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Activity Detection in Distributed Massive MIMO

With Pilot-Hopping and Activity Correlation
Ema Becirovic, Emil Björnson and Erik G. Larsson

Abstract—Many real-world scenarios for massive machine-
type communication involve sensors monitoring a physical phe-
nomenon. As a consequence, the activity pattern of these sensors
will be correlated. In this letter, we study how the correlation of
user activities can be exploited to improve detection performance
in grant-free random access systems where the users transmit
pilot-hopping sequences and the detection is performed based on
the received energy. We show that we can expect considerable
performance gains by adding regularizers, which take the activity
correlation into account, to the non-negative least squares, which
has been shown to work well for independent user activity.

Index Terms—Distributed massive MIMO, grant-free random
access, correlated activity detection

I. INTRODUCTION

MASSIVE machine-type communications (mMTC) is

one of the core use cases of 5G [1]. mMTC refers to

scenarios where many devices are sending intermittent data.

This creates a vast load on the random access protocols.

Random access for mMTC has been studied in many works

recently [2], [3] and especially a large focus has been on grant-

free random access since the communication overhead will

be smaller when there is no contention resolution [4], [5]. In

grant-free random access, pilots are used to both detect the

active users and estimate their channels. Since, there is a huge

number of devices in the system, they cannot be assigned

orthogonal pilots in each coherence interval. There are two

strategies to solve this problem: the first is to assign non-

orthogonal pilots [5], and the second is to assign orthogonal

pilots in each coherence interval, but have pilot-hopping

sequences that span multiple coherence intervals [4], [6], [7].

One important relief of random access for mMTC is that,

even though there is a huge number of devices, only a small

fraction of them are active at a given time since they are

only active when they have information to transmit. This fact

makes it justifiable to cast the activity detection problem as a

compressed sensing problem and solve it with algorithms that

have been proven efficient in such scenarios.

In addition to assuming sparsity, additional side-information

can be used to further improve the detection performance. One

such example is temporal correlation of the user activity: a

user is probably active in many consecutive time slots since it

is active until it has transmitted all the data [8], [9]. Another
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Fig. 1. Three users transmitting pilot-hopping sequences of length four using
two pilots, φ1 and φ2. Additionally, in coherence interval t the user k also
transmits uplink data Dk(t).

type of side-information that can be exploited is correlation of

the channel between the active user and the base station. This

channel can be spatially correlated [10], [11] or both spatially

and temporally correlated [12]. Such side-information is used

to improve methods which jointly detect the active users and

estimate their channels.

If the activity of the devices is governed by a physical

phenomenon, we can presume that the activity of devices

monitoring the same phenomenon is correlated. The previously

mentioned grant-free random access algorithms [8]–[12] and

protocols exploit side-information. However, using correlated

user activity as side-information has been somewhat neglected

for grant-free random access. One work that considers cor-

related user activity is [13], which considers an unsourced

random access framework. In that work, the devices can either

transmit standard messages, or alarm messages. The alarm

messages depend on a physical phenomenon and all devices

will transmit the same message in the case of an alarm.

Recently, [14] considered correlated user activities in a grant-

based random access setting. They found the preamble (pilot)

selection distribution that minimizes preamble collisions given

a correlated activity distribution.

In this paper, we generalize the transmission model pro-

posed in [4], [6] and implemented in [7] where the devices

transmit pilot-hopping sequences in order to aid in activity

detection and channel estimation, see Fig. 1. A single-cell

massive multiple-input-multiple-output (MIMO) system where

the user activities are independent was studied in [4], while in

this paper, we consider a distributed massive MIMO system

with correlated user activities. The technical challenge is to

formalize a detection problem that can adequately capture

the activity correlation. We address this issue by solving a

regularized non-negative least squares (NNLS) problem, where

the regularizer takes the activity correlation into account. To

the best our knowledge, this is the first work to consider

correlated user activities in grant-free random access.

http://arxiv.org/abs/2211.09896v1
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II. DISTRIBUTED MASSIVE MIMO SYSTEM MODEL

We consider a distributed MIMO system where L base

stations are equipped with M antennas each and collectively

serve K single-antenna users. Note that when L = 1, this

is the standard co-located single-cell massive MIMO system

model. Not all of these users are active. The activity is modeled

as random but there might be correlation between users. We

assume a block fading model; the channel is assumed to be

time invariant and frequency flat in each coherence interval.

We study a grant-free access transmission model where

each communication round spans T coherence intervals. In

each coherence interval there is a pilot phase, which is τp

symbols long, such that there are τp orthogonal pilots, and a

data phase, which spans the rest of the coherence interval. The

users are assigned a unique pilot-hopping sequence wherein

each of the T coherence intervals one of the τp orthogonal

pilots is chosen, see Fig. 1. While the pilots might collide in

individual coherence intervals, the pilot collisions get averaged

over the whole pilot-hopping sequence and data can still be re-

liably transmitted [6]. Hence, with highly frequency-selective

channels, where τp will be small due to a limited coherence

bandwidth, more collisions will occur per coherence block.

At the pilot phase of coherence interval t, the base stations

collectively receive the ML× τp signal

Y t =

K
∑

k=1

τp
∑

j=1

αkS
t
j,k

√
τppkg

t
kφ

H

j +N t, t = 1, . . . , T (1)

where αk =

{

1, if user k is active,

0, otherwise,
(2)

St
j,k =

{

1 if user k sends pilot j at pilot phase t,

0 otherwise,
(3)

pk is the transmit power of user k, gt
k ∈ CML is the collective

channel between user k and the base stations in coherence

interval t, and φj ∈ Cτp is the j:th pilot consisting of τp

symbols. The pilots are mutually orthogonal, φH

i φj = 0, i 6= j,

and have unit norm, ‖φi‖ = 1. Finally, N t ∈ CML×τp is noise

with i.i.d. CN
(

0, σ2
)

elements. The received signal in (1) can

be viewed as blocks of received signals from each base station,

Y t =
[

(Y t
1 )

T . . . (Y t
l )

T . . . (Y t
L)

T
]T

, (4)

where Y t
l ∈ CM×τp is the received signal at base station l at

the pilot phase of coherence interval t. The model assumes

that the users are synchronized in the sense that all the

active users start their pilot-hopping sequence at the same

coherence interval. Hence, the same users are active during the

T coherence intervals in (1). If new users want to access the

network, they would need to wait until the next pilot-hopping

sequence starts.

A. Asymptotic Energy System Model

In each coherence interval, an estimate of the received signal

energy over each pilot is computed as

Ei,t =
(Y tφi)

H(Y tφi)

ML
− σ2 =

‖Y tφi‖2
ML

− σ2, (5)

which is a sufficient statistic for the user activity. These energy

estimates are used to detect the active users. Assuming that the

channels have the asymptotic channel hardening property, i.e.,

‖gt
k‖

2

ML
→ βk, as ML → ∞, (6)

where βk is the large-scale fading coefficient1, and asymptotic

favorable propagation property, i.e.,

(gt
k)

H(gt
k′ )

ML
→ 0, as ML → ∞, k 6= k′, (7)

we see that as ML → ∞,

Ei,t =
‖Y tφi‖2

ML
− σ2 →

K
∑

k=1

αkS
t
i,kτppkβk. (8)

Channel hardening and favorable propagation are common in

many propagation scenarios in massive MIMO and are fulfilled

for e.g. Rayleigh fading [15, Ch. 7] [16, Ch. 2] and uniform

random line-of-sight channels [15, Ch. 7]. In practice, the

total number of antennas ML will be finite and (8) can then

be interpreted as an approximation. For the co-located case

(L = 1) with i.i.d. Rayleigh fading, the approximations are

normally tight at around M = 50 antennas since the variance

of (6) and (7) scale with 1
M

[16, Sec. 2.5].

We introduce the vector notation

α = [α1, . . . , αK ]
T
, (9)

and y =
[

E1,1, . . . , Eτp,1, . . . , Ei,t, . . . E1,T , . . . , Eτp,T

]T
.
(10)

Further, we introduce the τpT × K matrix,

A =



































S1
1,1τpp1β1 · · · S1

1,KτppKβK

...
. . .

...
S1
τp,1τpp1β1 · · · S1

τp,K
τppKβK

. . .
... St

i,kτppkβk

...

. . .
ST
1,1τpp1β1 · · · ST

1,KτppKβK

...
. . .

...
ST
τp,1τpp1β1 · · · ST

τp,K
τppKβK



































. (11)

Note that with τp pilots and T coherence intervals, there are

(τp)
T unique pilot-hopping sequences. Therefore, in order for

each user to have unique sequences we require K ≤ (τp)
T .

However, since we assume that there is a massive number of

users, the product of the number of pilots and the sequence

length is most likely smaller than the number of users:

τpT ≤ K . Hence, the matrix A is wide. Now, we can express

the limit in (8) using this notation:

y → Aα as ML → ∞. (12)

1In distributed systems, the large-scale fading coefficient should be in-
terpreted as the mean of the large-scale fading coefficient to all base
stations, which usually depend on the distance to each base station, i.e.,

βk = 1

L

∑
L

l=1
βl

k
, where βl

k
is the large-scale fading coefficient between

user k and base station l. In this case, the channel hardening property also
depends on the distribution of βl

k
. Here it is implied that βk is the same for

all t but this assumption is not necessary as long as βk is known.
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With a finite number of antennas, (12) will only hold approx-

imately. We consider the asymptotic system model to be

y = Aα+ n, (13)

where n is the zero mean noise that is generally not Gaussian.

III. USER ACTIVITY DETECTION

We aim to detect the active users using the the received

energies based on the model in (13).

A. Independent User Activity

First, we will treat the case where the user activities are

independent. Although there are fewer measurements (τpT )

than the number of users (K), we know that only a few

of them are active. Hence, it is pertinent to view the active

user detection problem as a compressed sensing problem.

Minimizing the noise given that the αk:s are 0/1-variables

gives a combinatorial problem,

argmin
α∈{0,1}K

‖Aα− y‖2 , (14)

which is computationally costly to solve through an exhaustive

search. Therefore, the problem is relaxed and we allow α to

take any non-negative value. The relaxed problem becomes

the NNLS

argmin
α≥0

‖Aα− y‖2 . (15)

After solving (15) using any convex solver, each element is

thresholded to detect the active users. If A in (11) is properly

normalized, it has the so-called self-regularizing property [17,

Condition 1]. To show this, first note that each column of A

contains exactly T non-zero entries, corresponding to the pilot-

hopping sequence for each user. Suppose we normalize A such

that the norm of all its columns are equal. This can be achieved

by forcing the received signal-to-noise ratios (SNR) for each

user to be equal, i.e., the transmit power of each user should

be inversely proportional to the large-scale fading coefficient,

i.e., statistical channel inversion [16]: pk = pβmin

βk
, where pτp

is the maximum allowed transmit power per pilot and βmin =
mink βk. Then, take X = A√

τppβmin
, w = [1, 1, ..., 1]

T
in the

definition of [17, Condition 1], and verify that the condition

is satisfied.

Generally, NNLS problems with a self-regularizing mea-

surement matrix yield sparse solutions, even without intro-

ducing an explicit sparsity-enforcing regularizer, if the noise

distribution is sub-Gaussian [17, Thm. 1]; see also [18]–[20].

In the present context, with Rayleigh fading channels, the

noise n is not sub-Gaussian as it contains products of Gaussian

random variables. Therefore, [17, Thm. 1] does not strictly

apply. Yet, we take the self-regularizing property of A as an

explanation for why our method works and specifically yields

sparse solutions in our numerical experiments.

The NNLS approach, based on measurements of signal

energies as in (13), and formulation of the activity detection

problem as an NNLS problem, was originally proposed in

[4]; therein, however, only the single-cell case (L = 1) was

studied.

B. Correlated User Activity

In this section, we propose an algorithm for activity de-

tection with user activity correlation. To exploit the activity

correlation in the detection, the correlation needs to be known

a priori or estimated to some extent. For example, the activity

correlation can be estimated based on past successful trans-

missions. The correlation can for example arise because the

devices are monitoring the same type of event or because the

devices are in the same geographical area.

Our proposed approach is to add a regularizer, R(α), to the

NNLS in (15) to obtain

min
α≥0

‖Aα− y‖2 +R(α). (16)

We consider two different regularizers.

Group-LASSO-inspired regularizer: If α is group sparse,

i.e., only a few pre-determined groups of users are active,

an approach from compressed sensing is to use the ℓ1/ℓ2-

regularizer [21]

R(α) = λ

G
∑

j=1

cj
∥

∥αGj

∥

∥

2
, (17)

where G is the number of groups, Gj is the j:th group,

αGj
denotes the sub-vector of α where Gj contains the

selected components, cj is the weight associated with

the j:th group, and λ is the regularization parameter

which decides how much weight should be put on the

regularization. If the groups are non-overlapping, this

minimization problem is the group least absolute shrink-

age and selection operator (LASSO) problem (with an

additional non-negativity constraint) [21, Ch. 6].

Total-variation-inspired regularizer: If a user is more prone

to be active if its neighbors are active, a suitable regular-

izer is

R(α) = λ

K
∑

k=1

ck

√

∑

j∈N (k)

|αk − αj |2, (18)

where N (k) are the neighbors of user k in some corre-

lation sense, αN (k) denotes the sub-vector of α where

N (k) contains the selected components, ck is the weight

associated with the k:th user, and λ is the regularization

parameter. This regularizer can be interpreted as the

ℓ1/ℓ2-regularizer on the difference between users and

their neighbors. The regularizer will enforce that only

a few users’ activities differs from their neighbors’.

This regularizer is a generalization of the isotropic two-

dimensional total variation denoising used for, e.g., im-

ages, where the neighbor set contains only the directly

adjacent pixels [22].

The particular choices of groups and neighbor sets will depend

on the application. Here, we used an approach where all users

in a group are treated equally, and equally contribute to the

overall objective function. Another approach is to weigh the

regularization such that user pairs with higher correlation have

a higher impact.

When the activity is correlated it might not be vital exactly

which users are active, but instead a detection of e.g., the
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monitored event is more important. Therefore, performance

evaluation needs to be handled with care. In the case where the

correlation comes from location based information, i.e., when

users are activated by nearby events, we suggest evaluating

how well different algorithms perform at detecting the posi-

tion of the events. Consider E events occurring at positions

ei ∈ R2, i = 1, . . . , E. After detecting the active users (by

thresholding the results from the regularized NNLS), their

positions are clustered into E clusters. Note that, here it is

assumed that we know the number of events through a genie

but nothing prevents the estimation of the number of events.

After clustering, we obtain estimates of the event positions

êj , j = 1, . . . , E. Next, we find the pairings, P = {(i, j)},

such that
1

E

∑

(i,j)∈P
‖ei − êj‖2 (19)

is minimized. This gives the squared distance between the true

and detected events.

IV. NUMERICAL SIMULATIONS

In this section we study a specific simulation scenario where

a set of user terminals monitor the occurrence of some event.

The scenario is chosen to illustrate the potential and expected

gain that is obtained by including the knowledge of user

activity correlation. We simulate a scenario with L = 4 base

stations, each with M = 32 antennas. The simulation scenario

resembles an industrial Internet-of-things setting [23].

The “world” is a 2-dimensional plane2, [0, 1]× [0, 1]. There

are K = 1296 users placed on a 36×36 square grid. The base

stations are placed at the center of each edge, i.e., at positions

(0, 0.5), (1, 0.5), (0.5, 0) and (0.5, 1). Within the plane, E = 3
events occur uniformly at random. User k at position xk is

activated by event i at position ei with probability pk,i =

exp
(

−‖xk−ei‖2

2σ2
e

)

, where σ2
e = 0.001 is chosen such that, on

average, one event approximately activates 7.5 users.

There are τp = 10 orthogonal pilots and the pilot-hopping

sequences span T = 10 coherence intervals. The users’ pilot-

hopping sequences are chosen uniformly at random from all

the possible (τp)
T sequences. The channels are modeled as

i.i.d. Rayleigh fading; the channel between user k and the

l:th base station is gl
k ∼ CN

(

0, βl
kI

)

, where βl
k is the large-

scale fading to the l:th base station and βk = 1
L

∑L

l=1 β
l
k. The

large-scale fading depends on the distance to each base station:

βl
k = γ(dlk)

−3.67, where dlk is the distance between user k
and base station l, 3.76 is the path-loss exponent, and γ is a

constant. The users perform statistical channel inversion power

control as described in Section III-A. The SNR is defined as

SNR = pβmin

σ2 . In the simulation we have chosen the constant

γ such that SNR = 10 dB.

For the total-variation-inspired (TV) regularizer, the neigh-

bor set of user k is chosen as

N (k) = {i : ‖xk − xi‖ < r}, (20)

2Note that the absolute dimensions are unimportant since the users perform
statistical channel inversion power control.

where r = 0.05 is chosen such that, when the k:th user

is not on the edge of the grid, there are 9 users in the set

including the k:th user itself. For the group-LASSO-inspired

(GLASSO) regularizer, the groups are chosen to be the K
different neighbor sets, i.e., G = K and Gk = N (k). Further,

all users and groups have the same (unit) weight, ck = 1, for

both the TV and GLASSO regularizers. All three optimization

problems (NNLS, TV and GLASSO) are solved with the

MOSEK [24] solver in CVXPY [25].

The probability of missed detection, pm, and the probability

of false alarm, pfa, are defined as

pm =
# undetected active users

# active users
, and (21)

pfa =
# detected inactive users

# inactive users
. (22)

Fig. 2 shows the receiver operating characteristic (ROC)

curves for the different methods. Different false alarm and

miss detection probabilities can be achieved by choosing

different thresholds. We see that both the proposed methods,

TV and GLASSO, perform better, i.e., at a given false alarm

probability, the miss detection probability is lower, than for

NNLS when the appropriate regularization parameter, λ, is

chosen. We note that in this case, with these regularization

parameters, TV with λ = 0.06 performs best. However, the

best regularizer (and regularization parameter) will depend

on application and specifically how the user activities are

correlated. We conjecture that TV performs better when the

activity correlation comes from the device location, as indi-

cated by the simulations, and that GLASSO is better suited

when the activity correlation is such that devices activate in

predetermined groups.

As we have seen, the proposed detection algorithms are

better at detecting active users than the baseline NNLS. We

also report the root-mean-square distance (RMSD) in Fig. 3,

obtained by the process described in Section III-B. After

detecting the active users, their positions are clustered into

E = 3 clusters by the K-means algorithm [26, Ch. 5]. In

case of no detected users, we place all events in the center

of the plane. From the figure, we see that taking the activity

correlation into account gives more accurate event position

estimates than NNLS, and we can deduce that the optimal

(in terms of RMSD) threshold is somewhere between 0.4 and

0.7. In practice the threshold can be tested empirically and set

based on application requirements.

We have also performed simulations with fewer antennas

(not pictured due to space constraints) and although the

approximation in (13) is worse, the conclusions follow the

ones presented here; exploiting the activity correlation will

give better performance.

V. CONCLUSIONS

We studied a user activity detection problem for mMTC

users in distributed massive MIMO systems. The users trans-

mit pilot-hopping sequences and the base stations use the

received energy to detect the active users. We introduced

user activity correlation where we modeled users that monitor

physical phenomena and hence will activate based on their
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(a) TV
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pfa
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m λ = 0

λ = 1
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(b) GLASSO

10−5 10−4 10−3 10−2 10−1
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pfa

p
m

NNLS

GLASSO, λ = 0.1

TV, λ = 0.06

(c) Comparison

Fig. 2. ROC comparison of the proposed regularizers with different regularization parameters, λ. Note that, λ = 0 corresponds to NNLS for both the
regularizers.

0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

threshold

R
M

S
D

NNLS GLASSO, λ = 0.1 TV, λ = 0.06

Fig. 3. After the active users are detected, their positions are clustered into
E = 3 clusters and the RMSD between the cluster centers and the true event
positions is reported.

occurrence. Our proposed method is to add a regularization

term to the NNLS. We studied two different regularizers

inspired by total variance denoising and group LASSO. By

simulating a realistic system, we showed that introducing

regularizers that exploit the correlation greatly improves the

performance of the user activity detection, both in terms

of detecting the active users and estimating the position of

the event that triggered the activation of the users. Which

regularizer that is best will depend on the individual problem

and model.
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