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Abstract—Unmanned aerial vehicles (UAVs) have been actively
studied as moving cloudlets to provide application offloading
opportunities and to enhance the security level of user equipments
(UEs). In this correspondence, we propose a hybrid UAV-aided
secure offloading system in which a UAV serves as a helper by
switching the mode between jamming and relaying to maximize
the secrecy sum-rate of UEs. This work aims to optimize (i) the
trajectory of the helper UAV, (ii) the mode selection strategy
and (iii) the UEs’ offloading decisions under the constraints of
offloading accomplishment and the UAV’s operational limitations.
The solution is provided via a deep deterministic policy gradient
(DDPG)-based method, whose superior performance is verified
via a numerical simulation and compared to those of traditional
approaches.

Index Terms—Unmanned aerial vehicle (UAV), offloading,
physical-layer security, deep reinforcement learning.

I. INTRODUCTION

Recently, unmanned aerial vehicles (UAVs) have begun to

play an important role as moving cloudlets for edge computing

thanks to their high flexibility and mobility. In particular,

UAVs are employed to provide task offloading opportunities

beyond 5G and 6G services with high-complexity and low-

latency requirements [1], [2]. The joint design of offloading

resource allocation and the UAV trajectory is proposed in [2]

to minimize energy consumption.

With the frequent appearance of the line-of-sight (LoS)

paths in the offloading systems via UAV-mounted cloudlets,

maintaining privacy and security is challenging. To resolve this

issue, physical-layer security technologies have been explored

[3], [4]. In [3], a full-duplex legitimate UAV acting as an edge

server is developed with the optimal design of jamming and

user association. The authors in [4] propose an energy-efficient

offloading procedure for a UAV-assisted secure edge comput-

ing system with the aim of minimizing the energy consumption

of the UAV’s data processing. Both [3] and [4] provide conven-

tional mathematical solutions, which require adaptive updating

according to the time-variant offloading environment, e.g., the

channel condition, and therefore encounter the computational

complexity issue with an increase in the number of users. To

address the complexity of the mathematical approaches, deep

reinforcement learning (DRL) has emerged as a promising so-

lution. DRL-based secure transmission in UAV-assisted mobile

edge computing is developed in [5] to maximize the system

utility function. Other authors [6] propose the optimal design

of the legitimate UAV trajectory, the user’s transmit power
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Fig. 1: Illustration of hybrid UAV-enabled secure offloading.

and scheduling for secure communication by adopting a deep

deterministic policy gradient (DDPG)-based method, a type

of DRL method that can be used to solve continuous control

problems. The existing DRL-based methods [5], [6] for secure

offloading focus on the deployment or trajectory design of the

legitimate UAV, in the former case of which the operation

mode defaults to a single role, such as relaying or jamming.

In this correspondence, we propose a hybrid UAV-aided

secure offloading scheme in which a UAV is employed as a

helper, switching the mode between jamming and relaying in

order to maximize the secrecy sum-rate of user equipments

(UEs). The objective of this work is to optimize (i) the

trajectory of the helper UAV, (ii) mode selection strategy,

and (iii) the UEs’ offloading decisions under the constraints

of offloading accomplishment and the UAV’s operational

limitations. To this end, we formulate the problem based

on a Markov decision process (MDP), whose solution is

provided via a DDPG-based method. Via numerical results,

the superior performance of the proposed algorithm is verified

and compared to those of conventional approaches.

II. SYSTEM MODEL

We consider a hybrid UAV-enabled secure offloading system

in which one legitimate UAV is employed as an edge server

for ground UEs, while a helper UAV is adopted as a hybrid

node to switch roles between relaying and jamming against a

single eavesdropper UAV, as shown in Fig. 1. For simplicity

and tractability, we assume a pair consisting of a legitimate

UAV and a helper UAV in a single cell and focus on the

uplink scenario. The helper UAV in relay mode assists with

communication from the UE to the legitimate UAV by for-

warding the offloaded data, in which the decode-and-forward

(DF) method [7] is considered. In jamming mode, the helper

UAV generates artificial noise against the eavesdropper UAV.

Here, mode selection at the helper UAV is assumed to be

optimized for each time slot (TS). According to the helper

UAV’s role, the legitimate UAV receives the offloaded data

from both the helper UAV and UEs in relay mode or from

UEs in jamming mode and executes the computation of the

received offloaded data. To provide stability during offloading

procedure, we assume that the legitimate UAV is hovering with

a fixed altitude to serve all UEs within its coverage.

In the following, we denote the legitimate UAV as L, the

helper UAV as H , and the eavesdropper UAV as E. A pair

http://arxiv.org/abs/2208.07550v1
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TABLE I: The achievable rates of a legitimate UAV and eavesdropper UAV according to the mode of the helper UAV

Relay mode Jamming mode

Rd
u

(

k(t), vH (t)
) 1

2
min

{

log
2

(

1 +
pH(k(t))gH,L(vH (t)) + pugu,L(t)

σ2

)

, log
2

(

1 +
pugu,H(vH (t))

σ2

)}

log
2

(

1 +
pugu,L(t)

pH(k(t))gH,L(vH (t)) + σ2

)

Re
u

(

k(t), vH (t)
) 1

2
log

2

(

1 +
pH (k(t))gH,E(vH (t)) + pugu,E(t)

σ2

)

log
2

(

1 +
pugu,E(t)

pH (k(t))gH,E(vH (t)) + σ2

)

consisting of the legitimate UAV and the helper UAV hovers

at an altitude h, and the eavesdropper UAV hovers at a higher

altitude he. The U UEs transmit the data to the legitimate

UAV for offloading with the orthogonal multiple access. The

time horizon N is divided into T TSs, each of which has ∆
seconds, i.e., N = T∆. For the orthogonal access of multiple

UEs, each ∆ is divided equally for the number U of UEs, i.e.,

∆/U seconds of each slot is allocated to each UE. In TS t,
the mode of the helper UAV is denoted as

k(t) =

{

1, if the helper UAV is in relay mode

0, if the helper UAV is in jamming mode.
(1)

Also, we define the offloading decision variable zu(t) of the

UE u as

zu(t) =

{

1, if the UE u performs offloading

0, if the UE u performs local execution
, ∀u ∈ U ,

(2)

where the set of UEs is denoted as U , {1, 2, ..., U}.
In TS t, the helper UAV flies at a constant velocity in

terms of the horizontal velocity vx(t) and the vertical ve-

locity vy(t), yielding the set of the helper UAV’s veloc-

ity variables, defined as vH(t) = {vx(t), vy(t)}. Accord-

ingly, the horizontal coordinates of the helper UAV can

be expressed as (xH(vH(t)), yH(vH(t))) while satisfying

xH(vH(t)) = xH(0) +
∑t

t′=1 vx(t
′)∆ and yH(vH(t)) =

yH(0)+
∑t

t′=1 vy(t
′)∆, both of which are limited by its max-

imum velocity vmax. The legitimate UAV, the eavesdropper

UAV and the UE u are assumed to be located on the xy-plane

at (xL, yL), (xE , yE) and (xu, yu), respectively.

By following [8], Rician fading is adopted for the ground-

to-air (G2A) channel, and therefore the channel power gain

between UE u and UAV i in TS t can be written as

gu,i(vH(t)) =
β0

(hu,i)2 +
(

Du,i

)2 γ
G2A(t), (3)

for ∀u ∈ U and i ∈ {H,L,E}, where Du,i represents

the Euclidean horizontal distance between UE u and UAV

i on the xy-plane as Du,i=

√

(

xu − xi

)2
+
(

yu − yi
)2

, hu,i

represents the altitude of UAV i and is defined as h and he

when i∈{H,L} and i=E, respectively, and β0 denotes the

received power at the reference distance d0 = 1 m of the

G2A link. Also, γG2A(t) is a small scale fading component

in the G2A environment with the KG2A factor defined as

γG2A(t) =
√

KG2A/(KG2A + 1)γ +
√

1/(KG2A + 1)γ̃ [8],

[9], where γ denotes the deterministic LOS component with

|γ| = 1 and γ̃ is a circularly symmetric complex Gaussian

(CSCG) random variable. Note that in (3), we explicitly

express the dependency of the distance on the UAV’s velocity

when i = H as Du,i(vH(t)). For the air-to-air (A2A) channel

gain between the helper UAV and UAV i ∈ {L,E}, we define

gH,i(vH(t)) as

gH,i(vH(t)) =
β1

(

hH,i

)2
+
(

DH,i(vH(t))
)2 γ

A2A(t), (4)

for i ∈ {L,E}, where DH,i(vH(t)) is the horizontal distance

between helper UAV H and the legitimate or eavesdropper

UAV, hH,i represents the altitude difference, and is defined as

0 if i = L or as h − he if i = E, β1 denotes the reference

channel power gain of the A2A link, and γA2A(t) is small

scale fading component with the KA2A factor [10]. Since the

UE u can offload the data to the legitimate UAV or can be

supported by the helper UAV within their coverage area in TS

t, we have

zu(t)
(

k(t)Du,i + (1− k(t))Du,L

)

≤ Dmax, (5)

for ∀u ∈ U and i ∈ {H,L}, where Dmax denotes the radius

of the coverage area for both the legitimate and helper UAVs.

A. Communication Model

In this section, we provide the communication model re-

quired for the secure offloading procedure between the legiti-

mate UAV and UEs. For the relay operation of the helper UAV,

we adopt a the time division manner due to the half-duplex

limitation [7]. In particular, the time fraction ∆/U allocated

to each UE is divided into two parts, the first of which is used

for each UE to transmit the data to both the legitimate and

helper UAV, while the remainder is adopted for the helper

UAV to relay the received data to the legitimate UAV. In

jamming mode, the entire ∆/U is consumed for transmission

from each UE to the legitimate UAV while the helper UAV

generates the jamming signal. Depending on the helper UAV’s

operation mode, the achievable data rates Rd
u

(

k(t),vH(t)
)

and

Re
u

(

k(t),vH(t)
)

at the legitimate UAV and eavesdropper UAV

are calculated as in Table I. In Table I, pu is the transmit power

of UE u, σ2 is the noise power, and pH(k(t)) is the transmit

power of the helper UAV, where pH(k(t)) = pR in relay

mode, otherwise pH(k(t)) = pJ . For a further performance

gain, the optimal power allocation for a different TS can be

considered, which is left as our future work. Note that the

achievable data rate at the legitimate UAV in relay mode is

expressed as the minimum data rate obtained in two time

fractions of the DF protocol, while the eavesdropper UAV

can overhear the data via both the UE-legitimate UAV link

and the helper UAV-legitimate UAV link. In jamming mode,

the artificial interference at the eavesdropper UAV caused by

the friendly jamming of the helper UAV is factored into the

data rate. Consequently, the secrecy sum-rate of the wiretap

channel is written as
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C
(

k(t), z(t),vH (t)
)

=
∑

u∈U

zu(t)
[

Rd
u

(

k(t),vH(t)
)

−Re
u

(

k(t),vH(t)
)]+

, (6)

where [x]+ , max(x, 0), z(t) = {zu(t)}u∈U .

B. Computing Model

We define the computational task of UE u in TS t as

{Su(t), Fu(t)}, where Su(t) denotes the data size of the task,

and Fu(t) denotes the number of CPU cycles for computing

one bit. When the UE does the local execution, the task is

computed within ∆, and hence the CPU frequency fu(t) of

the UE u is determined as fu(t) = Su(t)Fu(t)/∆. At the

legitimate UAV, the total data received at the previous TS

t − 1 is assumed to be computed in TS t, and the CPU

frequency of the legitimate UAV, fL(z(t)), is calculated as

fL(z(t)) =
∑

u∈U

zu(t− 1)Su(t− 1)Fu(t− 1)/∆.

C. Energy Model

Here, since all network components have limited battery

capabilities, their energy consumption needs to be addressed

in the system design phase. The computation energy EC
i (z(t))

required for execution at i ∈ {1, ..., U, L} is given by [3]

EC
i (z(t)) = κ(fi)

3∆, (7)

where κ denotes the power consumption coefficient, and the

CPU frequency fi is substituted with fu(t) and fL(z(t)) when

i ∈ U and i = L, respectively. The energy consumption

at the helper UAV results from the signal transmission and

the flying operation. The transmission energy consumption is

derived as ETr
H (k(t), z(t)) = k(t)

∑

u∈U zu(t)pR∆/(2U) +
(1− k(t))pJ∆, while the flying energy consumption is given

via EF
H(vH(t)) = 0.5M∆

(

(vx(t))
2+(vy(t))

2
)

[2], where M
is the mass of the UAV, including its payload.

III. PROPOSED DDPG-BASED METHOD

This work aims to maximize the secrecy sum-rate by jointly

optimizing the helper UAV’s mode k(t), the UE’s offloading

choice z(t) and the helper UAV’s velocity vH(t) for all t. To

this end, we formulate the optimization problem as follows:

max
k(t),z(t),vH(t)

C(k(t), z(t),vH (t)) (8a)

s.t. k(t) = {0, 1}, zu(t) = {0, 1}, ∀u ∈ U , (8b)

−lmax/2 ≤ xH(vH(t)), yH(vH(t)) ≤ lmax/2, (8c)

zu(t)
(

k(t)Du,i + (1 − k(t))Du,L

)

≤ Dmax,

i∈ {H,L}, ∀u ∈ U ,
(8d)

zu(t)pu
(

k(t)
∆

2U
+(1− k(t))

∆

U

)

+(1− zu(t))E
C
u (t) ≤ Eu, ∀u ∈ U ,

(8e)

EC
L (zt) ≤ EL, (8f)

EF
H(vH(t))+ETr

H (k(t), z(t)) ≤ EH , (8g)

where (8b) is a binary variable constraint pertaining to the

helper UAV’s mode and offloading decision, (8c) ensures that

the helper UAV travels within a lmax-side-length square, (8d)

restricts the legitimate and helper UAVs to hover within their

coverage area, and (8e)-(8g) represent the energy constraints

of UEs, the legitimate UAV and the helper UAV, respectively.

To solve problem (8), we employ the DRL framework to

find the optimal policy for {k(t), z(t),vH(t)}∀t in every TS.

Since a real-time mathematical approach for UAV trajectory

design has complexity issues, we adopt the DDPG method

among DRL-based approaches, which is appropriate for con-

trolling a continuous action space [11]. In the MDP, the agent

has state st in the environment during discrete TS, and it

takes action at every TS. As the agent proceeds with various

interactions in the environment, the agent obtains a reward rt
and next state st+1. The policy (π) is designed to maximize

the accumulated reward Rt =
∑T

i=t γ
(i−t)ri, where γ ∈ [0, 1]

is the discount factor. The critic network learns the action-

value function Q(st, at) = Eai>t∼π[Rt|st, at] using Bellman’s

equation in Q-learning and proceeds to minimize the loss

function L(·), which is defined as

L(θQ) = E
[(

Q
(

st, at|θ
Q
)

− yt
)2]

, (9)

where θQ is the weight of the critic network and yt = rt +
γQ′

(

st+1, µ
′(st+1|θµ

′

)|θQ
′
)

. The actor network updates with

the policy gradient method to maximize the expected reward

J = Eai∼π[R1] and uses a policy function approximator,

which follows

∇θµJ ≈ E
[

∇aQ(s, a|θQ)|s=st,a=µ(st)∇θµµ(s|θµ)|st
]

, (10)

where θµ is the weight factor of the actor network. Addition-

ally, the DDPG algorithm improves the update stability by

using the target networks θQ
′

and θµ
′

, which are identical to

those of the critic network and the actor network, and these

target networks are updated by a soft update method.

To optimize the helper UAV’s trajectory modeled as an

MDP, we define the state, action and reward function in TS t
as follows:

State: Let S denote the system state space as S = {st|st =
{xH(vH(t)), yH(vH(t)), k(t), {DH,i(vH(t))}i∈U∪{L,E}},
t ∈ {1, 2, ..., T }}, whose components are the coordinates

and the mode of the helper UAV, and the horizontal distance

between the helper UAV and other nodes, respectively.

Action: Let A denote the system action space as A =
{at|at = {vx(t), vy(t)}, t ∈ {1, 2, ..., T }}, whose components

are the horizontal and vertical velocity of the helper UAV.

Reward: We define rt = C(k(t), z(t),vH (t))− rom as a

reward function focusing on maximization of the secrecy sum-

rate, where rom is the penalty value for cases in which the

helper UAV goes off of the given map. Note that the helper

UAV returns to the previous location if it goes off of the map.

With the optimized helper UAV’s trajectory, we develop a

relaxation method to optimize the offloading decision variable

z(t) and the helper UAV’s operation mode k(t). The offload-

ing decision variable z(t) is designed as

zu(t) =











1,
if Rd

u

(

k(t),vH(t)
)

−Re
u

(

k(t),vH(t)
)

>ε,

∀u ∈ U and (5) are satisfied

0, otherwise,
(11)

so that a secrecy sum-rate greater than the minimum limit ε
is guaranteed, and (5) is satisfied after action at is performed.
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Algorithm 1 DDPG-based method for a hybrid UAV-enabled

secure offloading system

Input: Structures of the actor, critic and target network.

1: Initialize: Actor µ, critic Q and target network µ′, Q′

with weights θµ, θQ and θµ
′

← θµ, θQ
′

← θQ and replay

buffer B;

2: for TS in T do

3: Set {zu(t) = 0}∀u∈U , and C0 = C1 = 0;

4: Calculate st as in “State” step of MDP;

5: Execute action at = µ(st|θ
µ) +N ;

6: for i ∈ {0, 1} do

7: k(t) = i;
8: Obtain the offloading decision z(t) by (11);

9: Calculate Ci = C(k(t), z(t),vH(t))
10: end for

11: Obtain reward rt= max
i∈{0,1}

Ci−rom and next state st+1;

12: Store transition
(

st, at, rt, st+1

)

in B;

13: Sample a random mini-batch of K transitions
(

si, ai,
ri, si+1

)

from B;

14: Update critic, actor network according to (9), (10);

15: Update target networks:

θQ ← τθQ + (1 − τ)θQ
′

, θµ
′

← τθµ + (1− τ)θµ
′

;

16: end for

Output: Actor network µ(st|θµ).

According to the offloading decision, the helper UAV’s mode

for providing a higher secrecy sum-rate is selected by k(t) =
argmaxi∈{0,1}Ci, and the reward rt is defined as rt =
maxi∈{0,1}Ci − rom.

Based on the entire process mentioned above, we propose

the DDPG-based method, as given in Algorithm 1. In order

to increase the convergence speed of Algorithm 1, the initial

weights are set experimentally based on the previous steps,

where a higher reward is achieved. For the helper UAV, action

at is generated by the actor network µ, and a noise process N
is added for exploration. Then, we obtain the reward rt and

next state st+1, while the helper UAV stores the transition

into its finite-sized buffer B. From Line 14 to 15, networks

are updated by pulling K samples from the buffer.

IV. SIMULATION RESULTS

In this section, we present the numerical results to evaluate

the performance of the proposed algorithm compared to the

reference methods. For simulations, we consider the parameter

settings shown in Table II by following [3], [12]. For the

energy budget of each node, we set Eu = 0.025J, EL = 24J,

and EH is set to 3.9KJ [13]. In addition, we set 1000 episodes

in the training stage. The capacity of the replay buffer is

8000, and the mini-batch size is 70. The noise process N
follows a normal distribution with a zero mean and variance

of 0.6. Noise decays at a rate of 0.999. The actor and

critic networks have three fully-connected hidden layers with

[300,100,100] neurons, and are trained at a learning rate of

10−4. The activation function is used as tanh function, and the

network is updated using the AdamOptimizer. For references,

the following benchmark methods are considered:

TABLE II: Simulation parameters

Parameter Value Parameter Value

U 10 Su [20, 30] KB

T 10, 20 Fu [1000, 1200] cycles/bit

lmax 200 m pu 0.1 W

∆ 1 s pJ 0.08 W

h 80 m pR 0.012 W

he 120 m σ2 −100 dBm

ε 0.1 bps/Hz β0 10−5

Dmax 45 m β1 10−4

vmax 20 m/s rom 0.2
κ 10−27 τ 0.005

KG2A 12 dB [8] γ 0.95

KA2A 20 dB [10] M 9.65 kg
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Fig. 2: Accumulated reward versus episodes.

• Relay mode with linear trajectory (Re-LT): Scheme with

a linear trajectory to reach the midpoint between the

legitimate UAV and UEs at TS T based on proposed

offloading decision method in relay mode of the helper

UAV.

• Jamming mode with linear trajectory (Ja-LT): Scheme

with a linear trajectory to reach the point, where the

eavesdropper UAV exists at TS T based on proposed

offloading decision method in jamming mode of the

helper UAV.

• Relay mode with optimal trajectory (Re-OT): Scheme

with an optimal trajectory based on proposed offloading

decision method in relay mode of the helper UAV.

• Jamming mode with optimal trajectory (Ja-OT): Scheme

with an optimal trajectory based on proposed offloading

decision method in jamming mode of the helper UAV.

Fig. 2 shows the accumulated reward of the proposed

algorithm as a function of training episodes. It is observed that

the proposed method converges after 600 episodes. In addition,

the proposed method achieved a higher accumulated reward

than the Re-OT and Ja-OT schemes by further optimizing the

offloading decision and the operation mode of the helper UAV.

Fig. 3 shows the optimal trajectory obtained by the proposed

method. In Fig. 3(a), we consider the case in which the UEs are

randomly distributed around the legitimate UAV. It is observed

that the optimized helper UAV tends to move around the

UEs in Re-OT to increase the relay performance, while it

moves towards the eavesdropper UAV in Ja-OT to maximize

the jamming effect. In the proposed method, the helper UAV

initially operates in relay mode (with yellow-solid line) and

thus moves toward the UE cluster, similar to Re-OT. From 5
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(b)

Fig. 3: The trajectory of the helper UAV according to the

mode during 20 TS. (a) UEs are randomly distributed around

the legitimate UAV. (b) Two UE clusters are spatially separated

around the legitimate UAV.

TS (5s), the helper UAV switches to jamming mode (with the

yellow-dashed line), and moves toward the eavesdropper UAV,

as in Ja-OT. In the case of 3(b), we consider two spatially

separated UE groups around the legitimate UAV. Compared

to 3(a), in Re-OT, the helper UAV moves toward the large-

scale cluster with 7 UEs, which can provide a higher secrecy

sum-rate. In Ja-OT, the helper UAV goes to the eavesdropper

UAV while maintaining its distance from the legitimate UAV.

In the proposed method, both movement tendencies in Re-OT

and Ja-OT are shown according to the corresponding mode

change.

In Fig. 4, the secrecy sum-rate of the proposed method

is shown as a function of the different time horizon N in a

setting identical to that in Fig. 3(b). It can be seen that for

all schemes, the secrecy sum-rate increases as the mission

time increases. Note that the proposed method achieves the

best secrecy sum-rate via joint optimization. Moreover, it

is obvious that the DDPG-based trajectory design of the

helper UAV provides additional secrecy improvements in

comparison with Re-OT and Re-LT, or Ja-OT and Ja-LT.

V. CONCLUSIONS

In this correspondence, we have proposed a hybrid UAV-

enabled secure offloading algorithm to maximize the secrecy

sum-rate of ground users, where a hybrid helper UAV is
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Fig. 4: The secrecy sum-rate of each schemes versus the time

horizon.

adopted to switch roles between relaying and jamming. We

jointly optimize the helper UAV’s mode selection and tra-

jectory as well as users’ offloading decisions based on the

the DDPG method. Via simulations, the superior performance

of the proposed method is verified compared to those of

conventional methods. A scenario with multiple helpers and

eavesdroppers can also be studied with the non-orthogonal

multiple access in future work.
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