation, non-linear

vector-perturbation (VP) techniques perturb the user data by

integer offsets and resolve capacity scaling through modulo
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operation at the receivers [4]. VP is based on lattice theory

and its encoding process is equivalent to determine the closest

lattice point to a given point; the associated searching refers

to sphere encoding and thus the complexity decreases in

comparison to DPC [5], [6]. Despite its efficiency, VP has been

overlooked in the literature mainly due to the higher complex-

ity in comparison to conventional channel inversion schemes.

However, recent advances in electronics/hardware significantly

reduce its implementation cost and VP becomes a promising

solution for the upcoming communication systems. On the

other hand, the perturbation of user data by integer offsets

increases the individual power of the transmitted symbols (i.e.,

the transmitted lattice point conveys more power than this one

in the original constellation) which in combination to the VP

power scaling factor enhance the total received power at the

terminals; this property is promising for SWIPT applications.

Motivated by the above observations, this is the first paper

that unlocks the potential benefits of VP in SWIPT MU-

MISO systems. We show that conventional VP increases the

harvested energy at the receivers and outperforms ZF in terms

of both information and energy transfer. In addition, a modified

VP scheme is proposed (named VP-EH), which designs the

integer offsets to further boost the energy harvesting (EH)

performance. Specifically, the proposed scheme adjusts the

VP offsets by determining the closest lattice point to the

solution of a Rayleigh quotient optimization problem aiming

to maximize EH. Theoretical results validate that VP-EH

outperforms conventional VP in terms of average EH while

exhibits asymptotically an exponential symbol error rate (SER)

decay. Finally, a SWIPT-based VP scheme is introduced which

elaborates a convex combination of the two extreme policies

(VP and VP-EH) to control the trade-off between maximizing

information transfer and/or maximizing EH.

II. SYSTEM MODEL

We consider an MU-MISO donwnlink setup consisting of

a single AP equipped with M antennas and K ≤ M single-

antenna users [4]. The received signals at the K users can

be represented by an equivalent multiple-input multiple-output

(MIMO) channel i.e.,

yyy =HHHxxx+nnn, (1)

where HHH ∈ CK×M is the channel matrix with elements

hk,m ∼ CN (0, 1) representing the flat frequency fading

channel between the m-th transmit antenna and the k-th user

[5], [6]; xxx is the transmit signal vector with ‖xxx‖2 = P , where

P is the transmitted power; nnn ∈ CK×1 ∼ CN (0, σ2IIIK) is the

additive white Gaussian noise (AWGN) vector. We assume

a perfect channel state information at the AP (appropriate

http://arxiv.org/abs/2208.14135v1
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training and feedback optimization ensure this assumption

[7]). To generate the transmitted signal, the AP employs

channel inversion precoding (ZF) with FFF = HHHH(HHHHHHH)−1.

In addition, according to the principles of VP, the AP perturbs

the user data uuu = [u1, · · · , uK ]T by an integer offset vector

τlll, where τ ∈ R+ and lll ∈ ZK + jZK ; uk ∈ B, where B
denotes the symbol constellation set. The transmitted signal

can be written as

xxx =

√

P

γ
FFF (uuu+ τlll), (2)

where γ = ‖FFF (uuu+ τlll)‖2 is the transmit power scaling factor.

By considering ZF precoding, the received signal vector is

given by

yyy =HHHxxx+ nnn =

√

P

γ
(uuu+ τlll) +nnn. (3)

Although practical SWIPT architectures split/orthogonalize

the resources to convey information and energy (e.g., power

splitting, time-switching) [1], here (for simplicity), we assume

an ideal SWIPT architecture that allows to extract informa-

tion/energy from the same signal without losses1. For the

information transfer, the received signal is multiplied by the

factor
√

γ/P to eliminate the effect of the transmit power

scaling and then is driven to a modulo τ operator to remove

the perturbation vector [3]. The received signal at the k-th

receiver is given by

yk =

√

γ

P
yk (mod τ) = uk + wk, (4)

where wk =
√

γ/Pnk is the equivalent AWGN component.

On the other hand, by using a linear energy harvesting model,

the total harvested power2 is given by

Q =
P‖uuu+ τlll‖2

γ
,

‖uuu′‖2
γ

. (5)

It is worth noting that the harvested power for the k-th user
is given by qk = |uk + τlk|2/γ. From (5), it can be seen that

VP has a double effect on the energy harvesting; it affects the

denominator through the transmit scaling factor as well as the

nominator through the VP integer offset.

A. Conventional VP precoding

The conventional VP scheme designs the perturbation vector

to minimize the transmit power scaling factor i.e.,

lll0 = arg min
lll′∈ZK+jZK

γ = arg min
lll′∈ZK+jZK

‖FFF (uuu+ τlll′)‖2

= arg min
lll′∈ZK+jZK

‖FFFuuu− (−FFFτlll′)‖2. (6)

The above formulation is an integer least square (ILS) problem

and is equivalent to finding the closest lattice point to a given

point. Although the ILS problem is NP-hard, sphere decoding3

(SD) is an efficient systematic search that can solve it in

1The extension of the proposed scheme to practical SWIPT architectures
is a straightforward extension.

2We assume a normalized transmission time and therefore the notions of
energy and power become equivalent and can used interchangeably.

3Since the SD is applied at the transmitter side, the process is well-known
as sphere encoder in the literature [4], [6].

polynomial time. It is worth noting that several algorithms

have been proposed in the literature to implement SD; in this

work, we adopt the well-known Schnorr-Euchner (SE) scheme

which is based on recursive tree searching without loss of

generality [6]. If zzz = FSE(L,yyy,AAA) denotes the SE algorithm

that solves the standard ILS problem i.e., argminx ‖yyy −AAAzzz‖
with dimension size L, the conventional VP scheme in (6) can

be represented as [6]

lll0 = FSE(K,FFFuuu,−FFFτ). (7)

III. A SWIPT-BASED VP PRECODING SCHEME

The conventional VP scheme has been designed for in-

formation transfer and achieves a performance close to the

Shannon capacity in MU-MISO downlink systems [3], [4]. In

SWIPT systems, although it significantly affects/boosts EH at

the receivers (see (5)), this aspect is not taken into account in

the design. In this section, we fill this gap and we investigate

a VP scheme that controls the delivered power at the users.

In the first step of the SWIPT-based VP scheme, we relax

the assumption that the AP transmits perturbated user data

(belonging in B) and investigate a normalized transmit vector

uuuEH that maximizes the total received power Q; for this case,

the transmitted signal becomes xxxEH =
√
PFFFuuuEH/‖FFFuuuEH‖.

More specifically, we introduce the following optimization

problem

uuuEH = arg max
uuu,‖uuu‖=1

‖uuu‖2
uuuHFFFHFFFuuu

= arg max
uuu,‖uuu‖=1

uuuHuuu

uuuH(HHHHHHH)−1uuuH

= arg min
uuu,‖uuu‖=1

uuuH(HHHHHHH)−1uuuH

uuuHuuu
. (8)

Since the matrix HHHHHHH is Hermitian and positive definite,

the formulation in (8) is a (standard) Rayleigh quotient [8];

if HHHHHHH = VVVΛΛΛVVV H is the eigenvalue decomposition of

the matrix HHHHHHH , where VVV = [vvv1, . . . , vvvK ] ∈ CK×K ,

VVV VVV H = VVV HVVV = IIIK and ΛΛΛ = diag(λ1, . . . , λK) with

λ1 ≥ λ2 ≥ . . . λK ≥ 0, the optimal solution of problem (8)

is uuuEH = vvv1 (i.e., the eigenvector corresponding to the largest

eigenvalue4) which gives Q = Pλ1 . We note that any scaled

version of the vector uuuEH i.e., cuuuEH with c ∈ C is a solution of

(8) without affecting the maximum value of the total harvested

power Q.

Although the vector cuuuEH maximizes the total received

power at the receivers, it does not take into account the fact

that the user data uuu are predefined and take values in the

symbol constellation set B. By using the degree of freedom

of the offset perturbation vector τlll, we perturb the user data

in such a way that the perturbed data (lattice point) are as

close as possible to cuuuEH; it is worth noting that the scaling

factor c offers an extra degree of freedom to minimize the

distance between these two points. This searching problem

can be formulated as a modified ILS and is given by

lllEH = arg min
lll′∈ZK+jZK ,c∈C

‖uuu+ τlll′ − cuuuEH‖2. (9)

4Since the matrix HHHHHHH is Hermitian and positive definite, its inverse
admits also similar characteristics; the minimum eigenvalue of the matrix
(HHHHHHH )−1 is the maximum eigenvalue of the matrix HHHHHHH .
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The problem in (9) can be solved in two steps. In the first

step, we compute c that minimizes (9) for a given perturbation

vector lll′ and then we solve a standard ILS problem by

using the conventional SE algorithm. Specifically, by denoting

ξ(lll′) = minc∈C ‖uuu+τlll′−cuuuEH‖2, the problem in (9) is written

as

lllEH = arg min
lll′∈ZK+jZK

ξ(lll′). (10)

Since ξ(lll)′ is an unconstrained scalar optimization problem,

the derivative of the objective function is equal to zero in the

optimal point. Therefore, we have

∂‖uuu+ τlll′ − cuuuEH‖2
∂c

= 0 ⇒ c =
(uuu+ τlll′)HuuuEH

‖uuuEH‖2
. (11)

Plugging (11) into (10) and after some manipulations, we have

lllEH = arg min
lll′∈ZK+jZK

‖ZZZuuu− (−ZZZτ)lll′‖

= FSE (K,ZZZuuu,−ZZZτ) , (12)

where ZZZ = IIIK − uuuEHuuu
H

EH

‖uuuEH‖2 = IIIK − uuuEHuuu
H
EH with ‖uuuEH‖2 = 1.

The above modified VP scheme (called VP-EH) maximizes the

delivered power but does not take into account the performance

of information transfer in the design process; on the other

hand, conventional VP has the opposite objective. Inspired by

these two extreme policies that focus either on the information

or the energy transfer, we provide a new VP scheme (called

VP-SWIPT) that achieves a trade-off between them. To control

this trade-off, we introduce the convex combination between

the two extreme lattice operation points i.e., δδδ(η) = FFF (uuu +
τlll0)η + FFF (uuu + τlllEH)(1 − η), where η ∈ [0, 1] is a design

parameter that represents a desired operation point at the linear

segment between the two extreme lattice points. Then, for a

specific value of η, we search for a lattice point that is the

closest to this operation point. Specifically, we consider the

following ILS problem which is solved through appropriate

parametrization of the SE algorithm

lllSW = arg min
lll′∈ZK+jZK

‖FFF (uuu+ τlll′)− δδδ(η)‖2

= arg min
lll′∈ZK+jZK

‖(FFFuuu− δδδ(η)) − (−FFFτ)lll′‖2

= FSE (K,FFFuuu− δδδ(η),−FFFτ) . (13)

It is worth noting that the values η = 0 and η = 1 correspond

to the VP and the VP-EH scheme, respectively.

IV. PERFORMANCE ANALYSIS

In this section, we study theoretically the performance of

the proposed VP-based schemes.

A. Conventional VP precoding

We study the conventional VP in terms of average harvested

power across both users and channel realizations. Due to

the complexity associated with the integer values of lll, we

investigate a tractable approximation/bound. Specifically, we

have

EVP = E(qk) = E

( |ũk|2
γ

)

≈ E(|ũk|2)
E(γ)

. (14)

Due to the symmetry between the real and the imaginary parts,

the nominator can be written as

E(|ũk|2) = E(|uk + τl0,k|2) =
∑

u′∈B

∑

l′∈Z+jZK

P(u′, l′)|u′ + τl′|2

≈ 2
∑

u′

r
∈ℜ(B)

l′
r
=1

∑

l′
r
=−1

P(u′
r, l

′
r)(u

′
r + τl′r)

2, (15)

where the notation R(·) denotes the real part of a variable or

set, u′
r = R(u′), l′r = R(l′), P(u′

r, l
′
r) is the joint distribution

of the variables u′
r (transmitted symbol - real part) and l′r

(associated integer perturbation offset - real part). We note

that the perturbation offset takes values in a small set i.e.,

{−1, 0, 1} and the joint distribution has an anti-symmetry

property; this observation has been discussed in [9] (through

numerical studies) and validated here as well (Section V, Table

I). On the other hand, by using the seminal result in [10], the

denominator is approximated by the following lower bound

E(γ) ≥ KΓ(K + 1)1/K

(K + 1)π
τ2 det(FFFHFFF )1/K

=
KΓ(K + 1)1/K

(K + 1)π
τ2 det(HHHHHHH)−1/K

=
KΓ(K + 1)1/K

(K + 1)π
τ2

K−1
∏

m=0

Γ(M − 1
K −m)

Γ(M −m)
, (16)

where Γ(·) denotes the gamma function. In the following

proposition, we compare (qualitative comparison) the VP

scheme with the conventional ZF scheme in terms of SWIPT;

it is worth noting that the information transfer performance of

the VP scheme is well known in the literature and therefore

is not further discussed [4].

Proposition 1. The VP precoding scheme outperforms con-

ventional ZF in terms of both information and power transfer.

Proof. See Appendix A.

B. VP-EH precoding

The EH performance of the VP-EH scheme approximates

the performance of the ideal scenario where the AP transmits

energy signals i.e., uuuEH (without the constraint of B). By

following the discussion in Section III, the harvested power

at the k-th user is written as

EEH ≈ PE(λ1)

K
=

P

K

∫ ∞

0

(1− Fλ(x))dx, (17)

where Fλ(x) is the cumulative distribution function (CDF) of

the maximum eigenvalue of a complex Wishart matrix, written

as [11, Sec. III.A]

Fλ(x) = φdet(AAA(x)), (18)

where the elements of the matrix AAA(x) and the constant φ are

given respectively by

Ai,j(x) =

∫ x

0

tM+K−i−j exp(−t)dt

= γ(M +K − i− j + 1, x), (19)

and
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Fig. 1. SER performance versus transmit power P ; M = K = 2, σ2 = 1,
η = 0.8, 4-QAM, τ = 4.

φ = 1/

K
∏

i=1

(M − i)!(K − i)!, (20)

where γ(s, x) =
∫ x

0 ts−1 exp(−t)dt in the lower incomplete

gamma function.

Then, we study the information transfer performance of the

VP-EH scheme. By using the approximation (uuu + τlllEH) ≈
cuuuEH, we have γ = ‖FFF (uuu + τlllEH)‖2 ≈ ‖cFFFuuuEH‖2 =
‖cFFFvvv1‖2 = |c|2vvvH1 VVVΛΛΛ−1VVV Hvvv1 = |c|2λK ; therefore, the

information transfer branch can be simplified to the following

equivalent channel model i.e.,

yk = uk + |c|
√

λK

P
nk, (21)

where λK is the minimum eigenvalue of the complex Wishart

matrix HHHHHHH . The equivalent channel in (21) can be used

to study the asymptotic behaviour (P → ∞) of the VP-EH

scheme as it is stated in following proposition.

Proposition 2. The outage probability of the EH-based VP

scheme is proportional to exp(−KP ) (exponential decay).

Since the conventional VP exhibits a diversity gain equal to

M , the VP-EH scheme outperforms conventional VP asymp-

tomatically in both information and energy transfer.

Proof. See Appendix B

It is worth noting that the above behaviour is observed in the

high signal-to-noise ratio (SNR) regime; the outage probability

decays exponentially with a rate of decay 1 − exp(−K).
For the low and intermediate SNRs (which is the regime of

practical interest), the conventional VP outperforms VP-EH in

terms of outage probability.

C. VP-SWIPT precoding

The VP-SWIPT scheme is a convex combination of the VP

and VP-EH schemes and therefore provides a performance

between them. The performance depends on the parameter η
(in a non-linear way) as well as the density of the lattice

(which provides the closest transmitted vector uuu + τlllSW);

numerical results in the next section demonstrate the non-

linear relationship of the VP-SWIPT with the VP/VP-EH

schemes.
V. NUMERICAL RESULTS & DISCUSSION

Our setting assumes M = K = 2, 4-QAM with τ = 4,

σ2 = 1, and η = 0.8. Table I shows the joint probability dis-

tribution of perturbation for the considered setup and validates

our discussion in (15).
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Fig. 1 depicts the average SER performance versus the

transmit power for the VP-based schemes considered; the ZF

scheme and the transmission of energy signals uuuEH are used

as performance benchmarks. The VP scheme provides the

best SER performance in the SNR regime of interest and

ensures full diversity in comparison to ZF scheme. On the

other hand, the VP-EH scheme follows an exponential decay

and outperforms ZF at high SNRs; the slopes of the curves

validate the asymptotic gain of the VP-EH scheme against

the conventional VP scheme (Proposition 2). It can be also

shown that the the VP-SWIPT scheme provides a performance

between VP and VP-EH schemes and approximates VP at

high SNRs. Fig. 2 compares the VP schemes in terms of

average harvested power. It can be observed that the VP-EH

scheme approximates the performance of the EH benchmark

(transmission of uuuEH) while providing a gain of 2.5 dB and

7 dB in comparison to VP and ZF schemes, respectively.

The VP-SWIPT provides a performance between the two

extreme policies, which is inline with the information transfer

observations in Fig. 1. Our curves validate also our theoretical

derivations in (14) and (17).

Fig. 3 focuses on the VP-SWIPT scheme and studies the

impact of the parameter η. It can be seen that VP-SWIPT

scheme provides an information/energy performance between

the two extreme policies (VP and VP-EH) by following a

non-linear dependency with η. Finally, Fig. 4 deals with the

EH performance for a setup with M = K = 4 and 16-

QAM; the observations follow the discussion of Fig. 2 but we

can observe a higher gain for the VP-EH mainly due to the

higher modulation (i.e., 4.5 dB against VP and 10 dB against

ZF). Our theoretical and simulation results validate that VP
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TABLE I
JOINT PROBABILITY DISTRIBUTION OF PERTURBATION

P(l0,k = x, uk = y); M = K = 2, 4-QAM.

uk

l0,k −1 0 +1

−1 0.0098 0.3972 0.0915

+1 0.0915 0.3972 0.0098

introduces a new degree of freedom to control information

and energy transfer and significantly outperforms conventional

linear counterparts; it is a powerful tool for SWIPT MU-MISO

systems. Other channel inversion schemes and/or channel

models can be considered for future work.

APPENDIX

A. Proof of Proposition 1

We note that VP is equivalent to ZF for the case where

lll = 000K (with 000K denoting the zero vector). The VP scheme

is based on the minimization of the power scaling factor γ
and therefore outperforms ZF in terms of information transfer

(i.e., sum-capacity, diversity etc); this has been proven in

several previous works [3], [4]. As for the power transfer,

the VP scheme achieves a harvested power Q which is larger

or equal to the ZF scheme. Specifically, the denominator in

(5) follows the discussion of the information transfer i.e.,

γVP ≤ γZF; for the nominator, we focus on the case with

a non-zero perturbation vector (lk 6= 0). By assuming a

N -QAM modulation with maximum and minimum absolute

values |cmax| and |cmin| respectively, a minimum distance in

the constellation ∆ and τ = 2|cmax| + ∆ (similar to [4, eq.

9]), we have

|uk + τlk| ≥ ||cmin| − τ | = |cmax|+
√
N

2
∆ > |cmax| (22)

⇒ ‖uuu+ τlll‖2 > ‖uuu‖2 ⇒ QVP =
‖uuu+ τlll‖2

γVP

> QZF =
‖uuu‖2
γZF

.

(23)

By considering all the possible values of lk ∈ Z + jZ, we

prove that E(QVP) ≥ E(QZF).

B. Proof of Proposition 2

We study the asymptotic performance of the EH-based VP

precoding scheme by using the outage probability metric.

Specifically, by using the equivalent channel in (21), the outage

probability can be written as

Pout = P(log2(1 + SNR) < r) = P

(

P

|c|2λK
< 2r − 1

)

= P

(

λK >
P

|c|2(2r − 1)

)

=φdet

(

BBB

(

P

|c|2(2r − 1)

))

,

(24)

where r is the requested spectral efficiency, the expression

in (24) is given in [11, Sec. III.A] and Bi,j(x) = Γ(M +
K− i− j+1, x) with Γ(s, x) =

∫∞

x ts−1 exp(−t)dt denoting

the upper incomplete gamma function. Since Γ(s, x) = (s −
1)! exp(−x)

∑s−1
m=0

xm

m! [12, 8.354.4] for s ∈ Z, we can write

Pout = φ
∑

κ∈p

sgn(κ)

K
∏

i=1

(M+K−i−κi)! exp

(

− P

|c|2(2r − 1)

)

×
M+K−i−κi

∑

m=0

1

m!

(

P

|c|2(2r − 1)

)m

.
= φ exp(−KP )

∑

κ∈p

sgn(κ)

K
∏

i=1

(M +K − i− κi)!

×
M+K−i−κi

∑

m=0

Pm

m!
∝ exp(−KP ), (25)

where p = {κ = (κ1, . . . , κK)} is the set of K! permutations

of (1, . . . ,K), sgn(κ) is the signature of the permutation κ,

and the notation
.
= denotes asymptotic expression when P →

∞. It is worth noting that |c|2 is a random variable; however,

we can show that is bounded and therefore is considered as a

constant asymptotically i.e., |c| = |(uuu + τlllEH)
HuuuEH| ≤ ‖u +

τlllEH‖‖uuuEH‖ = ‖uuu + τlllEH‖ ≤ ‖uuu‖ + τ‖lllEH‖ < ∞ since the

elements in uuu, lllEH are finite.
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