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An Iterative 5G Positioning and Synchronization
Algorithm in NLOS Environments with

Multi-Bounce Paths
Zhixing Li, Fan Jiang, Member, IEEE, Henk Wymeersch, Senior Member, IEEE, Fuxi Wen, Senior Member, IEEE

Abstract—5G positioning is a very promising area that presents
many opportunities and challenges. Many existing techniques
rely on multiple anchor nodes and line-of-sight (LOS) paths,
or single reference node and single-bounce non-LOS (NLOS)
paths. However, in dense multipath environments, identifying the
LOS or single-bounce assumptions is challenging. The multi-
bounce paths will make the positioning accuracy deteriorate
significantly. We propose a robust 5G positioning algorithm in
NLOS multipath environments to mitigate the effects of multi-
bounce paths.

Index Terms—5G positioning, non-line-of-sight, weighted least
squares, multi-bounce paths

I. INTRODUCTION

5G New Radio offers great opportunities for accurate local-
ization by introducing large bandwidth, high carrier frequency,
and large antenna array. Most of the state-of-the-art localiza-
tion techniques [1] and 3GPP positioning standards [2] are
designed based on multiple base stations (BSs) and line-of-
sight (LOS) paths, or single reference node and single bounce
non-LOS (NLOS) paths radio propagation. A low complexity,
search-free 5G mmWave localization and mapping method
that is able to operate using single-bounce diffuse multipath
is proposed in [3], where LOS and specular multipath are
not required. In [4], the authors propose a localization al-
gorithm for use in NLOS environments with single bounce
scattering, based on time-difference-of-arrival (TDOA), the
angle-of-departure (AOD), and the angle-of-arrival (AOA).
The proposed algorithm uses the underlying geometry of the
radio propagation paths to estimate the position of the mobile
station. In [5], based on the measured AOD, AOA, and time-
of-arrival (TOA), a three-dimensional (3D) least squares (LS)
positioning algorithm is proposed assuming a single-bounce
reflection in each NLOS propagation path.

However, for 5G positioning in dense multipath environ-
ments, the LOS or single bounce assumptions can be invalid.
An ultra-wideband (UWB) raw channel impulse response de-
nosing method was proposed in [6] to increase the NLOS/LOS
classification accuracy. An NLOS error compensation method
is proposed in [7] for UWB-based indoor positioning system.
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Fig. 1. System model with single-bounce and multiple-bounce NLOS
propagation paths, the user equipment “UE”, the base station “BS”, and the in-
cidence points pd,n and pa,n for multiple bounce paths, pn = pd,n = pa,n

for single bounce paths. For the LOS path, we introduce p0 as any point on
the line segment strictly excluding pt and pr.

The multi-bounce paths will make the positioning accuracy
deteriorate significantly. One option is to remove paths directly
based on geometric grounds if they are not LOS or single-
bounce, using the angle difference between the LOS path and
a possible multi-bounce path [8]. Because the channel gains
for the multiple-bounce paths are much smaller than that of
the LOS and single-bounce NLOS paths, a part of previous
research ignores the multi-bounce paths or just uses received
power to identify these multi-bounce paths [9]. However, the
results in [10] show that it could be challenging to distinguish
the single-bounce and double-bounce paths from the multi-
bounce paths by using the received power only. Furthermore,
the study in [11] indicates that some specific spatial shapes
and the material of the surface will also influence the identifi-
cation. It is shown in [12] that multi-bounce paths should be
considered in a real environment because the power and the
total number of multi-bounce paths occupy a large proportion.

In this paper, we investigate robust positioning techniques
to relief these LOS and single-bounce assumptions using the
available channel parameter measurements, such as AOD,
AOA, TOA, and channel gain [13]. The main contributions
are summarized as follows: (i) A method for single BS-based
5G positioning and synchronization in the presence of both
single and multi-bounce paths is proposed; (ii) Based on the
generalized likelihood ratio test (GLRT) method, we propose
an iterative strategy to distinguish single-bounce and multi-
bounce paths; (iii) A numerical study on the measurement er-
ror distribution is conducted, demonstrating that the proposed
algorithm achieves robust localization performance.



IEEE WIRELESS COMMUNICATIONS LETTERS JANUARY 21, 2024 2

II. PROBLEM FORMULATION

We consider a downlink 3D positioning scenario with a
single base station (BS) with known location pt = [xt, yt, zt]

T

and single user equipment (UE) with unknown location pr =
[xr, yr, zr]

T and clock bias τB. There are several algorithms to
compute orientation from inertial measurement units (IMUs)
and magnetic-angular rate-gravity (MARG) units. Once the
orientation of BS and UE is available, the relative orientation
between BS and UE can be obtained via coordinate transfor-
mations. As shown in Fig. 1, the complex propagation envi-
ronment leads to single-bounce NLOS paths (shown in red)
and multi-bounds NLOS paths (shown in blue), in addition to
a possible LOS path (not shown).

Based on a channel parameter estimation method, we obtain,
for each resolvable path n, estimates of the channel gain
(amplitude) γn ≥ 0, the azimuth and elevation angles of AOD,
denoted by (φd,n, θd,n); the azimuth and elevation angles of
AOA, denoted by (φa,n, θa,n), the TOA τn = dn/c+τB, where
dn is the total propagation distance, c is the speed of light, and
τB is the unknown clock bias caused by imperfect synchro-
nization between BS and UE. For each path, it is unknown
whether it is LOS, single-bounce, or multiple-bounce.

Similar to [4], [5], we make use of the following geometric
relations, which hold for LOS and single-/double-bounce
paths, but not for multi-bounce paths larger than two [3]:

dn = ‖pd,n − pt‖+ ‖pa,n − pd,n‖+ ‖pa,n − pr‖ (1a)
φa,n = π + atan2 (ya,n − yr, xa,n − xr) (1b)
θa,n = asin((za,n − zr)/‖pa,n − pr‖) (1c)
φd,n = atan2 (yd,n − yt, xd,n − xt) (1d)
θd,n = asin((zd,n − zt)/‖pd,n − pt‖), (1e)

where ‖ · ‖ is Euclidean norm. Our goal is to estimate the UE
location pr, based on the estimated channel parameters. We
tackle the problem based on the methods from [3].

III. PROPOSED METHOD

In order to solve the positioning problem, we first establish
identities that hold for each path. Then we describe a method
that can estimate the UE position and clock bias from at least
2 path (which should be either LOS or single-bounce paths).
Finally, we use both these results to propose our final method.

A. Identities for 5G Positioning and Synchronization

Before describing the proposed method, we first list identi-
ties valid for any path n, be it LOS, single-bounce, or multi-
bounce. We first define

ft,n =

cos(θ̂d,n) cos(φ̂d,n)

cos(θ̂d,n) sin(φ̂d,n)

sin(θ̂d,n)

 , (2)

which points along the AOD of path n ∈ {1, 2, . . . , N}; and
fr,n is defined equivalently for the AOA, pointing from the
UE towards the n-th artificial specular point pa,n:

fr,n =

cos(θ̂a,n) cos(φ̂a,n)

cos(θ̂a,n) sin(φ̂a,n)

sin(−θ̂a,n).

 . (3)

Then, we have the following relations, valid for double bounce,
single bounce and direct paths:

pd,n = pt + ξd,ndnft,n
pa,n = pr + ξa,ndnfr,n
ξd,n + ξa,n ≤ 1, and 0 < ξd,n, ξa,n < 1

(4)

where ξd,n and ξa,n are unknown and represent the fraction of
the delay τ̂n that is attributed to the line from BS to the first
scatter point pd,n and from UE to the second scatter point
pa,n. Note that ξd,n + ξa,n = 1, and 0 < ξd,n, ξa,n < 1
for single bounce paths and the LOS path. We now introduce
en = pd,n − pa,n, then we can express (4) as

pr = pt + en + (ξd,nqt,n − ξa,nqr,n) ,∀n (5)

where qt,n = dnft,n and qr,n = dnfr,n. For multi-bounce
paths, we have ‖en‖2 > 0. Because en is an unknown vari-
able, the range of the feasible solutions for (5) is unbounded.
Therefore, it is challenging to estimate the UE position by
solving a set of linear equations using weighted least squares
(WLS) methods.
B. WLS-based 5G Positioning and Synchronization

For LOS and single-bounce cases, we have en = 0, and
ξa,n = 1− ξd,n, then (5) can be simplified as

pr = pt + ξd,nqt,n − (1− ξd,n)qr,n. (6)

The UE position can be determined if there are multiple single-
bounce paths. Specifically, from (6), we establish

pr = pt + c (τ̂n − τB) ξd,nft,n − c (τ̂n − τB) (1− ξd,n)fr,n
= pt − cτ̂nfr,n + cτBfr,n + cξd,n (τ̂n − τB) (ft,n + fr,n)

= δn + cτBfr,n + ξd,nun − cτBξd,n (ft,n + fr,n) , (7)

where δn = pt− cτ̂nfr,n, un = cτ̂n (ft,n + fr,n). We further
rewrite (7) as

[
I3 −un −cfr,n vn

] 
pr
ξd,n
τB
τξ,n

 = δn, (8)

where vn = c (ft,n + fr,n) and τξ,n = τBξd,n. With the
estimations of N sets of multipath channel parameters, we
can establish 3N linear equations with (4+2N) unknowns
µ =

[
pTr , ξd,1, · · · , ξd,N , τB, τξ,1, · · · , τξ,N

]T
. Therefore,

with N ≥ 2 multipath components, we have Uµ = δ,
where δ =

[
δT1 , δT2 , · · · δTN

]T ∈ R3N×1 and U ∈
C3N×(2N+4) is defined as

U =

 I3 −u1 0 −cfr,1 v1 0
...

. . .
...

. . .
I3 0 −uN −cfr,1 0 vN

 .
We introduce the block diagonal matrix W =
blkdiag

[
w1I3, w2I3, · · · , wNI3

]
∈ R3N×3N , which accounts

for the weight of each path, e.g., based on the error variances
or per path-SNR.

Remark 1 (Weights from error variances). Focusing on a
single path n, where the TOA error variance is σ2

τn and the
error covariance of fr,n is Rn, with tr (Rn)

.
= σ2

f,n. Then we
can set w−1

n = c2τ2nσ
2
f,n + c2σ2

τ,n, from the covariance of δn.
Since σ2

f,n and σ2
τ,n are both inversely proportional to the

SNR, wn is proportional to per path-SNR.
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TABLE I
RELATIVE UE ESTIMATION ERROR USING DIFFERENT NUMBER OF THE

FIRST COMING PATHS.

Step t Number of paths Estimated pr Relative estimation error
1 2 p

(1)
r 0

2 3 p
(2)
r ∆1 = ‖p(2)

r − p
(1)
r ‖

3 4 p
(3)
r ∆2 = ‖p(3)

r − p
(1)
r ‖

The variable µ can then be estimated with a weighted least-
square solution as

µ̂ =
(
UHWU

)−1
UHWδ, (9)

Note that W = I3N is the conventional LS solution. Finally,
the estimated UE position is p̂r = µ̂[1:3].

C. WLS with Change Detection

We first order the paths, e.g., based on delay (from smallest
to largest), or based on amplitude (from largest to smallest).
Generally speaking, the first two arrival paths are usually LOS
or single-bounce paths, because most multi-bounce paths have
larger TOA. We thus use the first k = 2 paths in (9) to
determine an initial estimate, say p(1)r . Similarly, we compute
p
(t)
r from the first k+t−1 paths, t = 2, 3, . . ., using (9). From

these estimates, we compute the instant relative estimation
error,

∆t = ‖p(t)r − p(1)r ‖, (10)

and constructing the following positioning residual vector (see
also Table I)

∆(t) =
[
∆1 ∆2 · · · ∆t

]T
. (11)

From (5), we recall that for multi-bounce paths, ‖en‖ > 0, so
that for the proposed estimator in (9), as shown in Fig. 2, we
expect a larger relative UE estimation error ∆t when a multi-
bounce path is included for WLS estimation. Since paths later
in the ordering are more likely to be multi-bounce,1 we can
interpret this as a single-sensor change detection problem with
observations ∆(t).

1) Change Point Detection: Change point detection is an
active research area in statistics due to its importance across
a wide range of applications. The change-point can be mod-
eled as a shift in the means of the observations, which is
good for modeling an abrupt change [14]. However, in many
applications, the change point may cause a gradual change
to the observations, which can be well approximated by a
slope change in the means of the observations [15]. Under
the hypothesis of no change, the observations are drawn from
N
(
µ, σ2

)
, i.e., with a fixed mean µ and variance σ2. When

a change occurs at κ (the unknown change-point), then the
mean of the observations changes linearly from the change-
point time κ + 1, which is given by µ + s(t − κ) for all
t > κ, and the variance remains σ2. Here, the unknown rate
of change is s 6= 0. The above setting can formulate as the
following hypothesis testing problem:

H0 :∆i ∼ N
(
µ, σ2

)
, i ≥ 1

H1 :∆i ∼

{
N
(
µ, σ2

)
i ≤ κ

N
(
µ+ s(i− κ), σ2

)
i > κ.

(12)

1This statement will be corroborated in the numerical results.
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Fig. 2. Motivation of using the slope change detection method to select
the single bounce paths. The first 3 paths are single-bounce paths, while the
multiple bounce paths appear starting from path 4.

Our goal is now to establish a detection rule that detects
as soon as possible after a change-point occurs and avoid
raising false alarms when there is no change. It can be
solved efficiently by generalized likelihood ratio test (GLRT)
method [16]. Since the observations are independent, for an
assumed change-point location κ = k, the log-likelihood for
observations up to time t > k is given by [15]

`k,t,s =
1

2σ2

t∑
i=k+1

[
2s(∆i − µ)(i− k)− s2(i− k)2

]
. (13)

The unknown rate-of-change s can be replaced by its
maximum likelihood estimator. Given the current number of
observations t and a assumed change-point location k, by
setting the derivative of the log-likelihood function to 0, we
have [15]

ŝk,t =

∑t
i=k+1(i− k) (∆i − µ)∑t

i=k+1(i− k)2
. (14)

Let τ = t− k be the number of samples after the change-
point k and Uk,t = (Aτ )

−1/2
Wk,t, where Aτ =

∑τ
i=1 i

2 and
Wk,t =

∑t
i=k+1(i−k) (∆i − µ) /σn. Substitution of (14) into

(13), we obtain the following GLRT procedure

t∗ = inf
{
t : max

0≤k<t

[
U2
k,t/2

]
≥ h

}
, (15)

where h is a prescribed threshold. Since the distribution of ∆i

under Ho is known or can be estimated from the measure, h
can be chosen based on the desired false alarm probability.

2) Final Method: At each iteration t, the slope change
detection technique introduced in Section III-C, is utilized on
∆(t) to find the first abrupt change. Stop until the first abrupt
change point is detected or reaching the maximum iteration
number N − 1. The proposed algorithm is summarized in
Algorithm 1.

IV. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed
method based on realistic ray-tracing data.

A. Simulation Scenario
In the following simulations, 3D Wireless Prediction Soft-

ware Wireless InSite is utilized to generate the channel mea-
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Algorithm 1 5G Positioning and Synchronization Algorithm
Input: N ≥ 2 sets of channel parameters (τj < τj+1)

1: if N = 2 then
2: Estimate pr from the k = 2 paths using (9).
3: else
4: Estimate µ(1)

r from the first k = 2 paths by (9).
5: t = 1.
6: while t < N − k + 1 do
7: Estimate µ(t)

r from the first k + t paths by (9).
8: Construct ∆(t) using (10)–(11).
9: Estimate t∗ using (15).

10: if ∃t∗ then
11: Estimate pr using the selected t∗ paths.
12: Break.
13: else
14: t = t+ 1
15: end if
16: end while
17: if @t∗ then
18: Estimate pr using all the paths.
19: end if
20: end if

surements [17]. The BS is located at pt = [621, 447, 30]
T,

and 10 different UE positions are considered, for the ith UE
position

pri = [600, 499 + i, 1.5]
T
, where i = 1, 2, · · · , 10. (16)

The clock bias is set to τB = 330 ns. Gaussian noises
are added on the path parameters, N (0, σa) for AOA and
AOD measurements, and N (0, σr) for TOA measurements.
As shown in Fig. 3, a complex urban and mixed path envi-
ronment is considered. Based on this environment, the ray-
tracer determines all feasible NLOS propagation paths and
returns their channel gain γn ≥, 0, AOD (φd,n, θd,n), AOA
(φa,n, θa,n), and propagation distance dn. Table II shows the
bias and standard deviation (std) of the estimated channel
parameters using [18]. The results are obtained by averaging
over all the paths. It is interesting to observe that all the paths
are resolvable for the given setup. Because the paths can be
distinguished from 5 different dimensions, even though some
of the paths may have similar angles or TOAs (as shown in
Fig.4).

TABLE II
BIAS AND STD OF THE ESTIMATED CHANNEL PARAMETERS USING [18]

URA 8x8 (bias,std) 16x16 (bias,std) 32x32 (bias,std)
AOA (rad) (0.0139,0.4332) (0.0078,0.1534) (0.0013,0.0935)
AOD (rad) (0.0535,0.4332) (0.0125,0.1697) (0.0055,0.0950)

Distance (m) (0.8599,8.9568) (0.3086,3.4758) (0.0469,0.3042)
Channel Gain (0.6052,2.7951) (0.0705,0.5095) (0.0009,0.0574)

As our focus is on mitigating the effect of multi-bounce
paths, we do not limit the measurement resolution and assume
that we have enough distance and angular resolutions to
resolve the dominant paths. Different levels of measurement
error are added, as will be explained shortly.

The performance of the method is evaluated in terms of

Fig. 3. Wireless Insite simulation setup, including the BS, the UE and several
objects, which reflect and scatter the signal.
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Fig. 4. The NLOS path information obtained from Wireless Insite software
for 10 different UE positions.

two performance metrics: positioning root-mean-square error

(RMSE) RMSEpr
=
√

1/K
∑K
k=1 ‖p̂r,k − pr‖2 and clock

bias RMSE RMSEτB =
√

1/K
∑K
k=1 |τ̂B,k − τB|2, where

K = 500 is the number of independent runs, p̂r,k and τ̂Bk

are the estimated UE position and clock bias for the kth trial,
respectively. We set the weights as wn = γn/(

∑
n γn). As

a benchmark, the proposed method is compared by using all
the paths (which we expect will degrade performance) and
only using the single bounce paths (which is an optimistic
performance bound).

B. Results and Discussion

Fig. 4 shows, for each UE position, the amplitude of the
paths as a function of delay for the different UE locations.
LOS, single and multiple bounce paths are observable as
shown by the different colors. We observe that LOS paths
arrive first and have the largest power. Generally, single-
bounce paths arrive before multi-bounce paths and have a
larger power. However, there are cases where multi-bounce
paths arrive with greater power than single-bounce paths.

The performance is evaluated by considering 10 different
scenarios as shown in Fig. 4, as well as considering different
AOA, AOD and TOA measurement errors. The positioning
and synchronization performance is shown in Fig. 5 and Fig. 6,
respectively, as a function of the AOA and AOD error standard
deviation, for different levels of TOA standard deviation (ex-
pressed in meters). The positioning and probability p(κ̂ ≤ κ)
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Fig. 5. Gaussian noise N (0, σa) is added on the AOA, AOD measurements,
and N (0, σr) is added on TOA measurements.
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Fig. 6. Gaussian noise N (0, σa) is added on the AOA, AOD measurements,
and N (0, σr) is added on TOA measurements.

performance is shown in Fig. 7, as a function of threshold
h. The position RMSE is increasing with larger h, therefore
smaller threshold is preferred.

It can be observed that sub-meter accuracy is achievable
when the angle error standard deviation is small (below 0.01
rad) and the TOA error standard deviation is around 0.1 m.
The proposed method performs robustly, even in the presence
of multi-bounce paths, attaining the performance of using
only single bounce paths. With the increase of AOA and
AOD measurement errors, positioning RMSE of all methods
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Fig. 7. The positioning and probability p(κ̂ ≤ κ) performance versus
thresholds, σa = 0.005 and σr = 0.1 are considered.

increase, but is still better than that of using all paths. This
shows that the proposed method can distinguish single- and
multi-bounce paths in multipath environments and can control
errors to a small level. In terms of clock bias estimation
performance, similar conclusions can be drawn.

V. CONCLUSION

We propose a robust algorithm to mitigate the effect of
multi-bounce paths, based on a combination of weighted least
squares and a change detection approach. Numerical results are
provided to evaluate the performance of the algorithm, and the
results show that it can greatly improve positioning accuracy.
One of the assumptions we made is that the first two arrival
paths are single bounce paths, which may not always be true.
Possible avenues of future work include improvements in the
algorithm as well as evaluation using real experimental data.
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