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How to Define the Propagation Environment
Semantics and Its Application in Scatterer-Based

Beam Prediction
Yutong Sun, Jianhua Zhang, Li Yu, Zhen Zhang, Ping Zhang

Abstract—In view of the propagation environment directly
determining the channel fading, the application tasks can also
be solved with the aid of the environment information. Inspired
by task-oriented semantic communication and machine learning
(ML) powered environment-channel mapping methods, this work
aims to provide a new view of the environment from the semantic
level, which defines the propagation environment semantics (PES)
as a limited set of propagation environment semantic symbols
(PESS) for diverse application tasks. The PESS is extracted
oriented to the tasks with channel properties as a foundation. For
method validation, the PES-aided beam prediction (PESaBP) is
presented in non-line-of-sight (NLOS). The PESS of environment
features and graphs are given for the semantic actions of channel
quality evaluation and target scatterer detection of maximum
power, which can obtain 0.92 and 0.9 precision, respectively, and
save over 87% of time cost.

Index Terms—propagation environment semantics, semantic
mapping, propagation semantic symbols extraction, beam pre-
diction.

I. INTRODUCTION

W ITH the ever-increasing diverse scenes and commu-
nication requirements, predictive 6G Network with

environment sensing enhancement is becoming promising
[1][2]. Powered by advanced sensing techniques, environment
reconstruction can be deployed, and the detailed environment
information [3][4] enables the applications with precision
improvement. However, the demanded new technologies with
increasingly-high data rates require online predictions for
dynamic environments, especially in non-line-of-sight (NLOS)
scenarios.

Powered by natural language processing (NLP) and com-
puter vision (CV) techniques that have lots of potential in pro-
cessing intelligent tasks, semantic communication [5]-[7] has
drawn significant attention, which mainly relies on semantic-
based information conversion between different content to
achieve efficient, intelligent interaction. Semantic communi-
cation focuses on the content between the transmitter (Tx)
and receiver (Rx), which considers the difference between the
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meaning of the transmitted messages and that of recovered
ones for different semantic tasks.

Similar to the semantic pipeline of semantic communication,
the propagation environment and application task also need se-
mantic (one-to-many) mapping that carries the meaning rather
than the object (one-to-one) mapping without understandable
information because online applications do not always perform
with every environment changing. In [8][9], the cluster nuclei
is proposed by directly mapping the physical environment to
the channel. For representing the propagation environment
from different perspectives, the environment features and
graph representations are proposed in [10] and [12], which
can assist the efficient channel prediction in dynamic environ-
ments. Hence, we believe that defining the propagation envi-
ronment semantics (PES) by considering the different environ-
ment representations, i.e., propagation environment semantic
symbols (PESS), is crucial for highly efficient prediction by
leveraging the environment information directly.

In this paper, PES is defined as a PESS set, where the set is
limited because of considering the channel with limited prop-
erties as the basis. The PESS are deconstructed environment
representations at a semantic level for prediction applications.
Therefore, semantic mapping can be built between the PES
and applications, and the specific task can be implemented by
the related PES. For beam prediction implementation in NLOS
scenarios, the environment features and graph representations
are considered the PESS for the semantic actions: channel
quality evaluation and target scatterer detection. Compared
with the method that predicts the beam indices and requires
the extra process of beam searching [4], the proposed method
can provide the scatterer with maximum power directly and
further empower other advanced techniques.

II. PROBLEM FORMULATION

The wireless channel is the essential intermediate bridge for
the semantic mapping between the propagation environment
and the application tasks. Therefore, the task-oriented PES can
be defined by the semantic deconstruction of the environment,
which considers the channel properties. Then, the tasks can
be employed based on the machine learning (ML) method, as
shown in Fig. 1.

A. Task-Oriented Environment Deconstruction
According to the channel-task prior knowledge, the con-

cerned channel properties are impacted by different environ-
mental information. Diverse properties or property groups
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Fig. 1. Task-oriented PES construction process.

are required to meet different application tasks, where the
properties include large-scale parameters (LSP): path loss,
delay spread (DS), azimuth angle spread of arrival (ASA),
azimuth angle spread of departure (ASD), zenith angle spread
of arrival (ZSA), zenith angle spread of departure (ZSD),
small-scale parameters (SSP): power, delay, azimuth angle
of arrival (AOA), azimuth angle of departure (AOD), zenith
angle of arrival (ZOA), zenith angle of departure (ZOD), and
characteristic: line-of-sight (LOS) blockage.

The environment is deconstructed to meet the applications
directly at the semantic level. Following the environment-
channel prior knowledge, the environment can be represented
at large-scale and small-scale levels to meet the environment
information requirement of different channel properties. The
large-scale level includes the layout and global environment
representations for LSP, and the small-scale level consists of
local and target representations for SSP and LOS blockage.

B. PES Construction with PESS Extraction

The incurred semantics-based action of the application task
depends on diverse background information, which decides
how to interpret the intermediate information. As for the
target task, environment information is not equally important
to the specific semantics needs, so the task-related information
should be abstracted instead of retaining all of it. As a result,
the PES can be defined as the semantic variable that reflects
the semantic changes.

Unlike the physical environment without specific interac-
tions between objects, the propagation environment should be
described with the preset Tx, Rx, and propagation mechanism.
The radio waves encountered with the scatterers can produce
diverse propagation paths caused by various significant propa-
gation mechanisms, such as LOS transmission, reflection, and
diffraction. Therefore, the geometry relationship-correlated
propagation mechanisms can be regarded as the considerable
environment-channel prior knowledge for PESS extraction.

According to the propagation mechanisms, the essential
geometric attributes that affect the paths include position,
dimensions, and layout. Thereby, the fundamental PESS
can be extracted as features PESSfeature, linear vectors
PESSvector, and non-linear graphs PESSgraph to represent

the environment characteristics or global structure at small-
scale or large-scale level, as shown in Fig. 2. Its expandable
when extra data form are raised and the basis PES can be
presented as the set of the PESS, i.e.,

PESS = {PESSfeature, PESSvector, PESSgraph}. (1)

III. PES FOR BEAM PREDICTION

A beam prediction case is given for method verification to
show how the PES works on the prediction tasks.

A. Task-oriented Channel Properties

Beam prediction generally aims to improve the communi-
cation quantity by switching to a better target. Thus, two task
actions should be considered for PES-based beam prediction:
channel quality evaluation and target scatterer prediction, as
shown in Fig. 2. Therefore, the respective channel properties
can be analyzed according to the requirements.

The LSP can reflect channel quality evaluation related
to the performance [10], where the parameter types should
not be considered in detail for coarse semantic mapping. In
addition to the LSP, the blockage characteristic of LOS also
has a significant impact, where the blockage would attenuate
the performance. Therefore, the critical channel properties of
quality evaluation action Aevaluation can be expressed as

Aevaluation = {LSP,Blockage}. (2)

Once it is determined that the current channel is unqualified,
the target scatterer detection should be employed according
to the maximum power, which is an SSP-related prediction
problem. Hence, the channel properties of target scatterer
prediction Adetection can be denoted by

Adetection = {Pj , j ∈ J}, (3)

where Pj is the power of the j-th path and total J paths.

B. Task-Oriented PES Construction

According to the channel properties, the environment in-
formation influencing the concerned characteristics and pa-
rameters should be represented from global and structural
aspects for two different semantic actions implementation.
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Fig. 2. The process of action decomposition and corresponding PESS extraction.

However, for practice applications, environment changes might
cause propagation path changes but not significant statistics
changes. Hence, the environment is represented for all the
channel properties instead of each parameter or characteristic.
The primary information of Tx, Rx, and internal scatterers
are utilized as original data, which are environment-isolated
information with no scene constraints.

PESS of Features: For the simultaneous description of the
blockage characteristics and statistical LSP, the blockage and
global features are extracted and constructed into an exclusive
PESS representation, as shown in Fig. 2.

The degree of LOS occlusion is leveraged as a PESS
for blockage description. In practice, diverse methods can
be utilized for PESS feature calculation according to the
geometric relationship between the Tx, Rx, and the scatterer.
There, we use the method mentioned in [10], which obtains the
blockage feature for each scatterer by describing the extent to
which LOS and scatterers intersect. Specifically, the distance
di between the center point of i-th scatterer and the LOS is
calculated according to the position coordinates. Then bi can
be defined as the ratio of the di and the width of the i-th
scatterer wi. Then the maximum blockage feature is selected
as the environment-level PESS, which can be denoted as

PESSblockage = max{b1, b2, . . . , bn}, (4)

where there are n internal scatterers.
As for the LSP representation, the PESS that contains the

general environment information should be extracted. Because
of the uncertain parameter requirement, the embedding feature
should be utilized rather than the certain calculated feature.
The matrix of original global representation PESSglobal is
constructed by the information of the Tx, Rx, and internal
scatterers. In view of the 3-dimensional coordinates vector
of Tx and Rx while the 6-dimensional vector for scatterers,
0 paddings are utilized to fill the Tx and Rx row to deal
with the inconsistency of dimensions. In which PESSglobal ∈
R(n+2)×6 for the environment sample with n scatterers.

Therefore, the final PESS can be obtained by combin-
ing the matrix PESSglobal and the blockage feature value.
To concatenate the two features of different dimensional,
PESSglobal should be first converted into a 1-dimensional
vector. The commonly used unsupervised dimensionality re-
duction algorithm: principal component analysis (PCA), is
utilized for compression [11]. Hence, the compressed feature
PESS

′

global ∈ R1×6 is obtained. Finally, the blockage and
global feature can be concatenated as a whole environment
feature, i.e., PESSevaluation ∈ R1×7.

PESS of Environment Graph: Unlike the overall channel
properties, which the linear feature can represent, the envi-
ronment layout needs a nonlinear representation. The graph
structure data in non-Euclidean space is utilized to describe the
structure information of the propagation environment. Specif-
ically, the environment graph is constructed as the PESS for
each scatterer that is to be classified. The graph is constructed
by building edges of the pending scatterer node and other
nodes to mark the pending scatterer [12].

Therefore, let PESSgraph = (V,E) denotes the graph with
nodes V , edges E, and node feature vectors X . Where V
consist of Tx node vt, Rx node vr, and n scatterer nodes for
the graph of n scatterers, i.e., V = {vt, vr, v1, v2, . . . , vn},
as shown in Fig. 3. Meanwhile, E can be expressed as
E = {(vt, vp), (vr, vp), . . . , (vn, vp), n 6= p}. For Tx and Rx
node, the position coordinates are used as feature vectors,
that is, Xt = (xt, yt, zt) and Xr = (xr, yr, zr). The center
coordinates (xi, yi, zi), long li, width wi, and height hi
formed the feature vector of i-th scatterer node, which can
be expressed as Xi = {(xi, yi, zi, li, wi, hi), i ∈ n}.

Fig. 3. The PESSgraph of three scatterers and pending scatterer vp.

IV. PESABP

After obtaining the essential PES of the beam prediction, the
PESaBP can be implemented, i.e., channel quality evaluation
and target scatterer detection can be achieved by leveraging
the corresponding PES directly. The proposed PESS of en-
vironment features can predict the channel quality, and the
constructed PESS of environment graphs can detect the target
scatterer for beam prediction.

A. PES-Based Channel Quality Evaluation

As for dividing the quality into qualified and unqualified,
the quality evaluation can be solved as a binary classification
problem, differentiating the unqualified as class 0 and the
qualified quality as class 1. In which the quality threshold can
be set for diverse requirements according to the cumulative
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probability of the received power. According to the low-
dimensional features for PES representation, the support vector
machine (SVM) is built as the classification model rather
than the neural networks requiring more learning cost with
no significant accuracy gain.

The SVM [13] is a classic ML algorithm to maximize a
particular mathematical function for a given collection of data
that performs classification by constructing the hyperplane.
The kernel function is the crucial calculation that enables
the SVM to map the data from a low-dimensional space to
a higher-dimensional space, which can be denoted by

〈a1 · a2〉 ← K(ai, aj) = 〈Φ(ai) · Φ(aj)〉 , (5)

where Φ is a nonlinear function that maps the input space into
the feature space and K is the kernel function.

Four classical kernel functions are used for nonlinear model
learning, including linear, polynomial, sigmoid, and radial
basis kernels. In which the linear and polynomial kernel
function can be described as

K(ai, aj) = 〈ai, aj〉 ,K(ai, aj) = (1 + 〈a1, a2〉)d, (6)

where d is the degree of the kernel function. The radial basis
kernel can map the primitive features to infinite dimensions,
which can be expressed as

K(ai, aj) = exp(−‖ai − aj‖
2σ2

). (7)

While the sigmoid kernel function comes from the neural
network, which is generally denoted by

K(ai, aj) = tanh(γ 〈a1, a2〉+ r), (8)

where the γ and r are the kernel parameters.

B. PES-Based Target Scatterer Detection

In the case of an unqualified channel, the beam should be
switched to the better direction, i.e., the target scatterer with
maximum power should be detected. Hence, the issue can be
considered a scatterer classification mission by classifying the
scatterers into two classes, i.e., scatterer with maximum power
Smax (class: 1) and other scatterers (class: 0). The graph neural
network (GNN) is constructed by utilizing the net-architecture
in [14]. The GNN is the graph learning method for the graph
data process. In which the Aggregate(·) and Combine(·)
are the critical operators for modeling, where the former serves
as the aggregation function of the neighborhood information,
and the latter passes the aggregated node feature to a learnable
layer to generate node embedding for the GNN layer.

Let a(p)v stand for the nodes representing the structural
information captured within the p-hop network neighborhood
in k iterations of aggregation. Hence, the p-th layer can be
denoted by

a(p)v = Aggregate(p)({h(p−1)
u : u ∈ N (v)}). (9)

h(p)v = Combine(p)(h(p−1)
v , a(p)v ), (10)

where h(p)v is the feature vector of node v at the p-th iteration,
for p = 1, 2, · · · , P and N (v) is a set of nodes adjacent to

v. The h(0)v is initialized with Xv . As for the model, 8 MLPs
are constructed. For each MLP, 6 hidden layers are deployed,
where 1024 neurons are set for each layer. Finally, scores of
two classes can be obtained by a fully-connected network.

However, the classification is independently deployed for
each internal scatterer. For the unique detected scatterer of one
environment, the scatterer classification results of a specific
environment are ranked by the classification probability. In
practice, the scatterer with the top class 1 probability is
selected, or the scatterer with the minimum class 0 probability
when all classified 0 is considered the final prediction result.

V. SIMULATION AND RESULTS

A. Simulation Settings

The environment samples with random scatterer changing
are considered. The 3D modeling software Blender and the
ray-tracing tool WirelessInSite are utilized for the traceable
environment, and channel generation [10] as shown in Fig. 4.
The propagation area’s length, width, and height are set at 15,
10, and 3 m, and the Tx and Rx are set on the two sides of the
diagonal. Regular scatterers with random numbers, positions,
and dimensions are generated. The dataset includes samples
with J ∈ [3, 12] numbers of internal scatterers.

Fig. 4. A simulated sample with a random scatterer layout.

The training and testing data are a random selection of
samples with different numbers of scatterers for generalization
verification of the prediction method, in which the samples of
the testing data consist of 4, 8, and 12 scatterers, and the
rest samples are training data. The corresponding channels at
28 GHz are produced using the omnidirectional antenna, and
six-order reflections and one-order diffraction are set. After
selecting the NLOS samples, there are 1475 and 265 samples
in training and testing data.

B. Performance Metrics

As for the binary classification problem, the precision and
receiver operating characteristic curve (ROC) are given for
performance analysis with the device of one NVIDIA GeForce
RTX 2080. The precision pre can be calculated as

pre =
TP

TP + TN
(11)

where true-positive (TP) and true-negative (TN) are the true
samples classified as positive and negative.

The ROC is plotted with a false-positive rate (FPR) and
true-positive rate (TPR), which can be expressed as

FPR =
FP

FP + TN
,TPR =

TP

TP + FN
, (12)
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where the false-positive (FP) and false-negative (FN) denote
the false samples that be predicted with positive and negative.
The crucial feature of ROC is the area under curve (AUC),
where the closer the AUC is to 1, the better the performance.

C. Quality and Target Scatterer Classification Results

The quality threshold is set of 60% cumulative distribution
function (CDF) of received power. The SVM models with
linear, polynomial, radial basis, and sigmoid kernel functions
get 0.88, 0.92, 0.89, and 0.53 precisions, respectively. In
which the polynomial kernel offers the best result. Then,
according to the precision calculation, we can obtain the
scatterer classification’s accuracy is 0.89. The ROC and AUC
of the SVM and GNN-based model are shown in Fig. 5,
indicating the identity ability.

Fig. 5. The ROC curve and AUC of quality and scatterer classification.

Moreover, based on the scatterer classification results, the
target scatterer can be selected for an environment sample by
the rank of classification scores. Moreover, the beam indices
prediction in [4] is tested by utilizing the code at [15] for
comparison. In which the top view images are generated
by converting the coordinates of the dataset and setting the
scatterers with diverse grayscale according to the different
heights. The digital architecture system is employed with 8
antennas corresponding to 8 classes. The results are indicated
in TABLE I.

TABLE I
THE PRECISION COMPARISIONS

Method Configuration Precision
Proposed Target Scatterer Detection \ 0.90

Beam Indices Prediction in [4]
Top-1 0.51
Top-2 0.72
Top-3 0.84

The precision of the proposed method is around 0.9, while
the top-3 precision of the method in [4] is around 0.84,
which can hardly adapt to changing environments using few
training data. Moreover, the testing time is compared for cost
evaluation in TABLE II. The results illustrate that the proposed
PESaBP method can save over 87% time cost, which can
support the online prediction for changing environments.

TABLE II
THE COMPARISIONS OF TESTING TIME

Action Testing time (ms)
Proposed Channel Quality Evaluation 4.7
Proposed Target Scatterer Detection 0.33

Beam Indices Prediction in [4] 41

VI. CONCLUSION AND FUTURE WORK

This paper is interested in the PES definition, in which
The PES is considered the task-oriented environment repre-
sentation set according to the concerned channel properties.
Therefore, the semantic mapping between the propagation
environment and applications can be built directly. Simulation
results of the PESaBP method indicate the efficiency and
precision in NLOS scenarios, which have the potential to
support online prediction in the ever-changing environment.
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