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Abstract—It remains an open problem to find the optimal
configuration of phase shifts under the discrete constraint for
intelligent reflecting surface (IRS) in polynomial time. The above
problem is widely believed to be difficult because it is not linked to
any known combinatorial problems that can be solved efficiently.
The branch-and-bound algorithms and the approximation algo-
rithms constitute the best results in this area. Nevertheless, this
work shows that the global optimum can actually be reached
in linear time on average in terms of the number of reflective
elements (REs) of IRS. The main idea is to geometrically interpret
the discrete beamforming problem as choosing the optimal point
on the unit circle. Although the number of possible combinations
of phase shifts grows exponentially with the number of REs, it
turns out that there are only a linear number of circular arcs that
possibly contain the optimal point. Furthermore, the proposed
algorithm can be viewed as a novel approach to a special case
of the discrete quadratic program (QP).

Index Terms—Discrete beamforming for IRS/RIS, global opti-
mum, linear time algorithm, discrete quadratic program.

I. INTRODUCTION

CONFIGURING intelligent reflecting surface (IRS) con-
cerns with the choice of a set of “best” phase shifts

across reflective elements (REs), namely passive beamforming,
to boost the signal reception at the target receiver. The existing
studies in this area [1], [2] mainly divide into two categories:
those assuming continuous phase shifts to ease optimization
or analysis, and those restricting the phase shifts to a given
discrete set from a practical standpoint. This work belongs to
the latter. We establish a result that seems at first surprising:
the discrete IRS beamforming problem has an O(N) algorithm
for its solution, where N is the number of REs.

The proposed algorithm stems from a geometric interpreta-
tion of the IRS beamforming problem which was first proposed
in [3]. While [3] focuses on the binary beamforming case with
each phase shift being either 0 or π, this work goes further to
account for a general K-ary case where each phase shift takes
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on K discrete values. We propose visualizing each possible
solution as a point on the unit circle; the point moving around
the unit circle captures the different beamforming decisions.
The essential power of the above geometric method arises from
the following observation: although the number of possible
combinations of phase shifts grows exponentially with the
number of REs, there are at most a linear number of unit
circular arcs that possibly contain the point of the optimal
beamforming. Furthermore, the utilities of all these arcs can
be computed in linear time. The main idea behind the proposed
algorithm is to try out all possible arcs and pick the best, and
then recover the optimal phase shifts.

The existing works seldom consider global optimum for the
discrete IRS beamforming. Although the IRS technology has
been extensively studied over the past few years for many
complicated system models, the simplest point-to-point model
is still far less well understood. A common practice in the
literature is to first solve the relaxed continuous beamforming
problem via standard optimization, and then round the solution
to the discrete set, e.g., [4], [5] based on semidefinite relax-
ation (SDR) and [6], [7] based on minorization-maximization
(MM). For the relaxed continuous beamforming problem,
[8] enforces the discrete constraint by penalization, but the
resulting nonconvex problem is still difficult to deal with.
Another popular idea [9], [10] is to decide the phase shift
for one RE at a time, but the performance of such greedy
search is not provable. Some other works [11], [12] resort to
the branch-and-bound algorithm to obtain the global optimum
of the discrete IRS beamforming. But these methods incur
exponential time complexities and provide limited insights. For
the practical approach, the best result so far in the literature
is to attain an approximation ratio of the global optimum,
e.g., [10] gives an approximation ratio of cos2(π/K) in terms
of the optimal signal-to-noise ratio (SNR), where K is the
number of different values each phase shift can take on, and
further [3] improves it to 0.5+0.5 cos(π/K). Moreover, [13],
[14] consider the discrete IRS beamforming in the absence of
channel information. To the best of our knowledge, the present
work gives the first polynomial time algorithm for the discrete
IRS beamforming with provable global optimality.

Furthermore, it is worth mentioning the connection to the
quadratic program (QP) like max x⊤Qx. The authors of [15]
already observed that the discrete IRS beamforming problem
at the link level boils down to solving a discrete QP—which
is NP-hard in general [16] but can be efficiently solved under
certain conditions [17], e.g., when each entry of x is selected
from a binary set {0, 1} and rank(Q) ≤ 2. Actually, the
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quadratic time algorithm proposed in [15] for the binary IRS
beamforming is a direct application of the QP method in [17].
The binary QP without the rank constraint can be solved in
polynomial time as well [18]. Nevertheless, a generic K-ary
discrete QP remains an open problem. The proposed algorithm
can be recognized as a linear time approach to a special case
of the K-ary discrete QP.

II. SYSTEM MODEL

Consider wireless transmission in aid of an IRS. Assume
that the IRS comprises N REs, and that the transmitter and
receiver have one antenna each. We use h0 ∈ C to denote the
direct channel from the transmitter to the receiver, hI

n ∈ C
the channel from the transmitter to the nth RE, and hII

n ∈ C
the channel from the nth RE to the receiver, so the cascaded
reflected channel hn ∈ C associated with the nth RE is

hn = hII
nh

I
n, for n = 1, . . . , N. (1)

In the remainder of the paper, the direct and reflected channels
are frequently written in a polar form, i.e.,

hn = βne
jαn , for n = 0, 1, . . . , N, (2)

with the magnitude βn > 0 and the phase αn ∈ [0, 2π).
In particular, βn > 1 occurs if IRS can amplify reflection.
Assume that the channel phases αn are uniformly distributed.
Moreover, each RE n induces a phase shift θn into its reflected
channel hn, which takes on values in a prescribed discrete set

ΦK = {ω, 2ω, . . . ,Kω} where ω =
2π

K
. (3)

Thus, for the transmit signal X ∈ C, the received signal Y ∈ C
is given by

Y =

(
h0 +

N∑
n=1

hne
jθn

)
X + Z, (4)

where Z ∼ CN (0, σ2) is an i.i.d. complex Gaussian noise.
Denoting the transmit power level by P , the SNR can be

computed as

SNR =
E[|Y − Z|2]

E[|Z|2]
(5a)

=
P

σ2

∣∣∣∣∣β0e
jα0 +

N∑
n=1

βne
j(αn+θn)

∣∣∣∣∣
2

. (5b)

Similarly, the baseline SNR without IRS can be obtained as

SNR0 =
Pβ2

0

σ2
. (6)

To quantify the performance gain due to IRS, we introduce
the notion of SNR boost as

f(θ) =
SNR

SNR0
(7a)

=
1

β2
0

∣∣∣∣∣β0e
jα0 +

N∑
n=1

βne
j(αn+θn)

∣∣∣∣∣
2

. (7b)

We now consider the problem of finding the optimal IRS
beamforming vector θ := (θ1, . . . , θN ) that yields the highest

Fig. 1. Clearly, it is optimal to set either θ1 = θ2 = 0 or θ1 = θ2 = π in
this example. But we would end up with θ1 = 0 and θ2 = π if each hn is
rotated to the closest position to h0, which leads to fairly poor performance.

SNR boost:

maximize
θ

f(θ) (8a)

subject to θn ∈ ΦK , for n = 1, . . . , N. (8b)

We assume that all the channel information is available. In the
above problem, the optimal value of a particular θn heavily
depends on how the other θm’s (m ̸= n) are chosen. It seems
intractable to directly coordinate all these θn’s because the size
of the solution space ΦK ×ΦK × . . .×ΦK is exponential in
N . Nevertheless, the rest of the paper shows that the problem
(8) can be optimally solved in linear time in expectation.

III. PROPOSED METHOD

A. Geometric Interpretation of Discrete Beamforming

The problem in (8) can be visualized with a complex plane
graph where every channel hn corresponds to a 2-dimensional
real vector. Applying the phase shift θn to hn can be viewed
as rotating the vector hn counterclockwise by an angle of
θn; recall that the rotation must be discrete because of the
constraint θn ∈ ΦK . We aim to coordinate the rotations of
(h1, . . . , hN ) so that the magnitude of their vector addition is
maximized. Thus, if (θ⋆1 , . . . , θ

⋆
N ) is the optimal solution to

(8), then the vector addition

g = h0 +

N∑
n=1

hne
jθ⋆

n (9)

has the maximum length. We write the normalized g as

µ =
g

|g|
. (10)

Notice that the vector h0 is fixed. A naive idea for maximizing
|g| is to rotate every hn to the closest possible position to
h0 in the complex plane, namely the closest point projection
(CPP). However, CPP is suboptimal and can yield quite bad
results, as illustrated in Fig. 1. The reason is that h0 may
considerably deviate from µ, in which case aligning hn with
h0 cannot contribute much to the magnitude of the overall
vector addition. Rather, it is always optimal to rotate hn to
the closest possible position to µ, as stated in the following
lemma.

Lemma 1: For an optimal solution (θ⋆1 , . . . , θ
⋆
N ) to problem

(8), each θ⋆n must satisfy

θ⋆n = arg min
θn∈ΦK

∣∣∣∣Arg

(
hne

jθn

g

)∣∣∣∣ , (11)

where Arg(·) is the principal argument of a complex number.
Proof: Suppose that there exists some θ′n ∈ ΦK\{θ⋆n}

with
∣∣Arg(hne

jθ′
n/g)

∣∣ <
∣∣Arg(hne

jθ⋆
n/g)

∣∣. We can then
render hn closer to the addition of the rest vectors by applying
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a phase shift of θ′n to it instead, thereby further increasing |g|,
which is a contradiction.

In light of the above lemma, we proceed to decide a range
of µ for which θ⋆n = kω must hold. First, define a sequence
of complex numbers with respect to each n = 1, . . . , N as

snk = ej(αn+(k−0.5)ω), for k = 1, . . . ,K. (12)

Notice that these complex numbers, when visualized as points
in the complex plane, all lie on the unit circle C. For any two
points a, b ∈ C, we use arc(a : b) to denote a unit circular
arc with a as the initial end and b as the terminal end in the
counterclockwise direction; in particular, let arc(a : b) be an
open arc with the two endpoints a and b excluded, as shown
in Fig. 2. The following proposition follows from Lemma 1.

Proposition 1: A sufficient condition for θ⋆n = kω is

µ ∈ arc(snk : sn,k+1). (13)

Intuitively, letting θn = kω is guaranteed to minimize the gap∣∣(θn + αn − ∠µ) mod 2π
∣∣ whenever µ lies in its associated

arc, and thus kω must be optimal according to Lemma 1.
We put together all the complex numbers {snk, ∀(n, k)},

then remove the replicas among them, and further sort out the
remaining distrinct numbers according to their phases, i.e.,

0 ≤ ∠λ1 < ∠λ2 < . . . < ∠λL < 2π, (14)

where {λ1, . . . , λL}, L ≤ NK, are the distinct numbers of
{snk, ∀(n, k)}. Moreover, we use the following function to
retrieve the associated RE indices n from λℓ:

N (λℓ) =
{
n
∣∣ snk = λℓ

}
. (15)

Notice that the distinct points of (λ1, . . . , λL) all lie on the
unit circle C and partition C into L circular arcs, which are
arc(λ1 : λ2), . . . , arc(λL−1 : λL), and arc(λL : λ1).

The key observation is that if µ moves around C but within
the same arc(λℓ : λℓ+1), i.e., when µ stays in the same
arc(snk : sn,k+1) for every n, then the optimal solution of θ⋆n
does not change according to Proposition 1. As a result, we
conclude that the optimal solution (θ⋆1 , . . . , θ

⋆
N ) solely depends

on which arc(λℓ : λℓ+1) contains µ. Because µ is unknown
a priori, we need to try out all possible arcs and choose the
best. The essential power of this exhaustive search approach
arises from the fact that there are at most KN arcs, so the
complexity is just linear in N .

Remark 1: Actually, we can further reduce the number of the
considered arcs from KN to 2N by using [3, Proposition 1]:
the optimal overall channel superposition deviates from h0 by
less than 2π/K, i.e., |(∠µ− α0) mod 2π| < 2π/K. Thus, it
suffices to consider the two closest arcs to h0 for each hn.

So far we sketch the main idea behind the proposed method.
But there are still two technical challenges to tackle. First, how
to break the tie when two phase shifts can both minimize the
gap in (11), i.e., when µ lies right between two arcs rather
than in the interior of an arc. Second, how to actually achieve
the linear complexity in N . Here is a subtle pitfall: if the
SNR boost is evaluated for each arc separately, then it requires
O(N2) time to figure the optimal arc. We give the complete
description of the proposed method in the sequel.

Im

Re

arc( )

Fig. 2. A total of K points {snk, k = 1, . . . ,K} partition the unit circle
into K arcs; arc(sni : sn,i+1) starts from sni and ends at sn,i+1 in the
counterclockwise direction.

B. Optimal Solving in Linear Time

We start by showing that the aforementioned tie-breaking
issue will never occur.

Proposition 2: We always have µ ̸= λℓ for any endpoint λℓ,
so µ must lie in the interior of some arc(λℓ : λℓ+1).

Proof: Suppose that µ = λℓ for some ℓ, so there exists
at least one snk such that snk = µ. As a result, µ lies on the
boundary between arc(sn,k−1 : snk) and arc(snk : sn,k+1),
and hence we need to break a tie: θ⋆n = (k−1)ω or θ⋆n = kω.
Assume that θ⋆n = kω and let g′ = g − hne

jkω . It can be
easily seen that g must lie between hne

jkω and g′. Thus, g′

and hne
j(k−1)ω must be on the same side of g while hne

jkω

lies on the opposite side. Furthermore, because hne
j(k−1)ω and

hne
jkω are symmetric about g, hne

j(k−1)ω must be closer to
g′, and consequently letting θn = (k − 1)ω would increase
|g|, which forms a contradiction. By symmetry, we can draw
a similar contradiction if assuming θ⋆n = (k−1)ω at first. The
above proposition is then verified.

Remark 2: Equipped with Proposition 2, we can strengthen
Proposition 1 to state that (13) is a necessary and sufficient
condition for θ⋆n = kω.

Because of Proposition 2, we can restrict the possible
positions of µ to the interior of arcs. We seek the optimal arc
that maximizes |g|. Let us start from arc(λ1 : λ2) and move
µ around the unit circle in the counterclockwise direction. As
µ enters the (ℓ+ 1)th arc from the previous ℓth arc, i.e.,

arc(λℓ : λℓ+1) → arc(λℓ+1 : λℓ+2), (16)

all those θn with n ∈ N (λℓ+1) are changed accordingly be-
cause they no longer minimize the phase gaps

∣∣∣Arg
(

hne
jθn

g

)∣∣∣
in (11). These θn’s are optimally updated as

θn → θn + ω for all n ∈ N (λℓ+1). (17)

Importantly, notice that the overall vector addition g is effected
only by those newly updated θn with n ∈ N (λℓ+1) in (17).
Thus, the overall channel superposition in the new arc, denoted
by gℓ+1, can be efficiently obtained from the previous gℓ as

gℓ+1 = gℓ +
∑

n∈N (λℓ+1)

(
hne

jθn − hne
j(θn−ω)

)
. (18)

The above recursive computation of gℓ+1 plays a key role in
our linear time algorithm, as shown in the proof of Theorem 1
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Algorithm 1 Linear-Time Optimal Beamforming for IRS
1: Initialization: Compute {snk} and sort {λ1, . . . , λL}

according to (12) and (14).
2: Find L arcs that possibly contain µ as in Remark 1.
3: Compute each θn according to (11); obtain g1 in (9).
4: for each possible arc(λℓ : λℓ+1) do
5: Update θn → θn + ω for each n ∈ N (λℓ).
6: Compute gℓ based on gℓ−1 according to (18).
7: end for
8: Find ℓOPT = argmaxℓ{gℓ}.
9: Place µ anywhere in the interior of arc(λℓOPT : λℓOPT+1).

10: Compute each optimal θ⋆n according to (11).

in what follows. Otherwise, if each gℓ is evaluated according
to (9) separately, then the complexity would raise to O(N2).
Algorithm 1 summarizes the steps.

Theorem 1: Algorithm 1 yields the global optimal solution
(θ⋆1 , . . . , θ

⋆
N ) to problem (8) in O(N) time in expectation.

Proof: The global optimality of Algorithm 1 is evident
because each θn is optimally decided as in Proposition 1 and
all the possible arcs have been considered for µ.

We now analyze the complexity of Algorithm 1. Recall that
we have assumed that the channel phases αn’s are uniformly
distributed on [0, 2π), and thus λℓ’s are uniformly distributed
on the unit circle. By the binning method [19], it takes O(N)
time on average to sort the λℓ’s in step 1 of Algorithm 1; we
remark that the worst-case complexity is O(N2). Regarding
the for-loop from step 5 to step 8, for the iteration of ℓ, (17)
and (18) incur O(|N (λℓ)|) each, so the entire for-loop incurs∑L

ℓ=2 O(|N (λℓ)|) = O(N). Moreover, we see immediately
that the complexity of the rest steps is linear in N . Thus, the
overall complexity is O(N) on average.

The average complexity of Algorithm 1 would raise to
O(NK) if we try out all the arcs on the unit circle. Moreover,
if the channel phases are not uniformly distributed on [0, 2π),
then we may sort out λℓ’s in N log(N) time on average by
using the quick sort instead in step 1 of Algorithm 1. Fig. 3
illustrates the gain of Algorithm 1 over CPP.

Remark 3: Algorithm 1 can be readily applied to a
complex K-ary QP: maximizex x⊤Qx subject to xi ∈
{1, ω, . . . , ωK−1} whenever rank(Q) = 1 over C, i.e., when
Q can be decomposed as Q = vHv for some complex vector
v.

IV. SIMULATION RESULTS

We now compare the proposed algorithm with the ex-
isting methods for the discrete IRS beamforming in some
numerical examples. The transmit power is 30 dBm and the
background noise power is −90 dBm. The channel model
follows [9], [10], [20] as specified in the following. The
direct channel is modeled as h0 = 10−PL0/20 × ζ0 where
PL0 = 32.6 + 36.7 log10(d0) is the pathloss (in dB) between
the transmitter and the receiver which are d0 meters apart,
and ζ0 is the Rayleigh fading component drawn i.i.d. from
the Gaussian distribution CN (0, 1). The cascaded reflected
channel is modeled as hn = 10−(PL1+PL2)/20 × ζn1ζn2 where
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Fig. 3. Plot of the rotated channels hnejθn when N = 100 and K = 4. Al-
gorithm 1 (right) outperforms CPP (left) by making channels more clustered.

PL1 and PL2 are computed as PLi = 30 + 22 log10(d),
i ∈ {1, 2}, with d in meters denoting the transmitter-to-
IRS distance and the IRS-to-receiver distance, respectively.
The Rayleigh fading components ζn1 and ζn2 are drawn
from the Gaussian distribution CN (0, 1) independently across
n = 1, . . . , N . The locations of the transmitter, IRS, and
receiver are denoted by the 3-dimensional coordinate vectors
(50,−200, 20), (−2,−1, 0), and (0, 0, 0) in meters, respec-
tively. We compare Algorithm 1 with the exhaustive search
when N = 10, both of which achieve the global optimum.
For a larger number of REs, say N = 100, we consider the
following two baseline methods for comparison purpose:

• Closest Point Projection (CPP) [10]: Round the contin-
uous solution θn = α0 − αn to the closest point in ΦK .

• Block Coordinate Descent (BCD) [9]: Optimize the phase
shift for one RE at a time.

Fig. 4 shows the cumulative distribution of the SNR boost
when the number of phase shift choices K = 2. While the
proposed algorithm is guaranteed to attain the global optimum,
CPP and BCD are both suboptimal. Fig. 5 further shows the
case of K = 4. CPP and BCD are still suboptimal but the gaps
become smaller. Actually, the performance of CPP and BCD
are sensitive to the choice of channel model. For instance,
as previously shown in Fig. 1, the gap between CPP and the
global optimum can be arbitrarily large in certain scenarios.
In particular, if the provable ultrareliable transmission is of
crucial importance, then the proposed algorithm is a much
better choice than the existing methods.

We further consider multiple receivers when K = 2. In ad-
dition to the existing receiver at (0, 0, 0), three more receivers
are located at (0, 1, 0), (1, 0, 0), and (1, 1, 0), respectively.
Assume that a common message is intended to the four
receivers, namely the broadcast channel. We propose running
Algorithm 1 (or CPP, or BCD) for each receiver and then
choose the best {θn} to maximize the lowest SNR across the
four receivers. Thus, the time complexity of this extended
Algorithm 1 is O(NU) where U refers to the number of
receivers. The resulting cumulative distribution of the lowest
SNR by the different methods is displayed in Fig. 6. Again,
the proposed method outperforms all the other methods. Note
that BCD has quite bad performance in this multi-user case.

V. CONCLUSION

We propose a linear time algorithm that is guaranteed to
yield the globally optimal configuration of discrete phase shifts
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Fig. 4. Cumulative distribution of SNR boost when K = 2.
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Fig. 5. Cumulative distribution of SNR boost when K = 4.

for IRS in order to maximize the SNR boost, whereas the best
results in the literature are branch-and-bound algorithms and
the approximation algorithms. The proposed method provides
insights into how the phase shifts should be coordinated across
the REs from a geometric perspective. Moreover, this work
sheds light on how the notoriously difficult problem of discrete
QP can be solved for a special case.
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