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MIMO-ISAC: Performance Analysis and Rate

Region Characterization

Chongjun Ouyang, Yuanwei Liu, and Hongwen Yang

Abstract

This article analyzes the performance of sensing and communications (S&C) achieved by a multiple-

input multiple-output downlink integrated S&C (ISAC) system. Three ISAC scenarios are analyzed,

including the sensing-centric design, communications-centric design, and Pareto optimal design. For

each scenario, diversity orders and high signal-to-noise ratio slopes of the sensing rate (SR) and

communication rate (CR) are derived to gain further insights. Numerical results reveal that i) ISAC

achieves the same diversity order as existing frequency-division S&C (FDSAC) techniques; ii) ISAC

achieves larger high-SNR slopes and a broader SR-CR region than FDSAC.

Index Terms

Integrated sensing and communications (ISAC), performance analysis, sensing-communication rate

region.

I. INTRODUCTION

Integrated sensing and communications (ISAC) is a promising enabler for the development

of the six-generation (6G) and beyond wireless networks [1]. The main feature of ISAC is to

allow communications and sensing to share the same time-frequency-power-hardware resources.

Compared with existing frequency-division sensing and communications (FDSAC) techniques, in

which sensing and communications (S&C) require isolated frequency bands as well as hardware
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infrastructures, ISAC is envisioned to be more spectrum-, energy-, and hardware-efficient [1]–

[3]. Due to these attractive characteristics, ISAC has received considerable attention from both

industry and the research community [1]–[7].

From the perspective of information, the S&C performance of ISAC systems is evaluated by

two metrics including the sensing rate (SR) and the communication rate (CR) [3]. Specifically,

the SR measures how much environmental information can be extracted from the sensing echoes,

whereas the CR measures how much data information can be recovered from the received

symbols [3]–[5]. These two metrics evaluate the fundamental information-theoretic limits of

the S&C performance achieved by ISAC. With this in mind, the authors in [4] optimized the

weighted sum of the CR and the SR in a downlink multiple-input multiple-output (MIMO)

ISAC system with a single communication user terminal (UT). This work focused more on the

dual-functional S&C (DFSAC) precoding design and neglected the discussion of basic system

insights. As an advance, the authors in [5] extended the work in [4] to a multiuser case and

discussed the high signal-to-noise ratio (SNR) slopes of the CR and SR as well as an inner bound

of the SR-CR region. Although these two works have made great progress in understanding the

SR and CR in ISAC systems, there are still many important unsolved problems. For example, the

Pareto boundary, i.e., the upper-right boundary of the rate region that contains all the achievable

SR-CR tuples [8], has not been characterized. For another example, a rigorous comparison

between the SR-CR regions achieved by ISAC and FDSAC is still missing. It is worth noting

that the Pareto boundary and rate region can be exploited to evaluate the S&C performance limit.

Hence, characterizing the Pareto boundary and rate region is of great theoretical importance in

understanding the superiority of ISAC over FDSAC.

This letter analyzes the S&C performance of a downlink MIMO-ISAC system. The main con-

tributions are summarized as follows: i) We provide DFSAC precoding design for three scenarios,

including the sensing-centric (S-C) design (maximizing the SR only), the communications-centric

(C-C) design (maximizing the CR only), and the Pareto optimal design (characterizing the Pareto

boundary of the SR-CR region); ii) For each scenario, we analyze the outage probability (OP)

of the CR and show that ISAC yields the same diversity order as FDSAC; iii) For each scenario,

we derive the high-SNR slopes of the CR and SR and show that ISAC provides larger high-

SNR slopes and thus more degrees of freedom than FDSAC in terms of both sensing and

communications; iv) We provide a rigorous comparison between the SR-CR regions achieved

by ISAC and FDSAC and prove that ISAC achieves a broader SR-CR region than FDSAC.
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Fig. 1: Illustration of a downlink MIMO-ISAC system.

II. SYSTEM MODEL

Consider a downlink MIMO-ISAC system as shown in Fig. 1, where a DFSAC base station

(BS) is communicating with a set of M UTs, while simultaneously sensing the targets in its

surrounding environment. The BS has M transmit antennas and N receive antennas and each

UT m ∈ M = {1, . . . ,M} has K receive antennas. The reason why the number of UTs is set

to the same value as that of the BS transmit antennas will be detailed in Section III-A. Let X =

[x1 . . .xL] ∈ CM×L be a DFSAC signal matrix, with L being the length of the communication

frame/sensing pulse. From a sensing perspective, xl ∈ CM×1 for l ∈ L = {1, . . . , L} represents

the sensing snapshot transmitted at the lth time slot. For communications, xl is the lth data

symbol vector. Under the framework of MIMO-ISAC, the signal matrix X can be written as

X = WS = PΞ1/2S, (1)

where W = PΞ1/2 ∈ C

M×M is the precoding matrix, P = [p1 . . .pM ] ∈ C

M×M stores the

normalized precoders with ‖pm‖2 = 1, ∀m, Ξ = diag{p1, . . . , pM} � 0 is the power allocation

matrix subject to the power budget
∑M

m=1 pm ≤ p, and S = [s1 . . . sM ]H ∈ C

M×L contains M

unit-power data streams intended for the M UTs. Here, sHm ∈ C1×L and
√
pmpm ∈ CM×1 denote

the data stream dedicated for UT m and the associated precoding vector, respectively. The data

streams are assumed to be independent with each other so that L−1SSH ≈ IM [6].

A. Communication Model

The observation at each UT m ∈ M can be written as

Yc,m = Hm(
√
pmpms

H

m +
∑

m′ 6=m

√
pm′pm′sHm′) +Nc,m,

where Hm ∈ C

K×M is the communication channel matrix and Nc,m ∈ C

K×L is the additive

white Gaussian noise (AWGN) matrix. It is assumed that all the communication links shown

in Fig. 1 suffer Rayleigh fading. In this case, Nc,m and Hm are mutually independent complex
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Gaussian matrices, whose elements are independent and identically distributed (i.i.d.) with zero

mean and unit variance. We consider that each UT m has access to its effective channel Pm =

HmP ∈ CK×M , where Hm can be estimated by UT m through downlink pilots and P can be

fed to the UTs from the BS via an error-free link. As will be shown later, P is independent

of the instantaneous channel realization {Hm}∀m, which can be fixed for an extended period

of time. Accordingly, the system overhead due to the feedback of P could be negligible. We

further assume that the channel estimation error is negligible to characterize the performance

bound. Imperfect channel acquisition can lead to extra interference and thus reduce the CR,

whose influence will be detailed in our future works.

After receiving Yc,m, UT m adopts a normalized equalizer vm ∈ C

K×1 to eliminate the

inter-user interference (IUI). By assuming K ≥ M1, we have vm = qm

‖qm‖
, where qm denotes

the mth column of matrix Pm

(

PH

mPm

)−1
. It is worth noting that the assumption of K ≥

M generally holds for some low-cost and low-power small cells where the BS has the same

number of antennas as UTs, or even less. Accordingly, the received SNR at UT m is given

as γm = pm|vH

mHmpm|2. In order to reduce system overhead caused by acquiring channel

state information (CSI) at the BS, it is assumed that the BS does not have the global CSI

{Hm ∈ C

K×M}∀m and only {vH

mHm ∈ C

1×M}∀m2 is fed back to or estimated by the BS for

power control. In this case, P is designed regardless of the global CSI {Hm}∀m, and Ξ can be

optimized to improve the CR. After optimizing Ξ, the BS should feed pm to UT m for decoding.

The sum CR reads Rc =
∑M

m=1 log2 (1 + γm).

B. Sensing Model

By transmitting X to sense the targets, the BS observes the following reflected echo signal

matrix at its receiver: [5]–[7]

Ys = GX+Ns, (2)

where Ns ∈ C

N×L is the AWGN matrix with each entry having zero mean and unit variance,

and G = [g1 . . .gN ]
T ∈ C

N×M represents the target response matrix with gn ∈ C

M×1 for

1When K < M , the IUI cannot be thoroughly eliminated, thus yielding a reduced sum CR. Besides, in this case, maximizing

the sum CR requires the joint design of power allocation and interference cancellation, which is generally NP-hard. This problem

is still open and left for future work.

2We comment that the price of the overhead reduction mainly lies in the calculation of vm at each UT m. In fact, the involved

computational complexity is at the same order as that in designing a zero-forcing-based equalizer, which is acceptable for most

communication terminals.
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n ∈ N = {1, . . . , N} representing the target response from the transmit antenna array to the

nth receive antenna. The target response matrix is modeled as [4]–[7]

G =
∑

t
βta (θt)b

H (θt) , (3)

where βt ∼ CN (0, σ2
t ) is the complex amplitude of the tth target with σ2

t representing the

average strength, a (θt) ∈ C

N×1 and b (θt) ∈ C

M×1 are the associated receive and transmit

array steering vectors, respectively, and θt is its direction of arrival. By considering that the

receive antennas at the BS are widely separated, we have gn ∼ CN (0,R) for n ∈ N and

E

{

gng
H

n′

}

= 0 for n 6= n′ [7].

Compared with the instantaneous target response G, the correlation matrix R ∈ C

M×M are

rather fixed for a longer period of time. It is not difficult for the BS to obtain R through long-

term feedback. In the sequel, we assume that the BS has access to R. This is a commonly

used assumption in the literature, see, e.g., [7]. Besides, we assume that none of the targets are

registered communication UTs in the system. If the targets are also communication UTs, then

we can exploit the sensed results to assist the communications, which is beyond the scope of

this work.

Essentially, the aim of sensing is to extract environmental information contained in G, e.g.,

the direction and reflection coefficient of each target, from the reflected echo signal Ys [4]–[7].

Particularly, the mutual information (MI) between Ys and G conditioned on the DFSAC signal

X characterizes the information-theoretic limits on how much environmental information can be

extracted, which is also referred to as the sensing MI [7]. On this basis, from an information-

theoretic perspective, we adopt the SR as the performance metric of sensing, which is defined

as the sensing MI per unit time [3]–[5]. Assuming that each DFSAC symbol lasts 1 unit time,

we write the SR as Rs = L−1I (Ys;G|X), where I (X ; Y |Z) denotes the MI between X and

Y conditioned on Z.

Given the MIMO-ISAC framework, we intend to analyze its S&C performance by investigating

the CR Rc and SR Rs. Note that both Rc and Rs are influenced by the precoding matrix W. Yet,

it is challenging to find a W that can maximize Rs and Rc simultaneously. As a compromise,

we consider three typical scenarios to unveil further system insights. The first scenario is the

S-C design that aims to maximize the SR, the second scenario is the C-C design that aims to

maximize the CR, and the third scenario is the Pareto optimal design that aims to find the Pareto

boundary of the rate region.
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III. PERFORMANCE OF MIMO-ISAC

A. Sensing-Centric Design

1) Performance of Sensing: Under the S-C design, the precoding matrix W is set to maximize

Rs. Particularly, the SR can be calculated as [7]

Rs = L−1N log2 det
(

IM + LWHRW
)

. (4)

Under the S-C design, the precoding matrix satisfies

Ws = argmax
tr(WWH)≤p log2 det

(

IM + LWHRW
)

. (5)

For analytical tractability, we assume that R ≻ 03. Then, the following theorem provides an

exact expression for the SR as well as its high-SNR approximation.

Theorem 1. In the S-C design, the maximum SR is given by

Rs
s = NL−1

∑M

m=1
log2 (1 + Lλms

⋆
m) , (6)

where {λm > 0}Mm=1 are the eigenvalues of matrix R and s⋆m = max
{

0, 1
ν
− 1

Lλm

}

with

M
∑

m=1

max

{

0,
1

ν
− 1

Lλm

}

= p.

The maximum SR is attained when Ws = U∆
1/2
s , where Udiag {λ1, . . . , λM}UH denotes the

eigendecomposition (ED) of R and ∆s = diag {s⋆1, . . . , s⋆M}. As p→ ∞,

Rs
s ≈

NM

L

(

log2 p+
1

M

∑M

m=1
log2

(

Lλm
M

))

. (7)

Proof: Similar to the proof of [5, Theorem 3].

Remark 1. The results in (7) suggest that the high-SNR slope of the SR under the S-C design

is given by NM
L

.

2) Performance of Communications: Turn now to the communication performance. Particu-

larly, the CR of UT m is given by Rs

c,m = log2 (1 + s⋆mρm) with ρm = |vH

mhm|2 and hm ∈ CK×1

being the mth column of matrix HmU ∈ CK×M . Specifically, we utilize the OP and ergodic CR

(ECR) to evaluate the communication performance. The following theorem provides an exact

expression for the sum ECR Rs
c = E{Rs

c} with Rs

c =
∑M

m=1R
s

c,m as well as its high-SNR

approximation.

3When R ≻ 0, the rank of G is given by M . By [6], to recover the rank-M matrix G, we should transmit at least M

independent signal streams. For brevity, we assume that the number of data streams or UTs equals M . Actually, the derived

results in this letter can be extended to the case with more than M UTs, which is left as a potential direction for future work.
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Theorem 2. In the S-C design, the sum ECR is given by

Rs
c =

∑M

m=1

∑K ′

µ=0

(−1/s⋆m)
K ′−µ

(K ′ − µ)! ln 2

(

−e
− 1

s⋆mEi

(

1

s⋆m

)

+
∑K ′−µ

i=1
(i− 1)! (−1/s⋆m)

−i

)

, (8)

where K ′ = K −M and Ei(x) = −
∫∞

−x
e−tt−1dt is the exponential integral function [9, Eq.

(8.211.1)]. As p→ ∞,

Rs
c ≈M(log2 p− log2M + ψ (K ′ + 1) / ln 2), (9)

where ψ (x) = d
dx

ln Γ (x) is the Digamma function [9, Eq. (6.461)] and Γ (x) =
∫∞

0
tx−1e−tdt

is the gamma function [9, Eq. (6.1.1)].

Proof: Please refer to Appendix A for more details.

Remark 2. The results in (9) suggest that the high-SNR slope of the sum ECR under the S-C

design is given by M .

It is challenging to derive a closed-form expression for the OP, i.e., Ps
c = Pr(Rs

c < R0) with

R0 denoting the target sum CR. Thus, we focus more on its high-SNR properties.

Theorem 3. As p → ∞, the OP of the sum CR achieved by the S-C design satisfies Ps
c ≃

O
(

p−M(K+M−1)
)

. The notation f(x) = O (g(x)) means that lim supx→∞
|f(x)|
g(x)

<∞.

Proof: Please refer to Appendix B for more details.

Remark 3. The above results suggest that a diversity of M(K −M + 1) is achievable for the

OP under the S-C design.

B. Communications-Centric Design

Having investigated the S&C performance under the S-C design, we now move to the C-C

design.

1) Performance of Communications: It is worth noting that Hm has the same statistical

properties as HmU. In light of this fact as well as the conclusion drawn in Theorem 1, we

design the C-C precoding matrix as W = P∆
1/2
c with P = U and ∆c = diag {c1, . . . , cM},

where
∑M

m=1 cm ≤ p and cm ≥ 0 for m ∈ M. The resulting precoding matrix satisfies

Wc = argmax
W=U∆

1/2
c

∑M

m=1
log2 (1 + cmρm) , (10)

where log2 (1 + cmρm) calculates the CR of UT m. Particularly, the following lemma provides

an expression for the maximum sum CR achieved by Wc.



8

Lemma 1. Under the C-C design, the maximum sum CR is

Rc

c =
∑M

m=1
log2 (1 + ρmc

⋆
m) , (11)

where c⋆m = max
{

0, 1
υ
− 1

ρm

}

with
∑M

m=1 c
⋆
m = p. The maximum sum CR is attained when

cm = c⋆m for m ∈ M.

Proof: This lemma can be directly proved by using the water-filling procedure [10].

We note that deriving a closed-form expression of the sum ECR Rc
c = E{Rc

c} is a hard task.

To unveil more insights, we characterize its high-SNR behaviour in Theorem 4.

Theorem 4. As p→ ∞, Rc
c satisfies

Rc
c ≈M(log2 p− log2M + ψ (K ′ + 1) / ln 2), (12)

Proof: Please refer to Appendix C for more details.

Remark 4. The results in (12) suggest that the high-SNR slope of the sum ECR under the C-C

design is given by M .

Remark 5. By comparing (9) and (12), we observe that the CR achieved by the C-C design has

the same asymptotic behaviour as that achieved by the S-C design.

Turn to the OP Pc
c = Pr(Rc

c < R0), whose asymptotic behaviour is characterized as follows.

Theorem 5. As p → ∞, the OP of the sum CR achieved by the C-C design satisfies Pc
c ≃

O
(

p−M(K+M−1)
)

.

Proof: Similar to the proof of Theorem 3.

Remark 6. The above results suggest that a diversity order of M(K −M + 1) is achievable

for the OP under the C-C design, which is the same as that achieved by the S-C design.

2) Performance of Sensing: For W = Wc, the SR reads

Rc

s = NL−1
∑M

m=1
log2 (1 + Lλmc

⋆
m) . (13)

Due to the statistics of c⋆m, we define the average SR as Rc
s = E{Rc

s}, which can be evaluated

numerically. Besides, Theorem 6 describes the high-SNR behaviour of Rc
s .

Theorem 6. As p→ ∞, Rc
s satisfies

Rc
s ≈

NM

L

(

log2 p+
1

M

∑M

m=1
log2

(

Lλm
M

))

. (14)

Proof: Similar to the proof of Theorem 4.
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Remark 7. The SR achieved by the C-C design involves the same asymptotic behaviour as that

achieved by the S-C design.

Taken the conclusions in Remarks 5 and 7 together, we find that the C-C design degenerates

to the S-C design in the high-SNR regime and vice versa.

C. Pareto Optimal Design

In practice, the precoding matrix W can be designed to satisfy different qualities of services,

which results in a communication-sensing performance tradeoff. To evaluate this tradeoff, we

resort to the Pareto boundary of the SR-CR region. The Pareto boundary consists of SR-CR tuples

at which it is impossible to improve one of the two rates without simultaneously decreasing the

other [8]. More precisely, let (R̂s, R̂c) denote a rate-tuple on the Pareto boundary, then there is no

other rate-tuple (R̂′
s, R̂′

c) with R̂′
s ≥ R̂s, R̂′

c ≥ R̂c, and (R̂′
s, R̂′

c) 6= (R̂s, R̂c) [8]. Particularly, we

design the precoding matrix as Wp = Pdiag
{√

p1, . . . ,
√
pM

}

with P = U,
∑M

m=1 pm ≤ p, and

pm ≥ 0, ∀m. By [8], any rate-tuple on the Pareto boundary can be obtained via the rate-profile

based method, i.e., solving the following problem:

maxp,R R, s.t.Rs ≥ αR,Rc ≥ ᾱR, 1Tp≤p, pm≥0, (15)

where α ∈ [0, 1] is a particular rate-profile parameter, ᾱ = 1 − α, and p = [p1, . . . , pM ]T. We

comment that problem (15) is not equivalent to the weighted sum rate maximization problem

(WSRMP) defined in [4]. Besides, solving the WSRMP cannot guarantee the finding of all Pareto-

boundary points [8]. Problem (15) is convex and can be solved via standard convex problem

solvers such as CVX. For a given α, let Rα
c and Rα

s denote the sum ECR and average SR achieved

by the corresponding optimal precoding matrix, respectively. It follows that Rα
c ∈ [Rc

s ,Rc
c] and

Rα
s ∈ [Rs

c,Rs
s] with R1

s = Rs
s and R0

c = Rc
c. Accordingly, we get the following corollaries.

Corollary 1. For a sufficiently larger SNR, Rα
s ≈ NM

L

(

log2 p +
1
M

∑M
m=1 log2

(

Lλm

M

)

)

and

Rα
c ≈M(log2 p− log2M + ψ (K ′ + 1) / ln 2).

Proof: This corollary can be proved by using the results in Theorems 2 and 4 as well as

the Sandwich theorem.

Corollary 2. Let Rα

c denote the sum CR for a given α. Then, it has limp→∞Pr(Rα

c < R0) ≃
O
(

p−M(K+M−1)
)

.

Proof: Similar to the proof of Corollary 1.
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Remark 8. Any SR-CR tuple on the Pareto boundary has the same asymptotic behaviour in the

high-SNR regime.

Let Rs and Rc denote the achievable SR and CR, respectively. Then, the rate region achieved

by ISAC is given by

Ci = {(Rs,Rc) |Rs∈ [0,Rα
s ] ,Rc∈ [0,Rα

c ] , α∈ [0,1]} . (16)

Remark 9. In the above three scenarios, we set P = U, which is solely determined by the

second order statistics of the target response G. As stated before, G or U can be fixed for an

extended period of time, which is consistent with the statements in Section II-A.

IV. PERFORMANCE OF MIMO-FDSAC

We consider FDSAC as a baseline scenario, where the total bandwidth is partitioned into two

sub-bands, one for sensing only and the other for communications. Besides, the total power is also

partitioned into two parts for sensing and communications, respectively. Specifically, we assume

κ fraction of the total bandwidth and µ fraction of the total power is used for communications.

Based on [5], the sum CR and the SR are given by Rf

c = max∑M
m=1

am≤µp

∑M
m=1 κ log2(1 +

am
κ
ρm) and Rf

s =
N(1−κ)

L
max∑M

m=1
bm≤(1−µ)p

∑M
m=1 log2

(

1 + Lλm

1−κ
bm

)

, respectively. Accordingly,

we derive the following corollary.

Corollary 3. As p → ∞, the OP of the sum CR achieved by FDSAC satisfies Pr(Rf

c < R0) ≃
O
(

p−M(K+M−1)
)

.

Proof: Similar to the proof of Corollary 1.

Corollary 4. The high-SNR slopes of Rf
c = E{Rf

c} and Rf
s are given by κM and (1− κ)NM

L
,

respectively.

Proof: Similar to the proofs of Theorems 1 and 4.

Moreover, the rate region achieved by FDSAC is given by

Cf =







(Rs,Rc)

∣

∣

∣

∣

∣

∣

Rs ∈
[

0,Rf
s

]

,Rc ∈
[

0,Rf
c

]

,

κ ∈ [0, 1] , µ ∈ [0, 1]







. (17)

After completing all the analyses, we summarize the results related to diversity order and high-

SNR slope in Table I.

Remark 10. The results in Table I suggest that ISAC and FDSAC yield the same diversity order

in terms of the sum CR. Moreover, since κ ∈ [0, 1], we note that ISAC yields larger high-SNR
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System
Sum CR SR

D S S
ISAC M(K +M − 1) M NM/L

FDSAC M(K +M − 1) κM (1− κ)NM/L
TABLE I: Diversity Order (D) and High-SNR Slope (S)
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Fig. 2: Performance of communications. R0 = 2 bps/Hz.

slopes than FDSAC, which means that ISAC provides more degrees of freedom than FDSAC in

terms of both communications and sensing [10].

We then compare the rate regions Ci and Cf as follows.

Theorem 7. The achievable rate regions satisfy Cf ⊆ Ci.

Proof: Please refer to Appendix D for more details.

Remark 11. The results in Theorem 7 suggest that the rate region achieved by FDSAC is entirely

covered by that achieved by ISAC. This superiority mainly originates from ISAC’s integrated

utilization of spectrum and power resources.

V. NUMERICAL RESULTS

Simulation results will be presented to evaluate the S&C performance of ISAC systems and

also verify the accuracy of the developed analytical results. The parameters used for simulation

are listed as follows: M = 4, N = 5, K = 4, L = 30, and the eigenvalues of R are

{1, 0.1, 0.05, 0.01}.

Fig. 2(a) and Fig. 2(b) plot the OP and sum ECR versus the SNR p for κ = µ = 0.5,

respectively. As Fig. 2(a) shows, C-C ISAC achieves the lowest OP while FDSAC achieves the

highest OP. In the high-SNR regime, the OP curves for all the presented cases are parallel to

the one representing p−M(K−M+1), which suggests that the achievable diversity order obtained
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Fig. 3: (a) Performance of sensing; (b) Rate region.

in the previous section is tight. This also suggests that ISAC yields the same diversity order as

FDSAC. Let us now turn to Fig. 2(b). As expected, C-C ISAC attains the best ECR performance

among the three presented cases. Besides, the analytical results fit well with the simulations,

and the asymptotic results accurately track the provided simulation results in the high-SNR

regime. Particularly, it can be seen from Fig. 2(b) that ISAC achieves a larger high-SNR slope

than FDSAC and the ECRs achieved by C-C ISAC and S-C ISAC have the same high-SNR

asymptotic behaviour, which is consistent with the results shown in Remarks 5 and 10.

In Fig. 3(a), the SR is shown as a function of the SNR p. It can be seen from this graph

that S-C ISAC is capable of achieving the best SR performance among the presented four

cases. Moreover, as Fig. 3(a) shows, the asymptotic results track the provided simulation results

accurately in the high-SNR regime. From the data in Fig. 3(a), it is apparent that ISAC achieves

a larger high-SNR slope than FDSAC and S-C ISAC and C-C ISAC yield the same high-SNR

slope, which agrees with the conclusions in Remark 7 and Remark 10.

Fig. 3(b) compares the SR-CR regions achieved by ISAC (presented in (16)) and FDSAC

(presented in (17)). As shown, the rate region of FDSAC is plotted by changing the bandwidth

allocation factor κ and the power allocation factor µ from 0 to 1. As expected, a larger value

of κ or µ yields a higher CR. For ISAC, the point Ps and the point Pc are achieved by the

S-C design and the C-C design, respectively. Moreover, the curve segment connecting Ps and

Pc represents the Pareto boundary of ISAC’s rate region, which is obtained by solving (15) for

α changing from 1 to 0. As Fig. 3(b) shows, the rate region achieved by FDSAC is completely

included in that achieved by ISAC, which verifies the correctness of Theorem 7.
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VI. CONCLUSION

In this letter, we have analyzed the S&C performance of ISAC systems under three DFSAC

precoding designs. The high-SNR slopes and diversity orders achieved by ISAC have been

derived to highlight its superiority. Theoretical analyses have demonstrated that ISAC can provide

more degrees of freedom and achieve a broader rate region than FDSAC.

APPENDIX

A. Proof of Theorem 2

Note that s⋆m is a constant and the probability density function (PDF) of ρm = |vH

mhm|2 is given

by fm(x) =
e−x

K ′!
xK

′

[10, Eq. (9.80)]. On this basis, we can get (8) by [9, Eq. (4.337.5)]. As stated

before, limp→∞ s⋆m ≃ p
M
− 1

Lλm
+
∑M

m=1
1

LMλm
. This together with the fact of limx→∞ log2(1+x) ≈

log2 x and [9, Eq. (4.352.1)] yields (9).

B. Proof of Theorem 3

As stated before, limp→∞ s⋆m ≃ p
M

− 1
Lλm

+ 1
LM

∑M
m=1

1
λm

, which together with the fact of

limx→∞ log2(a+x) ≈ log2 x yields limp→∞Rs

c ≃ log2(
∏M

m=1
p
M
ρm). Therefore, the OP satisfies

limp→∞Ps
c ≃ Pr(

∏M
m=1

p
M
ρm < 2R0). On this basis, we can obtain limp→∞Ps

c ≃ O(p−M(K ′+1))

by exploiting the approach in deriving [11, Eq. (39)].

C. Proof of Theorem 4

Clearly, as p→ ∞, we have υ → 0 and thus c⋆m ≃ p
M
− 1

ρm
+ 1

M

∑M
m=1

1
ρm

. It follows from the

fact of limx→∞ log2(a+x) ≈ log2 x that the ECR of UT m satisfies limp→∞ E{log2(1+ρmc⋆m)} ≃
log2

p
M

+ E{log2 ρm}. Based on [9, Eq. (4.352.1)], the final results follow immediately.

D. Proof of Theorem 7

To proceed, we construct two auxiliary regions as follows:

C1 = {(Rs,Rc) |Rs∈
[

0,Rǫ
s,1

]

,Rc∈ [0,E{Rǫ

c,1}], ǫ∈ [0,1]},

C2 = {(Rs,Rc) |Rs∈
[

0,Rǫ
s,2

]

,Rc∈
[

0,Rǫ
c,2

]

, ǫ∈ [0,1]}.

Here,

Rǫ
s,1=

N

L
max∑M

m=1
km≤(1−ǫ)p

∑M

m=1
log2 (1+Lλmkm) (18)

and

Rǫ

c,1 = max∑M
m=1

um≤ǫp

∑M

m=1
log2(1+umρm). (19)
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Let {kǫm}Mm=1 and {uǫm}Mm=1 denote the optimal solutions to {km}Mm=1 and {um}Mm=1 for a given ǫ,

respectively. Besides, Rǫ
s,2 = E{Rǫ

s,2} and Rǫ
c,2 = E{Rǫ

c,2}, where Rǫ

s,2 and Rǫ

c,2 denote the SR

and sum CR achieved by the precoding matrix W = U∆
1/2
ǫ with ∆ǫ = diag{kǫ1+uǫ1, . . . , kǫM +

uǫM}, respectively. Clearly, we have C2 ⊆ Ci and Cf ⊆ C1. Furthermore, {(Rǫ
s,1,E{R

ǫ

c,1})|ǫ∈ [0,1]}
serves as the boundary of C1. Given ǫ1 ∈ [0, 1], when Rǫ1

c,1 ∈ [Rc
s ,R

c

c], there exists an ǫ2 ∈ [0, 1]

with Rǫ2
c,2 = Rǫ1

c,1. Using the monotonicity of function log2(1 + ax) (a > 0) with respect to

x ≥ 0, we obtain that ǫ2 ≤ ǫ1. By continuously using the monotonicity of log2(1 + ax), we

can get Rǫ2
s,2 ≥ Rǫ1

s,1. When Rǫ1
c,1 ∈ [0,Rc

s ], we have Rǫ1
c,1 ≤ Rc

s = R0

c,2 and Rǫ1
s,1 ≤ Rs

s = R0

s,2.

The above arguments imply that any rate-tuple on the boundary of C1 falls within C2 and thus

C1 ⊆ C2 holds. As stated before, C2 ⊆ Ci and Cf ⊆ C1. Taken together, we obtain Cf ⊆ Ci.
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