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Abstract—A general optimization framework is proposed for
simultaneously transmitting and reflecting reconfigurable intel-
ligent surfaces (STAR-RISs) with coupled phase shifts, which
converges to the Karush– Kuhn–Tucker (KKT) optimal solution
under some mild conditions. More particularly, the amplitude
and phase-shift coefficients of STAR-RISs are optimized alter-
nately in closed form. To demonstrate the effectiveness of the
proposed optimization framework, the throughput maximization
problem is considered in a case study. It is rigorously proved
that the KKT optimal solution is obtained. Numerical results
confirm the effectiveness of the proposed optimization framework
compared to baseline schemes.

Index Terms—Coupled phase shifts, Karush–Kuhn–Tucker
(KKT), simultaneous transmission and reflection (STAR).

I. INTRODUCTION

Recently, the novel concept of simultaneously transmitting

and reflecting reconfigurable intelligent surfaces (STAR-RISs)

has been proposed [1], [2]. In contrast to the conventional

reflecting-only RISs that require the transmitter and receiver

to be located on the same side [3], STAR-RISs can transmit

and reflect the incident signals to both sides, thus enabling a

full-space smart radio environment.

Due to this unique benefit, STAR-RISs have attracted signif-

icant attention. However, most of the existing works on STAR-

RISs assumed that the phase shifts of the transmission and

reflection coefficients can be independently adjusted, which

requires complex RIS hardware. Recently, the authors of [4]

have shown that for low-cost passive lossless STAR-RISs,

the phase-shift coefficients for transmission and reflection

are coupled with each other, which introduces new design

challenges. To tackle the coupled phase shifts, an element-

wise optimization algorithm was proposed in [5] for a system

comprising a single-antenna transmitter and two users. For

the weighted-sum-rate-maximization problem, an alternating

optimization (AO) algorithm, which exhaustively searches sets

of discrete amplitudes and phase shifts, and thus entails high

complexity, was proposed in [6]. Noteworthy, for the afore-

mentioned algorithms, the optimality of the obtained solution

cannot be guaranteed. This motivates us to propose a general
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optimization framework with provable optimality for STAR-

RISs with coupled phase shifts.

In this article, we propose a general penalty-based opti-

mization framework for STAR-RISs with coupled phase shifts,

where the amplitude and phase-shift coefficients of the STAR-

RISs are alternately updated in closed form exploiting the

existing penalty dual decomposition (PDD) framework [7]. We

prove that the Karush–Kuhn–Tucker (KKT) optimal solution

is obtained under some mild conditions. Next, as a case study,

we consider throughput maximization in STAR-RIS-aided

wireless communication systems to verify the effectiveness of

the proposed algorithm. Our numerical results reveal that the

throughput achieved with coupled phase-shift STAR-RISs is

close to that of more complex independent phase-shift STAR-

RISs.

II. A COUPLED PHASE-SHIFT MODEL FOR STAR-RISS

Let sn denote the incident signal for the n-th element

of the considered N -element STAR-RIS, where n ∈ N =
{1, ..., N}. Then, the corresponding transmitted signal tn and

reflected signal rn are given by tn = βt,ne
jφt,nsn and

rn = βr,ne
jφr,nsn, respectively, where βt,n ∈ [0, 1] and

βr,n ∈ [0, 1] denote the real-valued transmission and reflection

amplitudes, and φt,n ∈ [0, 2π) and φr,n ∈ [0, 2π) denote

the corresponding phase shifts [1]. In practice, the values

of the amplitudes and phase shifts are determined by the

corresponding electric and magnetic impedances of the STAR-

RIS. According to the analysis in [4], passive lossless STAR-

RISs have to meet the following two constraints:

β2
t,n + β2

r,n = 1, (1a)

cos(φt,n − φr,n) = 0. (1b)

Specifically, the first constraint stems from the law of en-

ergy conservation, and the second constraint referred to as

the coupled phase-shift constraint is due to the zero-valued

real part of the electric and magnetic impedances of the

passive STAR-RIS elements. Note that the coupled phase-

shift constraint is a non-convex nonlinear equality constraint

implying that the absolute phase-shift difference |φt,n − φr,n|
can only assume values π

2 and 3π
2 . Using existing methods,

it is challenging to transform (1b) into a convex form. To

overcome this obstacle, in the following section, a general

optimization framework is proposed to handle the coupled

phase-shift constraint efficiently.

http://arxiv.org/abs/2208.01942v2
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III. A GENERAL OPTIMIZATION FRAMEWORK FOR

STAR-RISS WITH COUPLED PHASE SHIFTS

Consider the following optimization problem:

min
x∈X ,θt,θr

F (x, θt, θr) (2a)

s.t. β2
t,n + β2

r,n = 1, ∀n ∈ N , (2b)

cos(φt,n − φr,n) = 0, ∀n ∈ N , (2c)

where X denotes the convex feasible set of optimization

variable x, vector θi = [βi,1e
jφi,1 , . . . , βi,Ne

jφi,N ]T , ∀i ∈
{t, r}, contains the transmission and reflection coefficients,

and F (x, θt, θr) is the convex objective function or the

convex approximation of the original objective function for

the specific problem considered. Depending on the application

scenario, F (·) can be some utility function such as trans-

mit power, weighted sum-rate, harvested energy, and sensing

accuracy, and x can represent the transmit waveforms or

resource allocation variables. Note that in the above problem,

the constraints βt,n ∈ [0, 1] and βr,n ∈ [0, 1] are omitted

without changing the optimal objective value. This is because

for any optimal solution (β⋆i,n, φ
⋆
i,n), ∀i ∈ {t, r}, of problem

(2) with β⋆i,n ∈ [−1, 0], it can be verified that (−β⋆i,n, φ⋆i,n+π)
is also a feasible solution achieving the same objective value.

In problem (2), the non-convexity is caused by non-

convex STAR-RIS constraints (2b) and (2c). To tackle

this challenge, we define the auxiliary variables θ̃i =
[β̃i,1e

jφ̃i,1 , . . . , β̃i,Ne
jφ̃i,N ]T , ∀i ∈ {t, r}, such that θ̃i =

θi, ∀i ∈ {t, r}. Then, problem (2) can be rewritten as:

min
x∈X ,θt,θr,θ̃t,θ̃r

F (x, θt, θr) (3a)

s.t. θ̃t = θt, θ̃r = θr, (3b)

β̃2
t,n + β̃2

r,n = 1, ∀n ∈ N , (3c)

cos(φ̃t,n − φ̃r,n) = 0, ∀n ∈ N . (3d)

In the above problem, there are no constraints imposed on

θt and θr, except for equality constraint (3b). To handle

this equality constraint, we exploit the PDD framework [7],

where the original problem is converted to the corresponding

augmented Lagrangian (AL) problem by moving the equality

constraints as a penalty term to the objective function. The AL

problem corresponding to (3) is given by

min
x∈X ,θt,θr,
θ̃t,θ̃r

F (x, θt, θr) +
1

2ρ

∑

i∈{t,r}

‖θ̃i − θi + ρλi‖2 (4a)

s.t. (3c), (3d), (4b)

where ρ > 0 denotes the penalty factor penalizing the violation

of constraint (3b) and λi, ∀i ∈ {t, r}, denotes the Lagrangian

dual variables. As can be observed, when ρ → 0, then the

penalty term will be forced to zero, i.e., equality constraint

(3b) is enforced. It has been proved that updating the primal

and dual variables as well as the penalty factor in an alternating

manner, a KKT optimal solution can be obtained via PDD un-

der some mild conditions, such as the Robinson’s condition or

the Mangasarian-Fromovitz constraint qualification (MFCQ)

condition [7]. Thus, in the following, we focus on solving

problem (4) by invoking the block successive upper-bound

minimization (BSUM) or block coordinate descent (BCD)

methods1, where we divide the optimization variables into two

blocks, namely {x, θt, θr} and {θ̃t, θ̃r}.

1) Subproblem with respect to {x, θt, θr}: Note that intro-

ducing the penalty term has no influence on the convexity of

the objective function. Thus, the subproblem with respect to

{x, θt, θr} is convex and given by

min
x∈X ,θt,θr

F (x, θt, θr) +
1

2ρ

∑

i∈{t,r}

‖θ̃i − θi + ρλi‖2. (5)

As a consequence, the optimal solution to the above problem

can be efficiently obtained.

2) Subproblem with respect to {θ̃t, θ̃r}: Since variables

{θ̃t, θ̃r} only appear in the constraints and in the penalty term

of the objective function, the resulting problem is given by

min
θ̃t,θ̃r

∑

i∈{t,r}

‖θ̃i + ϑi‖2 (6a)

s.t. β̃2
t,n + β̃2

r,n = 1, ∀n ∈ N , (6b)

cos(φ̃t,n − φ̃r,n) = 0, ∀n ∈ N , (6c)

where ϑi = −θi + ρλi, ∀i ∈ {t, r}. Although the constraints

of the above optimization problem are non-convex, we show

that a high-quality solution to this problem can be obtained

with low complexity by alternately optimizing the amplitudes

and phase shifts. Firstly, the objective function of problem (6)

can be reformulated as follows:
∑

i∈{t,r}

‖θ̃i + ϑi‖2 =
∑

i∈{t,r}

(θ̃
H

i θ̃i + ϑ
H
i ϑi + 2Re(ϑHi θ̃i))

=
∑

i∈{t,r}

∑

n∈N

β̃2
i,n +

∑

i∈{t,r}

ϑHi ϑi +
∑

i∈{t,r}

2Re(ϑHi θ̃i)

(a)
=N +

∑

i∈{t,r}

ϑHi ϑi +
∑

i∈{t,r}

2Re(ϑHi θ̃i), (7)

where (a) is due to constraint β̃2
t,n+ β̃

2
r,n = 1. In the objective

function, only the term
∑

i∈{t,r} 2Re(ϑ
H
i θ̃i) involves the op-

timization variables, while the other terms are constants. Then,

we decompose θ̃i to amplitude vector β̃i = [β̃i,1, . . . , β̃i,N ]T

and phase-shift vector ψ̃i = [ejφ̃i,1 , . . . , ejφ̃i,N ]T , i.e.,

θ̃i = diag(β̃i)ψ̃i = diag(ψ̃i)β̃i, ∀i ∈ {t, r}. (8)

Consequently, problem (6) can be rewritten as follows:

min
β̃t,ψ̃t,β̃r,ψ̃r

∑

i∈{t,r}

Re(ϑidiag(β̃i)ψ̃i) (9a)

s.t. β̃2
t,n + β̃2

r,n = 1, 0 ≤ β̃t,n, β̃r,n ≤ 1, ∀n ∈ N , (9b)

cos(φ̃t,n − φ̃r,n) = 0, ∀n ∈ N . (9c)

Here, we introduce the constraint 0 ≤ β̃t,n, β̃r,n ≤ 1 back

to ensure that all the phase shifts are collected in φ̃t,n and

φ̃t,n during the following optimization process, which does

not affect the optimal objective value based on the previous

analysis. To solve the above optimization problem, we intro-

duce the following two propositions.

1For BSUM, a locally tight upper bound of the original objective function
is optimized in each block. BSUM reduces to BCD when the upper bound is
replaced by the original objective function itself [8].
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Algorithm 1 BSUM/BCD algorithm for solving problem (4).

1: Initialize the optimization variables

2: repeat

3: update {x, θt, θr} by solving problem (5)

4: update {ψ̃t, ψ̃r} by (10)

5: update {β̃t, β̃r} by (12)

6: until convergence

Proposition 1. (Closed-form optimal solution for phase

shifts for given amplitudes) Define ϑ̃i = diag(β̃
H

i )ϑi =
[ϑ̃i,1, . . . , ϑ̃i,N ]T , ϕ+

n = ϑ̃∗t,n+ jϑ̃∗r,n, and ϕ−
n = ϑ̃∗t,n− jϑ̃∗r,n.

Then, for any given β̃t and β̃r, the optimal solutions for the

elements of ψ̃t and ψ̃r are given by

(ψ̃⋆t,n, ψ̃
⋆
r,n) = argmin

(ψ̃t,n,ψ̃r,n)∈χnψ

Re(ϑ̃∗t,nψ̃t,n)+Re(ϑ̃∗r,nψ̃r,n), (10)

where χnψ denotes a set of a pair of closed-form solutions:

χnψ =
{

(ej(π−∠ϕ+
n ), ej(

3
2
π−∠ϕ+

n )), (ej(π−∠ϕ−

n ), ej(
1
2
π−∠ϕ−

n ))
}

.

(11)

Proof. Please refer to Appendix A. �

Proposition 2. (Closed-form optimal solution for ampli-

tudes for given phase shifts) Define ϑ̆i = diag(ψ̃
H

i )ϑi =
[ϑ̆i,1, . . . , ϑ̆i,N ]T , an = |ϑ̆∗t | cos(∠ϑ̆∗t ), bn = |ϑ̆∗r | sin(∠ϑ̆∗r),
ξn = sgn(bn) arccos(

an√
a2n+b

2
n

). Then, for any given ψ̃t and

ψ̃r, the optimal solutions for the elements of β̃t and β̃r are

given by

β̃⋆t,n = sinωn, β̃⋆r,n = cosωn, (12)

where

ωn =







− 1
2π − ξn, if ξn ∈ [−π,− 1

2π),
0, if ξn ∈ [− 1

2π,
1
4π),

1
2π, otherwise.

(13)

Proof. Please refer to Appendix B. �

According to Propositions 1 and 2, we can further divide

block {θ̃t, θ̃r} into two sub-blocks, namely {ψ̃t, ψ̃r} and

{β̃t, β̃r}. Then, the overall BSUM/BCD algorithm to solve

problem (4) is summarized in Algorithm 1. Since the op-

timal solution is obtained in each step, the convergence of

Algorithm 1 is guaranteed [9]. The complexities of updating

{ψ̃t, ψ̃r} and {β̃t, β̃r} are O(4N) and O(2N), respectively,

where O(·) is the big-O notation. Moreover, the complexity

of updating {x, θt, θr} is determined by the exact form of

problem (5) and the methods used to solve it.

IV. CASE STUDY AND NUMERICAL RESULTS

To verify the effectiveness of the proposed general optimiza-

tion framework, in this section, we use a case study, where we

maximize the throughput in a narrowband STAR-RIS-aided

communication system.

A. System Model and Problem Formulation

Consider an M -antenna base station (BS), an N -element

STAR-RIS, and K single-antenna users, whose indices are

collected in K. Without loss of generality, we assume that the

users in subset Kt = {1, . . . ,K0} are located on the trans-

mission side, and the users in subset Kr = {K0 + 1, . . . ,K}
are located on the reflection side. The direct BS-user channels

are assumed to be blocked. Thus, the received signal at user

k, ∀k ∈ Ki, ∀i ∈ {t, r}, is given by

yk = h
H
k ΘiG

∑

ℓ∈K

wℓsℓ + nk, (14)

where hk ∈ C
N×1 denotes the STAR-RIS-user-k channel,

G ∈ CM×N denotes the BS-STAR-RIS channel, Θi =
diag(θi) denotes the transmission/reflection coefficients of the

STAR-RIS, wℓ ∈ CM×1 denotes the active beamforming

vector at the BS for delivering information symbol sℓ ∈ C to

user ℓ, and nk ∼ CN (0, σ2
k) denotes complex Gaussian noise

with power σ2
k . Then, the signal-to-interference-plus-noise

ratio (SINR) for decoding sk at user k, ∀k ∈ Ki, ∀i ∈ {t, r},
is given by

γk =
|hHk ΘiGwk|2

∑

ℓ∈K\k |hHk ΘiGwℓ|2 + σ2
k

. (15)

The corresponding achievable rate is Rk = log2(1 + γk).

We aim to maximize the throughput of the considered

STAR-RIS-aided system subject to a transmit power constraint

and coupled STAR-RIS phase-shift and amplitude constraints.

The corresponding optimization problem can be formulated as

follows:

max
W,θt,θr

∑

k∈K

Rk (16a)

s.t. tr(WW
H) ≤ Pt, (16b)

β2
t,n + β2

r,n = 1, ∀n ∈ N , (16c)

cos(φt,n − φr,n) = 0, ∀n ∈ N , (16d)

where W = [w1, . . . ,wK ] and Pt denotes the BS transmit

power. We note that existing methods for solving throughput-

maximization problems cannot be directly applied to problem

(16) due to the coupled STAR-RIS phase-shift and ampli-

tude constraints. In the following section, we show that the

proposed general optimization framework can be used to

effectively solve problem (16).

B. Solution to Problem (16) using the Proposed Framework

Note that the objective function of problem (16) is non-

convex with respect to {W, θt, θr}. In order to employ

the proposed optimization framework, we first transform the

throughput maximization problem into an equivalent weighted

mean square error (MSE) minimization problem applying the

well-known weighted minimum mean square error (WMMSE)

method [10] as follows:

max
̟,υ,W,θt,θr

∑

k∈K

̟kek (17a)

s.t. (16b) − (16d). (17b)
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Here, ̟ = [̟1, . . . , ̟K ]T denotes the vector of weights, and

ek, ∀k ∈ Ki, ∀i ∈ {t, r}, denotes the MSE as follows:

ek =|υk|2
(

∑

ℓ∈K

|θTi diag(hHk )Gwℓ|2 + σ2
k

)

− 2Re{υ∗kθTi diag(hHk )Gwk}+ 1, (18)

where υ = [υ1, . . . , υK ]T are auxiliary variables. According

to [10], it can be proved that if {̟,υ,W, θt, θr} is a

KKT optimal solution to problem (17), {W, θt, θr} is also

a KKT optimal solution to problem (16). In problem (17),

the objective function is block-wise convex with respect to

{̟,υ}, W, and {θt, θr}. Moreover, the feasible sets of

{̟,υ} and W are also convex. Thus, we have transformed

the throughput maximization problem into the canonical

form of problem (2), where the corresponding optimization

variables, feasible set, and objective function are given by

x = {̟,υ,W}, X =
{

(̟,υ,W)|tr(WW
H) ≤ Pt

}

, and

F (x, θt, θr) =
∑

k∈K̟kek, respectively. Therefore, we can

employ the proposed framework to solve problem (16).

By defining θ̃t = θt and θ̃r = θr, problem (17) can be

equivalently reformulated as follows:

min
̟,υ,W,θt,θr

θ̃t,θ̃r

∑

k∈K

̟kek (19a)

s.t. θ̃t = θt, θ̃r = θr (19b)

tr(WW
H) ≤ Pt, (19c)

β̃2
t,n + β̃2

r,n = 1, ∀n ∈ N , (19d)

cos(φ̃t,n − φ̃r,n) = 0, ∀n ∈ N . (19e)

By moving equality constraint (19b) via a penalty term to the

objective function, the following problem is obtained:

min
̟,υ,W,θt,θr

θ̃t,θ̃r

∑

k∈K

̟kek +
1

2ρ

∑

i∈{t,r}

‖θ̃i − θi + ρλi‖2 (20a)

s.t. (19c) − (19e). (20b)

Then, the above problem can be solved via BCD by alternately

optimizing the blocks {̟,υ}, W, {θt, θr}, {ψ̃t, ψ̃r}, and

{β̃t, β̃r}.

1) Subproblem with respect to {̟,υ}: The optimal ̟k

and υk, ∀k ∈ Ki, ∀i ∈ {t, r}, of this subproblem are given by

[10]

̟k = 1 + γk, (21)

υk =
θTi diag(h

H
k )Gwk

∑

ℓ∈K |θTi diag(hHk )Gwℓ|2 + σ2
k

. (22)

2) Subproblems with respect to W and {θt, θr}: Note that

the objective function of (19) is convex with respect to W

and {θt, θr}, respectively. Thus, the corresponding optimal

solution can be efficiently obtained using existing optimization

toolboxes, such as CVX [11].

3) Subproblems with respect to {ψ̃t, ψ̃r} and {β̃t, β̃r}:

The optimal {ψ̃t, ψ̃r} and {β̃t, β̃r} can directly obtained

based on Propositions 1 and 2.

Finally, the dual variables {λt,λr} and penalty factor ρ can

be updated following the PDD framework. As a consequence,

the overall algorithm for solving problem (19) is summarized

Algorithm 2 PDD-based algorithm for solving problem (19).

1: Initialize the optimization variables, and 0 < c < 1
2: repeat

3: repeat

4: update {̟,υ} by (21) and (22)

5: update W by solving (20) for W

6: update {θt, θr} by solving (20) for {θt, θr}
7: update {ψ̃t, ψ̃r} by (10)

8: update {β̃t, β̃r} by (12)

9: until convergence

10: if δ ≤ η then set λi = λi +
1
ρ
(θ̃i − θi), ∀i ∈ {t, r}

11: else set ρ = cρ

12: end if

13: set η = 0.9δ
14: until δ falls below a predefined threshold

in Algorithm 2, where δ = max{‖θ̃t − θt‖∞, ‖θ̃r − θr‖∞}
denotes the constraint violation function. If the MFCQ condi-

tion is satisfied, the PDD framework can obtain a KKT optimal

solution to problem (19), c.f. [7]. Thus, we show that the

MFCQ condition indeed holds for problem (19).

Proposition 3. MFCQ holds for problem (19) at any feasible

point {W, θt, θr} with W 6= 0.

Proof. Please refer to Appendix C. �

According to Proposition 3, we can conclude that a KKT

optimal solution to problem (19) can be obtained with Algo-

rithm 2, which is also a KKT optimal solution to the original

problem (16).

Remark 1. This case study reveals that once the original

problem is transformed into a form for which 1) the objective

function is convex or block-wise convex, and 2) the feasible

set is convex or block-wise convex except for constraints (2b)

and (2c), the proposed optimization framework can be directly

used. Typically, such a transformation can be achieved by ex-

isting methods such as WMMSE, majorization-minimization,

and successive convex optimization (SCA). In most cases, if

the transformed problem satisfies the mild MFCQ condition,

the KKT optimal solution can be obtained when PDD is em-

ployed to update the dual variables and the penalty factor in the

proposed framework [7]. Otherwise, at least the convergence

of the proposed framework can be guaranteed.

C. Numerical Results

In this section, simulation results are provided to verify the

effectiveness of the proposed optimization framework. Here,

we assume that the BS with M = 8 antennas is 50 meters,

under an angle of 20◦, away from the STAR-RIS. The users

are located on half-circles centered at the STAR-RIS with a

radius of 3 meters. We also assume that half of the users are

located on the transmission side and the rest are located on

the reflection side. The channels are modeled as Rician fading

channels with a Rician factor of 3 dB and a path loss exponent

of 2.2. The path loss at the reference distance of 1 meter is set
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to 30 dB. The transmit power of the BS and the noise power

at the users are set to 20 dBm and −110 dBm, respectively.

In Fig. 1, we first study the convergence of the proposed

Algorithm 2 for N = 20. As can be seen from Fig. 1(a),

the throughput rapidly converges to a stationary value for

all considered values of K . Moreover, Fig. 1(b) shows the

absolute phase-shift difference |φt,n−φr,n| for all 20 elements.

As can be observed, the phase-shift differences converge to π
2

or 3π
2 , i.e., cos(φt,n − φr,n) = 0.

Next, we consider the following benchmark schemes for

performance comparison. 1) STAR-RIS, Coupled, AO [6]:

In this scheme, AO is exploited, where the coefficients of

one side are optimized subject to the coupled phase-shift con-

straints by fixing the coefficients of the other side. 2) STAR-

RIS, PS-PSC, T [4]: This refers to the heuristic primary-

secondary phase-shift configuration (PS-PSC) scheme, where

the transmission side is primary for STAR-RIS. The STAR-

RIS coefficients are obtained by fixing the optimal transmis-

sion coefficients and adjusting reflection coefficients such that

the coupled phase-shift constraints are satisfied. 3) STAR-RIS,

PS-PSC, R [4]: This scheme is similar to the previous scheme,

but the reflection side is primary. 4) STAR-RIS, Independent

[2]: In this scheme, the phase shift coefficients of the STAR-

RIS can be independently adjusted. 5) Conventional RIS

[3]: In this scheme, there are two N
2 -element reflect-only and

transmit-only RISs deployed adjacent to each other.

In Fig. 2, we show the throughput versus the number of

elements N for different STAR-RIS optimization schemes

when K = 6. The results are obtained by averaging over 100
random channel realizations. As can be observed, the proposed

PDD-based optimization framework significantly outperforms

the AO-based algorithm and the heuristic PS-PSC schemes for

coupled phase-shift STAR-RISs. Moreover, Fig. 2 also reveals

that the coupled phase-shift model achieves almost the same

performance as the independent one and achieves a significant

performance gain over the conventional RIS.

V. CONCLUSIONS

We proposed a general optimization framework for STAR-

RISs with coupled phase shifts, which gives the provable

optimal solution under some mild conditions. Then, as a case

study, we investigated throughput maximization based on the

proposed optimization framework, where the KKT optimal

solution was obtained. Our numerical results confirmed the

effectiveness of the proposed optimization method. The pro-

posed framework can be extended to STAR-RIS design in

various network architectures.

APPENDIX A: PROOF OF PROPOSITION 1

For any given β̃t and β̃r, problem (9) can be decomposed

into a series of independent optimization problems for each

pair of (ψ̃t,n, ψ̃r,n), which leads to

min
ψ̃t,n,ψ̃r,n

Re(ϑ̃∗t,nψ̃t,n) + Re(ϑ̃∗r,nψ̃r,n) (23a)

s.t. cos(φ̃t,n − φ̃r,n) = 0, (23b)

|ψ̃t,n| = 1, |ψ̃r,n| = 1. (23c)

Note that the coupled phase-shift constraint (23b) can be

rewritten as |φ̃t,n − φ̃r,n| = π
2 or 3π

2 , which is equivalent to

ψ̃r,n = jψ̃t,n or ψ̃r,n = −jψ̃t,n. (24)

Substituting the above constraint into the objective

function, problem (23) can be further simplified as

min|ψ̃t,n|=1 Re
(

(ϑ̃∗t,n ± jϑ̃∗r,n)ψ̃t,n

)

, the optimal solution to

which can be readily obtained as follows:

ψ̃t,n = ej(π−∠(ϑ̃∗

t,n±jϑ̃
∗

r,n)). (25)

Comparing the objective values for the above two solutions,

the optimal solution to problem (23) can be obtained, which

completes the proof.

APPENDIX B: PROOF OF PROPOSITION 2

For any given ψ̃t and ψ̃r, problem (9) can be decomposed

into a series of independent optimization problems for each

pair of (β̃t,n, β̃r,n), which leads to

min
β̃t,n,β̃r,n

Re(ϑ̆∗t,nβ̃t,n) + Re(ϑ̆∗r,nβ̃r,n) (26a)

s.t. β̃2
t,n + β̃2

r,n = 1, 0 ≤ β̃t,n, β̃r,n ≤ 1. (26b)
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Since β̃i,n is real-valued, we simplify the objective function

as follows: anβ̃t,n + bnβ̃r,n, where an = |ϑ̆∗t,n| cos(∠ϑ̆∗t,n)
and bn = |ϑ̆∗r,n| cos(∠ϑ̆∗r,n). To solve the simplified problem,

polar coordinates are used, where we set β̃t,n = sinωn and

β̃r,n = cosωn with ωn ∈ [0, 12π]. Hence, constraint (26b)

is automatically satisfied. Based on this transformation, the

objective function can be rewritten as

an sinωn + bn cosωn

=
√

a2n + b2n (cos ξn sinωn + sin ξn cosωn)

=
√

a2n + b2n sin(ωn + ξn), (27)

where cos ξn = an√
a2n+b

2
n

and sin ξn = bn√
a2n+b

2
n

. Then, the

optimal solution in (13) for minimizing sin(ωn + ξn) with

respect to ωn ∈ [0, 12π] can be readily obtained, which

completes the proof.

APPENDIX C: PROOF OF PROPOSITION 3

In this appendix, we show that the MFCQ condition [8, Ap-

pendix C] is satisfied by problem (19). Note that for problem

(19), optimizing θ̃i is equivalent to optimizing its amplitudes

β̃i = [β̃i,1, . . . , β̃i,N ] and phase shifts φ̃i = [φ̃1, . . . , φ̃N ].
Thus, all equality constants in problem (19) can be written as

µ1 = β̃t ◦ β̃t + β̃r ◦ β̃r − 1 = 0, (28a)
µ2 = cos(φ̃t − φ̃r) = 0, (28b)

µ3 = β̃t ◦ ejφ̃t − θt = 0, (28c)

µ4 = β̃r ◦ ejφ̃r − θr = 0, (28d)

where ◦ denotes the element-wise product, 1 is the all-ones

vector, and 0 is the all-zeros vector. First, we show that the

gradients of {µi}4i=1 with respect to the vector of variables

ω =
[

β̃
T

t , β̃
T

r , φ̃
T

t , φ̃
T

r , θ
T
t , θ

T
t

]T

are linearly independent. It

can be observed that since only µ4 contains variable θr, the

gradients of {µi}4i=1 are linearly independent if and only if

those of {µi}3i=1 are linearly independent. Similarly, since

only µ3 contains variable θt, the gradients of {µi}3i=1 are

linearly independent if and only if those of {µi}2i=1 are

linearly independent. Furthermore, the gradients of {µi}2i=1

are linearly independent since µ2 does not contain β̃t and β̃r
but µ1 does. As a consequence, the gradients of {µi}4i=1 must

be linearly independent. Then, according to the definition of

MFCQ [8, Appendix C], we are left to show that there exists

a matrix DW and a vector dω , such that

Re{tr(WD
H
W)} < 0, (29a)

∇µidω = 0, ∀i ∈ {1, 2, 3, 4}, (29b)

where ∇µi denotes the Jacobian matrix of µi with respect

to ω. It can be readily proved that the above equations are

satisfied by setting DW = −W and dω = 0, which completes

the proof.

REFERENCES

[1] Y. Liu et al., “STAR: Simultaneous transmission and reflection for
360° coverage by intelligent surfaces,” IEEE Trans. Wireless Commun.,
vol. 28, no. 6, pp. 102–109, Dec. 2021.

[2] X. Mu et al., “Simultaneously transmitting and reflecting (STAR)
RIS aided wireless communications,” IEEE Trans. Wireless Commun.,
vol. 21, no. 5, pp. 3083–3098, May 2022.

[3] C. Huang et al., “Reconfigurable intelligent surfaces for energy effi-
ciency in wireless communication,” IEEE Trans. Wireless Commun.,
vol. 18, no. 8, pp. 4157–4170, Aug. 2019.

[4] J. Xu et al., “STAR-RISs: A correlated T&R phase-shift model and
practical phase-shift configuration strategies,” IEEE J. Sel. Topics Signal

Process., vol. 16, no. 5, pp. 1097–1111, Aug. 2022.
[5] Y. Liu et al., “Simultaneously transmitting and reflecting (STAR)-RISs:

A coupled phase-shift model,” in Proc. IEEE Int. Conf. Commun. (ICC),
May 2022, pp. 2840–2845.

[6] H. Niu and X. Liang, “Weighted sum-rate maximization for STAR-RISs-
aided networks with coupled phase-shifters,” IEEE Syst. J., early access,
Apr. 2022, doi:10.1109/JSYST.2022.3159551.

[7] Q. Shi and M. Hong, “Penalty dual decomposition method for non-
smooth nonconvex optimization—part I: Algorithms and convergence
analysis,” IEEE Trans. Signal Process., vol. 68, pp. 4108–4122, Jun.
2020.

[8] Q. Shi et al., “Penalty dual decomposition method for nonsmooth
nonconvex optimization—part II: Applications,” IEEE Trans. Signal

Process., vol. 68, pp. 4242–4257, Jun. 2020.
[9] M. Razaviyayn, M. Hong, and Z.-Q. Luo, “A unified convergence

analysis of block successive minimization methods for nonsmooth
optimization,” SIAM J. Optim., vol. 23, no. 2, pp. 1126–1153, 2013.

[10] S. S. Christensen et al., “Weighted sum-rate maximization using
weighted MMSE for MIMO-BC beamforming design,” IEEE Trans.
Wireless Commun., vol. 7, no. 12, pp. 4792–4799, Dec. 2008.

[11] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex
programming, version 2.1,” http://cvxr.com/cvx, Mar. 2014.

http://cvxr.com/cvx

	I Introduction
	II A Coupled Phase-Shift Model for STAR-RISs
	III A General Optimization Framework for STAR-RISs with Coupled Phase Shifts
	III-1 Subproblem with respect to {x, bold0mu mumu t, bold0mu mumu r}
	III-2 Subproblem with respect to {t, r}


	IV Case Study and Numerical Results
	IV-A System Model and Problem Formulation
	IV-B Solution to Problem (16) using the Proposed Framework
	IV-B1 Subproblem with respect to {bold0mu mumu , bold0mu mumu }
	IV-B2 Subproblems with respect to W and {bold0mu mumu t, bold0mu mumu r}
	IV-B3 Subproblems with respect to {t, r} and {t, r}

	IV-C Numerical Results

	V Conclusions
	References

