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Abstract—A Kkey service of the sixth generation (6G) of wireless
networks is envisioned to be native Artificial Intelligence, which
calls for radical changes to the way the nodes communicate
and perform computations, as well as the role of wireless en-
vironment. For this purpose, over-the-air computing (AirComp)
is a promising technique for ultra low-latency wireless data
aggregation, enabled by the waveform superposition properties
of a multiple access channel. In this work, the synergy of
decentralized AirComp, reconfigurable intelligent surfaces (RISs)
and machine learning is proposed, to transform the wireless
environment to intelligent AirComp environment (IACE), i.e.,
with inherent and advanced capabilities to perform computations
in a fully decentralized way at the physical layer. Specifically, we
minimize the AirComp error, i.e., the average mean-square errors
of devices with respect to a target function, by jointly optimizing
the RIS phase-shift vector and the transmission and reception
scaling factors of devices. Also, to solve this challenging problem,
we propose an online deep neural network (DNN) optimization
approach. Finally, simulation results validate the effectiveness of
IACE and the proposed DNN approach.

Index Terms—AirComp, reconfigurable intelligent surfaces,
deep learning

I. INTRODUCTION

Ative Artificial Intelligence, which refers to the provision

of intelligent functionalities, such as distributed and
federated learning (FL), is envisioned to be one the key
services of the sixth generation (6G) of wireless networks [1].
To provide such services with respect to the requirements of
the next generation Internet-of-Things [2], the use of ultra-
low latency wireless data aggregation methods are needed that
ideally are solely performed at the physical layer, avoiding
any Open Systems Interconnection (OSI) stacks crossing.
To this end, using over-the-air computing (AirComp) is a
particularly promising approach [3], since it has potential
to accomplish ultra-fast data aggregation, by exploiting the
superposition property of a multiple access channel (MAC)
to compute functions via simultaneous transmissions by all
devices. In essence, AirComp fusions the communication and
computation processes instead of treating them separately,
while it also achieves significant bandwidth savings owing to
the concurrent wireless transmissions. Notably, by appropriate
processing, AirComp can be used to compute all nomographic
functions, and, thus, any other function [4].
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Traditionally, studies on AirComp consider a fusion center,
e.g., a central server, which collects the aggregated data and
computes the function of desire through the simultaneous
device transmissions. For this purpose, linear-analog mod-
ulation, channel pre-compensation at each transmitter, and
post-processing at the central server are essentially used [4].
Interestingly, the channel compensation can be facilitated by
acquiring control over the wireless environment, which can be
efficiently achieved by using reconfigurable intelligent surfaces
(RISs). RISs have been introduced as meta-surfaces connected
with a controller whose properties can be real-time altered
and, thus, performing a plethora of electromagnetic functions
such as reflection, steering, diffusion, absorption, etc. [5], [6].
For instance, in a classical centralized AirComp framework
[7], the mean square error (MSE) among the ground-truth and
estimation function was minimized with the aid of a RIS. Also
in [8], a multi RIS-assisted AirComp system was designed for
a federated learning task, aiming to minimize the AirComp
error and accelerate the federated learning convergence.

However, certain applications may imply either the absence
of a central server, e.g., device-to-device (D2D) communi-
cations, autonomous vehicles and cooperative robotics. In
this direction, decentralized AirComp approaches in a D2D
manner have been proposed, where each device can recover
the target function constructed by the transmissions of the
residual devices. For instance, authors in [9]-[11], proposed
the use of AirComp-based communication protocols to facil-
itate decentralized FL. Moreover, in [12], the decentralized
AirComp is examined for use in a distributed optimization
scenario, where authors conducted a beamforming design to
minimize the AirComp error and also investigated its impact
on the convergence of the distributed optimization algorithm.
It deserves to be noted that although controlling the wireless
environment through a RIS would have a transformative im-
pact to the capabilities of decentralized AirComp, by radically
increasing the available degrees-of-freedom, the latter has not
been investigated in the existing literature.

To this end, in this work, the synergy of decentralized
AirComp, RISs and machine learning is proposed, to transform
the wireless environment to intelligent AirComp environment
(IACE), i.e., with inherent and advanced capabilities to per-
form computations in a fully decentralized way at the physical
layer. Therefore, the IACE, through the exploitation of the
MAC properties and the proper adjustment of the wireless
environment, aims to facilitate the efficient recovery of a target
function in each network device. This capability paves the way
towards realizing promising applications, such as distributed



learning, sensing and consensus. In this direction, with the
goal to optimize the performance of IACE, the AirComp error
is minimized, i.e., the average MSE of devices with respect
to a desired target function. Specifically, we jointly optimize
the transmission and reception scaling factors of devices, as
well as the phase-shifts at the RIS. To efficiently solve the
aforementioned challenging problem, an online deep neural
network (DNN) approach is properly designed. Finally, simu-
lation results are provided, which validate the effectiveness of
IACE and the proposed DNN approach.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider an IACE consisting of a set N' = {1,2,..., N}
of N devices, a RIS equipped with K passive reflective ele-
ments, and an intelligent virtual or physical entity/controller.
The latter is aware of the channel state information (CSI)
and responsible for the IACE orchestration, providing among
others feedback to the RIS regarding its optimal configuration.
Each device acts as a fusion center which is interested in
receiving an aggregation of the data, e.g., arithmetic mean, of
the residual network devices, under the absence of a central
fusion center. Specifically, the AirComp technique is adopted,
where all devices transmit simultaneously by exploiting the
waveform superposition property of a MAC. At this point we
clarify that the target function each device is aiming to recover
through the AirComp is
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i.e., the summation of all data among the network devices,
where x,, is the information signal of device n and assumed
to be zero-mean unit variance, without loss of generality.
It is noted that the considered target function is ubiquitous
in decentralized learning techniques, such as FL. Further-
more, we consider a full-duplex scenario, i.e., devices can
simultaneously transmit and receive signals, while we also
assume that devices are synchronized. Moreover, the direct
links among devices are assumed to be blocked, due to
unfavorable propagation environment, while at each device the
transmitter is perfectly decoupled from the receiver via passive
and/or active self-interference cancellation. Following that, the
estimated AirComp aggregated signal received by device ¢ is
given as
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where h; = [hi1,hi2,....hix] € CEXL with h;; being
the reciprocal channel coefficient between device ¢ and the
k-th RIS element and © = diag ([e?, €%, ... €l ]) €
CK*K denotes the diagonal phase shift matrix of RIS with
0 < 0, < 2, Vk. Moreover, b;,c; € C, Vi € N, are the
transmission and reception scaling factors of device ¢, respec-
tively, facilitating the effectiveness of AirComp. Furthermore,
z; ~ CN(0,0?) is the AWGN. Each device has a maximum
transmit power, denoted as Fy. Thus, it holds
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Note also that the post-processing factor c; is operated on the
digital domain, thus, ¢; is not constrained [13]. The model
of the proposed system is depicted in Fig. 1. Taking the
above into consideration, the computational distortion at user
i, which is reflected through the MSE between the estimated
function ¢; and the target function y, is given as

MSE; = E {|gz- —yﬂ, Vie N, )

where the expectation is taken with respect to the randomness
of the original signals {z,,} and the receiver noise z;. After
some manipulations, it is straightforward to show that the
MSE; can be written as
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Since © is a diagonal matrix and h; is a vector, the MSE;
can be equivalently given as

2
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where v = [v1,v2,...,v4] |, with vy = €% Vk € K. Our

objective goal is jointly optimize the transmission, reception
scalars and the phase shift vector, towards minimizing the
average of MSE among users, which gives rise to the following
optimization problem
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where the objective function can be also written as
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Problem (7) is of non-convex nature, due to the coupling of
the optimization variables in the objective function and the
unit modulus constraint. When encountering similar problems
the conventional approaches usually resort to suboptimal solu-
tions, e.g., alternating optimization-based algorithms, which in
general may suffer from high computational complexity and
non-guaranteed convergence.

III. PROPOSED SOLUTION
A. Online DNN

Motivated by the encouraging results of online DNN opti-
mization in dealing with RIS-involved problems [14], a DNN
is trained in an online fashion for solving problem (7). Specif-
ically, for a given individual channel realization, the DNN is
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Fig. 1: System model of the IACE.

tuned to estimate the optimal variables i.e., the transmission
and reception scaling factors of the devices b,c, as well
as the phase shift vector v of the RIS elements. It is also
clarified that unlike to offline training approach where multiple
samples are used for training and afterwards the testing stage
follows, online DNN has no testing stage, since for each new
generated sample a dedicated network is trained, and thus, the
generalization issue does not exist [14]. Following that, the
device-to-RIS channel matrix H = [hy,...,hy] € CEXN g
given as an input to the DNN. More specifically, the real and
imaginary part of the channels are treated as separate features.
Hence, the feature vector is expressed as F' € R2ZNKEX1 where
the entries of H have been concatenated to form F'.

The DNN’s loss function is defined as the objective function
of the problem (7), which can be written as
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while the DNN is trained to minimize the considered loss
function given the input feature vector F', and finally extract
an estimation of b, ¢ and v as outputs. We denote the
overall output estimation vector as 0 = m(F,0), where m
is the mapping function of the DNN parameterized by its
trainable parameters 6. Note that the loss function can be also
expressed as Loss(F', 0). In the subsequent analysis, 0 will be
clearly defined. In the continue, we describe the techniques
which manipulate the constraints in (7), towards properly
handling the complex optimization variables and guaranteeing
the feasibility of the solution extracted by the DNN.

Firstly, we consider that the activation function of the output
layer is the Sigmoid function. Regarding the phase shift vector
v, the constraints impose that its complex components have
unit modulus. Similarly to [15], we can express the vector v
as

v = cos(270) + j - sin(27D), (10)
where v is the output of the DNN and its entries belong in the
range [0, 1], given that the Sigmoid is the activation function
of the output layer. Next, to meet the constraint |b;| < /P,
we use the auxiliary variables b;,b; € [0,1] to express b; as

bi = bi - \/Po (cos(?wl;i) +i- sin(?wl;i)) . VieN. (1D

Note that the outputs of the neural network are the vectors
b, b, while it is obvious that with the proposed transformation
the target constraint is indeed satisfied. Finally, recall that
the variable ¢; is unconstrained. However, to preserve the
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Fig. 2: DNN architecture.

consistency of the neural network architecture, i.e., use the
Sigmoid as the activation function of each output node, and
retain the value range of the output layer at small levels, we
adopt a similar transformation for c;, as follows

Vie N,

where ¢;,¢; € [0,1], Vi € N are also outputs of the DNN.
Moreover, since c¢; is not constrained we select B to be a very
big constant, and thus, not limiting the range of c;,Vi € N.
The aforementioned transformations are of significant impor-
tance, since they enable the use of a DNN and address the
optimization constraints.

Following that, we highlight that for the final output vector
of DNN it holds & = [67,b ,b',&',e'|T e LE+N)x1,
where L = {z € R|0 < = < 1}. To this end, it should be
noted that the primary variables v,b and ¢ can be directly
retrieved from their counterparts v, b,band ¢, ¢, by using the
equations (10),(11) and (12), respectively.

c; = C; - B (COS(27T5,L') +] . SIH(27TE1)) y (12)

B. Baseline solution

In this subsection we propose a baseline solution, which
will operate as a benchmark for comparison purposes with
the online DNN approach. Hence, a simple intuitive solution to
problem (7) comes as follow. The problem can be decomposed
into three blocks, corresponding to each one of the optimiza-
tion variables v,b and c. Therefore, we adopt an alternate
optimization method, which alternatively solves for one block
of variables with the rest variables taking fixed values. When
treating b and c as the variables, the problem is convex with
respect to b and c, respectively. However, when solving for
v, with b and ¢ fixed, the problem is non-convex due to the
unit modulus constraint. In this case, we relax  |vg| = 1 to
lvg| <1, Vk € K, and afterwards enforce the optimal solution
to satisfy the unit modulus constraint by projecting it to the
unit complex circle, i.e., uj < \%I;*:I’ Vk.

C. Complexity Analysis

For the DNN architecture, without loss of generality, we
consider a single hidden layer with L neurons. The forward-
pass complexity, which is dominated by the weight matrix
multiplication cost, is given as O(2KNL + L(4N + K))
and is equivalent to O(K NL). Given that the backward-pass
has the same computational cost with the forward-pass [16],
the overall back propagation algorithm for training the online
DNN is of the order O(Ig K NL), where I is the number
of training epochs. As for the baseline solution, the major
complexity lies in solving problem (7) with respect to v. For a
standard solver, e.g., the interior-point method, the complexity
is O(IyK?3), where I is the number of total iterations. Usually



we have K > N, which implies that the baseline algorithm’s
execution time per iteration will be greater. To this end, it
is noted that the training of the DNN is performed on the
intelligent entity/controller, which is equipped with sufficient
computation capabilities. We also highlight that the execution
time of the online DNN can be significantly accelerated with
the usage of dedicated hardware for parallel computations,
e.g., GPU, rendering the proposed approach suitable for real-
time optimization.

IV. PERFORMANCE EVALUATION AND DISCUSSION

We consider that the network devices are uniformly dis-
tributed in a disk with radius equal to 40m. Moreover, the
RIS is located at the center of the disk in height z = 30m.
For the device-RIS links, i.e., H, we consider Rician fading
with factor /3, thus we have [7]

1 HNLoS))
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where H™S and HN™°S denote the line-of-sight (LoS) and
the non-line-of-sight (NLoS) components, respectively. More-
over, Ty is the path loss at the reference distance dyp = 1m, d
denotes the distance between the transmitter and the receiver,
and a is the path loss exponent. Unless specified otherwise,
we set Tp = —25dB, 5 = 10, a = 2.2, Py = 40dBm, and
02 = —90dBm.

We construct a feed-forward fully connected DNN, consist-
ing of two hidden layers with 128 and 64 nodes, respectively.
The ReLU is selected as the activation function of all layers,
except for the output layer, where the Sigmoid function is
utilized. Furthermore, we adopt the Adam optimizer and set
the initial learning rate equal to 0.1. The number of maximal
epochs is set to 1500, while in order to accelerate convergence,
we decay the learning rate by a factor of 0.33 when the loss
does not decrease for consecutive 10 epochs.

In Fig. 3a, the impact of RISs’ elements on the average
MSE of devices is demonstrated. It can be observed that
with the increase of the reflecting elements, the average MSE
of AirComp is decreasing. This is reasonable, since more
elements translate to higher degrees-of-freedom, facilitating
the construction of the desired function in each devices’
receiver. Moreover, the proposed online DNN approach clearly
outperforms the baseline solution, exhibiting a performance
gain which is higher than an order of magnitude. Finally, it
can be seen that for high number of reflecting elements, the
online DNN presents a slight reduction in the average MSE.
This result may stem from the saturation of the system, i.e., it
is hard to further reduce the average MSE even by employing
additional RIS elements, owing to the presence of AWGN.
Notice that the AWGN term in (8) may prevail when targeting
small MSE values, hindering its further minimization.

In figure Fig. 3b, we evaluate the impact of devices’ number
N on the average MSE. The number of reflective elements
has been set as K = 225. Although, for small number of
devices, e.g., 4 and 6 devices, the baseline algorithm performs
slightly better or equivalent to the proposed DNN approach,
the performance gap among the two methods is rapidly in-
creasing along with the number of devices. It is evident that
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Fig. 3: AirComp average MSE (AMSE)

the online DNN is superior to the baseline scheme in achieving
lower MSE values, a fact that justifies its adoption. The
latters’ performance degradation, can be probably attributed
to the large scale of the system as the number of devices is
increasing, enforcing the algorithm to stuck into local minima.
Moreover, in the case of the online DNN approach, it is
observed that the average MSE grows abruptly for high N
values. This result implies that higher number of reflective
elements have to be utilized, in order to efficiently employ the
AirComp for scenarios with large number of devices.

To this end, the results corroborate the effectiveness of the
proposed approach towards creating the IACE.
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