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Abstract—This letter considers the problem of end-to-end
(E2E) learning for joint optimization of transmitter precod-
ing and receiver processing for mmWave downlink positioning.
Considering a multiple-input single-output (MISO) scenario, we
propose a novel autoencoder (AE) architecture to estimate user
equipment (UE) position with multiple base stations (BSs) and
demonstrate that E2E learning can match model-based design,
both for angle-of-departure (AoD) and position estimation, under
ideal conditions without model deficits and outperform it in the
presence of hardware impairments.

Index Terms—mmWave positioning, precoder optimization,
end-to-end learning.

I. INTRODUCTION

THE combination of high delay resolution at mmWave
frequencies thanks to large bandwidth and high angular

resolution thanks to large arrays is an important enabler for
accurate positioning in 5G [1] and beyond [2]. The estimation
of time-of-arrival (ToA), angle-of-arrival (AoA), and angle-
of-departure (AoD) is enabled by designed pilot signals in
time, frequency, and in space (at the base station (BS)) [3].
Such designs, in combination with advanced signal processing,
can leverage the physical resources efficiently when suitable
models are available. Traditionally, signal designs were opti-
mized for broadcast performance in order to localize all users
irrespective of their position [4]. Recently, there has been an
increased focus on spatial per-user signal design, leveraging
a priori knowledge of the user’s location in order to further
improve accuracy, both for positioning [5] and sensing [6].
Signal designs can be categorized as model-based [5], [7]–[10]
or based on artificial intelligence (AI) [11]–[14]. Model-based
signal designs can be performed based on simple heuristics
[7], or on minimizing the Cramér-Rao bound (CRB) on the
AoA, AoD, or the position via the position error bound (PEB).
After relaxation, the optimization problems can be cast in
convex forms, leading to elegant and efficient designs (e.g.,
[5] for angle estimation and [10] for positioning). From these
solutions, online adaptive precoders [8] and robust designs
based on predetermined codebooks with power allocation [9]
have been considered.

An important limitation of model-based designs is that they
require a model of the transmitter, receiver, and propagation
channel. Under model mismatch, e.g., hardware impairments
(HWIs), model-based approaches may exhibit degraded per-
formance. Moreover, in certain cases, even with perfect model
knowledge, finding optimal signal designs can be intractable.
To remedy these two shortcomings, end-to-end (E2E) learning
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Fig. 1: The MISO downlink scenario comprising I > 1 multiple-antenna BSs
and a single-antenna user equipment (UE). The UE determines its position
based on the AoD estimates with respect to the BSs.

has been gaining interest, first in the context of communication
[15] and more recently for sensing [11], but not for positioning.
The principle is to model the entire system as an autoencoder
(AE) [15] or by a combination or a reinforcement learning
transmitter and a supervised learning receiver [16], combined
with a suitable loss function (see, e.g., [11]). An application
of E2E learning for spatial precoder design can be found
in [12], where the probing codebook is implemented by a
neural network (NN) module that is jointly trained with the
beam predictor in order to predict the optimal narrow beam.
Furthermore, [13] extends the learned beamforming to inte-
grated sensing and communication (ISAC) by implementing
the transmitter as a convolutional NN able to learn the features
of historical channel and predict the next beamforming matrix.
E2E learning in the presence of HWIs for ISAC has been
proposed in [14]. AI-based solutions have also been applied
in other forms to deal with HWIs, e.g., [17] proposes a
super-resolution direction of arrival network, implemented as
a convolutional NN, that can outperform AoA estimation
methods under mutual coupling (MC).

In this paper, E2E learning is applied for the first time in
positioning, in order to jointly optimize transmit beamformers
and receiver-side algorithms, even in the presence of HWIs.
Our contributions are (i) a novel AE architecture and loss
function for AoD- and positioning-optimized signal design and
estimator design; (ii) a detailed performance comparison to
a state-of-the-art model-based benchmark and corresponding
CRBs; (iii) an evaluation under different HWIs, namely array
element inter-distance perturbation and array MC, demonstrat-
ing the robustness of the proposed E2E solution.

II. SYSTEM MODEL

A. Scenario and Signal Model
We consider a mmWave multiple-input single-output

(MISO) downlink scenario with I > 1 multiple-antenna
BSs and a single-antenna UE with unknown location p =
[p1 p2]

T ∈ P ⊂ R2, where P is the prior location information.
Each BS i has a known location qi = [qi,1 qi,2]

T ∈ R2 and
orientation ψi ∈ [−π

2 ,
π
2 ], and is assumed to be equipped with

an NTx-element uniform linear array (ULA) with λ/2 antenna
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Fig. 2: Block diagram of the proposed AE architecture dedicated to AoD
estimation, the green and blue blocks are implemented as trainable feed-
forward NNs.
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Fig. 3: Block diagram of the proposed AE architecture dedicated to position
estimation, the red block is implemented as trainable feed-forward NN.

spacing, where λ denotes the wavelength of the carrier. The
scenario is visualized in Fig. 1.

The i-th BS broadcasts a narrowband signal over T > 1
successive transmissions. We assume that BS transmissions
are orthogonalized in time or frequency [4], leading to the
observation at the UE from BS i at transmission t given by

yi,t = αi a
⊤(θi)fi,tsi,t + ni,t , (1)

where si,t denotes the pilot signal with an unit power |si,t|2 =
1, αi ∈ C and θi ∈ [−π

2 ,+
π
2 ] denote, respectively, the com-

plex channel gain and AoD from the i-th BS, a(θi) ∈ CNTx is
the array steering vector at the BS (ULA of NTx elements and
λ/2 antenna spacing), fi,t ∈ CNTx is the precoder employed
by the i-th BS at time t, and ni,t ∼ CN (0, σ2) is the additive
white noise with variance σ2, accounting also for the signal
energy. In a more compact form, (1) can be rewritten as

yi = αi (F
⊤
i a(θi))⊙ si + ni , (2)

where ⊙ represents the Hadamard product, yi =
[yi,1 . . . yi,T ]

⊤, Fi = [fi,1 . . . fi,T ] ∈ CNTx×T is the
precoder matrix of the i-th BS, si = [si,1 . . . si,T ]

⊤, and
ni = [ni,1 . . . ni,T ]

⊤. From the UE and BS positions, the
AoD is computed as

θi = atan2(p2 − qi,2, p1 − qi,1)− ψi , (3)

which accounts for the BS orientation. We assume that the
UE lies in the angular sector Ui = [θi,min, θi,max] ∈ R2 with
respect to the BS i, depending on the uncertainty region P .

B. Hardware Impairment Models
Without HWIs, the steering vectors are given by [a(θ)]k =

ejπk sin(θ), k = 0, . . . , NTx − 1. We now describe the impact
of inter-antenna element spacing perturbations and MC, which
lead to an impaired steering vector, denoted by ã(θ).

1) Antenna Element Spacing Perturbations: We introduce
the vector of inter-element distances as d ∈ RNTx−1, where
without HWIs, d = λ

21NTx−1. Here, 1NTx−1 denotes a vector
of (NTx−1) ones. With spacing perturbations caused by HWIs
[18], the distance is modeled by

d =
λ

2
1NTx−1 + γ, γk ∼ N (0, σ2

λ), (4)

so that the perturbed steering vector becomes [ã(θ)]k =
ej2πk(dk/λ) sin(θ).

2) Mutual Coupling: Following [19], we introduce a cou-
pling matrix B ∈ CNTx×NTx , which is modeled as a banded
symmetric Toeplitz matrix whose entries are collected in the
vector c = [1, c1, . . . , cM ]⊤ (0 < |cM | < . . . < |c1| < 1),
where M is the number of half-wavelength increments for

which the MC contribution is assumed non-negligible, so that
ã(θ) = Ba(θ).

III. END-TO-END LEARNING

In this section, we describe the proposed architectures, the
associated loss functions, and the model-based benchmark.

A. End-to-End Learning Architecture
We consider two separate AE architectures for AoD and

position estimation, as shown in Fig. 2 and Fig. 3, respectively.
Fig. 2 shows an E2E architecture to learn BS precoder design
(highlighted in green) and UE-side AoD estimation from each
BS (highlighted in blue). Fig. 3 shows an E2E architecture to
learn BS precoder design (highlighted in green) and UE-side
position estimation, based on the combined observation from
all BSs (highlighted in red). We assume the wireless channel
blocks are instantaneously differentiable.

1) Precoder NN: Each BS has its own precoder. The pre-
coder for BS i is implemented by an NN fϵi : R3 → CNTxT ,
with learnable parameters ϵi. Instead of directly using the AoD
uncertainty region Ui as the NN input, we find it helpful to
feed an over-determined parameterization of Ui as ξi ∈ R3,
with

ξi = [θi,min, θi,max, (θi,max − θi,min)/2]
⊤. (5)

The NN output is a real-valued vector with a size R2NTxT

that is then converted into the complex-valued precoding
matrix Fi ∈ CNTx×T . In this conversion, complex numbers
are obtained by concatenating the real and imaginary parts,
followed by a normalization with its Frobenius norm.

2) AoD Estimation NN: The AoD estimator for BS i is
implemented by another NN fµ : CT → R, with learnable
parameters µ, which takes the observation yi as the input and
generates an estimate θ̂i. Since the AoD estimation process is
identical for each BS, all I AoD estimators share the same
parameters.

3) Position Estimation NN: The position estimator is im-
plemented as fβ : CI×T → R2, with learnable parameters β,
which takes as input y = [y⊤

1 ,y
⊤
2 . . . ,y⊤

I ]
⊤ and generates

as output the position estimate p̂. Since AoD and position
are intrinsically related, this direct approach could potentially
be replaced with a two-step solution, by leveraging the AoD
estimation NNs, at a cost of possible performance loss (due
to the data processing theorem), but with possibly lower
complexity. A two-step solution also necessitates computing
the AoD uncertainties, as in [14].

B. Loss Functions
The E2E AoD estimation and E2E position estimation

require two dedicated loss functions:
• AoD estimation loss: The loss function is the mean

squared error (MSE) between the estimated and true
AoDs:

LAoD(ϵi, µ) = E{|θ̂i − θi|2} . (6)

The AoD estimators at the UE corresponding to each BS
share NN parameters, so there is no need for separate
training. Since the AoDs are limited to [−π/2, π/2),
there is no risk of wrapping effects, making the MSE
meaningful in this scenario.

• Positioning loss: The loss function is set to

Lposition(ϵ1, . . . , ϵI , β) = E{∥p̂− p∥22} . (7)
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TABLE I: NN structures.

Network Input layer Hidden layers Output layer
Beamformer fϵ 3 H,H,H,H,H,H NTxT (linear)

AoD decoder fµ 2T H,H,H,H,2H,2H 1 (tanh)
POS decoder fβ 4T H,H,H,H,2H,2H 2 (linear)

C. Benchmarks
As a comparison, each of the NNs in Fig. 2 and Fig. 3 will

be evaluated against a state-of-the-art benchmark.
1) Transmit Precoding Benchmark: The chosen precoder

matrix for the BS i is a heuristic solution to the problem of
minimization of worst-case CRB on AoD estimation over the
uncertainty region Ui. It consists of a hybrid base codebook,
comprising both directional beams and their derivatives [10]

Fheur
i = [Fdir

i , Fder
i ] ∈ CNTx×T , (8)

Fdir
i = [a(θi,0), . . . ,a(θi,T/2)] ∈ CNTx×(T/2) , (9)

Fder
i = [ȧ(θi,0), . . . , ȧ(θi,T/2)] ∈ CNTx×(T/2) , (10)

where {θi,g}T/2
g=1 represents the evenly spaced angular grid in

Ui and ȧ(θ) = ∂a(θ)/∂θ. The benchmark precoder Fb
i , defined

as = [
√
ρ1f

heur
i,1 , . . . ,

√
ρT f

heur
i,T ] where f heur

i,t denotes the t-th
column of Fheur

i , is obtained by finding the power allocation
vector ρ = [ρ1 . . . ρT ]

⊤ that minimizes the CRB on AoD
estimation [10]. Then, Fb

i is normalized to have unit Frobenius
norm; the same operation is implemented by the normalization
layer at the output of the beamformer NN, ensuring the usage
of the same total power between the two approaches.

2) AoD Estimation Benchmark: The UE implements max-
imum likelihood (ML) estimation, based on (2), yielding [20]

θ̂b
i = arg min

θi∈Ui

|yH
i F

⊤
i a(θi)|2

∥F⊤
i a(θi)∥2

. (11)

3) Position Estimation Benchmark: Given the AoD esti-
mates from (11), we formulate the measurement likelihood
p(θ̂b

i |θi) as p(θ̂b
i |θi) ∝ exp(−(θ̂b

i − θi)2/(2σ2
i )), where σ2

i can
be obtained from the CRB of the AoD estimator at BS i. Then,
it immediately follows that the ML estimator is

p̂b = argmin
p∈P

I∑
i=1

1

2σ2
i

(θ̂b
i + ψi − atan2(qi,p))

2 . (12)

IV. SIMULATION RESULTS

A. Simulation Parameters
We consider a scenario with I = 2 BSs, located at

q1 = [−5, 0] and q2 = [3, 0] with orientations ψ = [0◦, 10◦],
each with NTx = 32 antenna elements. The number of
transmissions is set to T = 20 with pilots si,t = 1, and
the width of Ui varies uniformly between 10◦ and 20◦. The
channel gains are set based on a target signal-to-noise ratio
(SNR), i.e., SNRi = |αi|2/σ2, and the SNRs range from −5
dB to 30 dB. The phase of αi is uniformly distributed in [0, 2π]
and the wavelength is set to 10.7 mm (corresponding to a
carrier frequency of 28 GHz).

For modeling the HWIs, we generate the
MC matrix B as a banded symmetric Toeplitz
matrix built from the coefficients vector c =
[1, 0.9e−jπ/3, 0.75ejπ/4, 0.55e−jπ/10, 0.25e−jπ/6]⊤, while
for generating the antenna element spacing perturbations, we
set σλ = λ/100.

B. Autoencoder Training
The mini-batch size S is set to 10000 and we train with

mean AoD uniformly distributed in [−60◦, 60◦] and Ui’s width

uniformly distributed within [10◦, 20◦]. In terms of positioning
AE, the training follows a similar rationale: each minibatch’s
sample is associated to a true position p, modelled as a 2-D
uniform random variable within a 10 m2 area in front of the
BSs. The observations yi are then generated by calculating θi
according to (3). Then, the mean of Ui is set to θmid,i = θi+νi,
where ν is a random variable varying uniformly within the
interval [−15◦, 15◦], as the a priori information induces a 30◦

wide Ui on both BS. The beam former NN input is then defined
as ξi = [θmid,i − 15◦, θmid,i + 15◦, 15◦]⊤.

Based on a hyper-parameter search, which aimed to deter-
mine the smallest NN with the best possible performance, the
number of hidden neurons ‘H’ is set to 256 and each layer
uses a rectified linear unit (ReLU) activation function. Further
details are provided in Table I. We also note that in practical
applications, it may be of interest to use NN architectures with
less complexity (i.e., fewer layers and/or neurons per layer)
by sacrificing some accuracy. In terms of optimizer, we use
the Adam optimizer [21] with a learning rate controlled by a
scheduler whose starting value is 0.001 and lower bound is at
10−8. We have found that re-training the systems with fixed
SNR ranging from −5 dB to 30 dB yields better results than
using a different SNR in every batch or sample.

C. Results
1) Without Hardware Impairments: Fig. 4-(a) shows the

aggregated response ∥F⊤a(θ)∥2 of the AoD-optimized learned
precoder F = Fi for the two BSs for angle uncertainty
intervals U1 = [40◦, 60◦] and U2 = [−30◦,−20◦], along with
that of the benchmark precoder F = Fb

i . Despite the AE
having no knowledge of the benchmark precoder, the learned
precoder has a strong similarity in terms of the aggregate
response1. Fig. 4-(b) shows the AoD root mean squared error
(RMSE) performance vs. SNR for BS 1, along with the
corresponding CRBs2. The implicit power allocation process
carried out by the AE in finding Fi is able to achieve the same
performance bounds obtained through the explicit optimization
process to determine Fb

i . Furthermore, both approaches are
able to attain the CRB at an SNR around 10 dB. This trend
is confirmed for positioning as well: Fig. 4-(c) shows that
the E2E solution can reach the same PEB as its model-based
counterpart, attaining it around an SNR of 5 dB.

2) Results under Hardware Impairments: Next, we show
the impact of model mismatch caused by HWIs on the AoD
and position estimation, while revealing the capability of the
proposed AE to compensate for the resulting performance
degradation.

First, we consider array element spacing perturbations,
shown in Fig. 5 and Fig. 6. The observations are generated
using the model from Section II-B1, while the model-based
benchmark is unaware of this impairment. From Fig. 5, we
observe that the AE precoder responses are less similar to the
benchmark, compared to the case without HWI: this difference
in the precoders can be interpreted as an active adaptation to
ã(θ). This is also seen in Fig. 6, which shows the AoD and
positioning RMSE. In particular, at medium and high SNR

1The position-optimized precoders exhibit similar trends (results not
shown for space reasons).

2The benchmark CRB and the AE CRB are computed by employing
Fb

i and Fi as the precoding matrices, respectively [22, Ch. 3]. Since the
CRB depends on the transmit signal, not on the receiver processing, different
precoders may lead to different CRB values. Additionally, we note that under
HWIs the steering vector model used in the CRB computation is the true one,
i.e., ã(θ).
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Fig. 4: Results without HWIs: Performance comparison of the AEs with the
benchmark.
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Fig. 5: Aggregate response of the precoders Fi compared against the
respective benchmarks Fb

i under array element spacing perturbations with
σλ = λ/100 and for SNR = 10 dB.

values, the benchmark suffers from significant performance
penalties due to mismatch between the true model ã(θ) and
the employed model a(θ), in line with the theoretical results
from [23]. The AE is able to attain its CRB in both AoD and
position estimation, verifying the effectiveness of the proposed
architecture under model imperfections. Moreover, Fig. 7 plots
the position RMSE with respect to σλ for a fixed SNR of
20 dB, which further confirms the robustness of the E2E
solution. Specifically, the positioning AE can achieve the PEB
regardless of σλ, whereas the model-based approach leads to
a performance penalty that increases with σλ.

Second, we evaluate the impact of MC, where the ob-
servations are now generated according to the model from
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Fig. 6: RMSE performance assessment in the presence of array element
spacing perturbations.
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Fig. 7: Positioning RMSE performances at an SNR of 20 dB for increasingly
large array element spacing perturbations σλ.

Section II-B2. In Fig. 8, the precoder responses are shown,
which suggests that the proposed learning-based approach
can naturally adapt its precoder to deal with HWIs, leading
to a beampattern that is different from that of the model-
based approach. Fig. 9 illustrates the RMSEs and the CRBs
of the considered strategies under the impact of MC. It is
seen that the precoder generated by the AE can achieve the
same performance bound as the model-based benchmark. In
terms of RMSE, the MC prevents the benchmark estimator
from attaining its bound, while the proposed AE can suc-
cessfully reach the theoretical limits. For positioning with the
benchmark estimator, the MC induces an error floor effect
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Fig. 8: Aggregate response of the precoders Fi compared against the respec-
tive benchmarks Fb

i under MC for SNR = 10 dB.
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Fig. 9: RMSE performance assessment in presence of MC.

-0.001-0.01-0.1-0.3-1-5

10−2

10−1

ζ

R
M

SE
[m

]

benchmark RMSE AE RMSE
benchmark PEB AE PEB

Fig. 10: Positioning RMSE performances at an SNR of 20 dB for different
magnitudes of MC.

beyond 10 dB, as expected from [23]. Further insights into
the effects of MC are provided in Fig. 10 (using the same
RMSE scale as Fig. 7), where we model the MC coupling
coefficients vector as |ck| = exp(ζk), k ∈ {0, . . . , 4} and
retain the phase of the original c reported in Section IV-A. The
resulting matrix B is normalized to have the same Frobenius
norm as the matrix B built from the vector c reported in
Section IV-A. Similar to Fig. 7, the E2E solution is able
to attain its performance bound, whereas the model-based
solution shows a performance penalty inversely proportional to
the decay parameter ζ. Comparing with Fig. 7, we do however
note that the impact of MC is less severe than array spacing
perturbations.

V. CONCLUSIONS

We have addressed the problem of positioning and AoD
estimation at a UE, based on downlink MISO transmission.
To this end, we propose a novel AE architecture with ju-
diciously designed inputs and loss functions, which jointly
learns optimized precoders and receivers under UE location
uncertainty. We have compared the AE performance against
model-based precoder designs and ML estimators. Through
numerical simulations, the learned precoders are shown to
yield the same bounds as their model-based counterparts.
Without model imperfections, the learned receiver can attain
the same RMSE level as the ML estimator. In the presence

of HWIs, the learned receiver can significantly outperform the
ML estimator, especially at high SNRs and large degree of
inter-element perturbations and MC, showcasing the robust-
ness of the proposed AE architecture against model deficits.
Possible future work include extension to 3D scenarios and
investigation of two-step architectures that exploit the relation
between AoD and position (i.e., (12)) to jointly design their
corresponding NN estimators for reduced complexity.
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