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Intelligent Surface-Aided MISO Communications
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Abstract—Reconfigurable intelligent surface (RIS) is a revo-
lutionary technology that can customize the wireless channel
and improve the energy efficiency of next-generation cellular
networks. This letter proposes an environment-aware codebook
design by employing the statistical channel state information
(CSI) for RIS-assisted multiple-input single-output (MISO) sys-
tems. Specifically, first of all, we generate multiple virtual chan-
nels offline by utilizing the location information and design an
environment-aware reflection coefficient codebook. Thus, we only
need to estimate the composite channel and optimize the active
transmit beamforming for each reflection coefficient in the pre-
designed codebook, while simplifying the reflection optimization
substantially. Moreover, we analyze the theoretical performance
of the proposed scheme. Finally, numerical results verify the
performance benefits of the proposed scheme over the cascaded
channel estimation and passive beamforming as well as the
existing codebook scheme in the face of channel estimation errors,
albeit its significantly reduced overhead and complexity.

Index Terms—Reconfigurable intelligent surface (RIS), code-
book design, channel estimation, reflection optimization.

I. INTRODUCTION

RECENTLY, reconfigurable intelligent surface (RIS) has
gained widespread attention for improving system energy

efficiency in a low-cost manner [1], [2]. Generally, RIS is
a programmable metasurface composed of numerous passive
elements, and each element can independently adjust the
phase/amplitude of incident signals [3]. Furthermore, RIS
can operate in a full-duplex mode while circumventing the
common self-interference issue and can be directly integrated
with the existing wireless network to perform its function [4].
Thanks to the aforementioned benefits, RIS is envisioned as a
critical technology enabling future wireless networks [4].

In order to unlock the full potential of RIS-assisted com-
munication systems, accurate channel state information (CSI)
is generally demanded, which poses a big challenge due to
the large number of passive elements on RIS. To address this
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issue, an ON/OFF scheme was proposed in [3] to estimate
the cascaded base station (BS)-RIS-user channels. Moreover, a
discrete Fourier transform (DFT)-based phase shifting config-
uration was adopted in [5] to perform uplink cascaded channel
estimation. Furthermore, the authors of [6], [7] proposed
deep learning-based channel estimation methods to reduce the
training overhead by exploiting the sparsity of the beamspace.

In addition, joint active beamforming and reflection co-
efficient optimization is generally non-trivial. Recently, the
authors of [1] proposed an alternate optimization (AO) al-
gorithm to design the precoding and reflection coefficient
(RC) matrices for minimizing the transmit power at the BS.
Furthermore, a block coordinate descent (BCD) algorithm was
applied in [8] to implement RC optimization for maximizing
the average sum-rate. The authors of [9] designed the RC
based on the statistical CSI for maximizing spectral efficiency.
Moreover, for minimizing the transmit power, the authors of
[4], [10] proposed a gradient descent algorithm to optimize
the RC.

Nevertheless, the existing joint optimization schemes gener-
ally require high complexity and excessive overhead to probe
the reflected channels. Recently, a novel codebook scheme
that obtains a suboptimal solution in a low complexity was
investigated in [2], [5], [11], [12]. Specifically, the authors
of [11] investigated a random codebook scheme, while [2]
and [12] proposed a sum Euclidean distance maximizing
codebook by considering the discrete and continuous phase
shifts, respectively. In addition, the limited feedback bit al-
location scheme based on channel structure for adapting to
diverse environments was investigated in [13]. Moreover, an
adaptive codebook design relying on a deep neural network
was proposed by considering the limited feedback link [14].

Note that the existing schemes generally designed the code-
book without considering the wireless channel [2], [12]. We
propose a novel environment-aware codebook to address this
issue by exploiting the statistical CSI. Considering the low
communication rate of the feedback link, the RIS configuration
is completed only by feeding back the optimal index. On one
hand, the proposed scheme can strike a beneficial trade-off be-
tween training overhead and system performance. On the other
hand, the designed codebook based on statistical CSI attains
performance improvements compared to the existing codebook
schemes. In addition, we analyze the theoretical performance
and complexity of the proposed scheme. Finally, simulation
results verify the performance benefits of the proposed scheme
and its robustness against channel estimation errors.
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II. SYSTEM AND CHANNEL MODELS

A. System Model

As shown in Fig. 1, we consider an RIS-assisted multiple-
input single-output (MISO) communication system in a single
cell. The RIS having N reflecting elements assists in the
downlink communication from a BS with M antennas to a
single-antenna user equipment (UE). Let N = {1, 2, ..., N}
and M = {1, 2, ...,M}, respectively. Moreover, all RIS
elements are connected to a smart RIS controller, which is
capable of independently adjusting the phase of the incident
signals. In addition, considering the practical hardware im-
plementation, we assume the discrete phase shift of uniformly
quantifying [0, 2π) imposed by each RIS element. Let b denote
the number of quantization bits associated with each ele-
ment. Thus, we have RC set E = {ej0, ej∆θ, ..., ej(2b−1)∆θ},
where ∆θ = 2π/2b denotes the quantified interval. Let
φ = [ϕ1, ϕ2, ..., ϕN ]T ∈ CN×1 denote the RC vector, where
ϕn ∈ E , n ∈ N denotes the RC of the n-th RIS element.

Let Θ = diag(φ) ∈ CN×N denote the reflection matrix
of the RIS. This letter assumes the narrow-band flat fading
channel and the time-division duplex (TDD) mode. Let G ∈
CN×M , hHr ∈ C1×N , and hHd ∈ C1×M denote the complex
baseband channel from the BS to the RIS, from the RIS to
the UE, and from the BS to the UE, respectively. As a result,
the downlink channel hH ∈ C1×M can be denoted as hH =
hHd + hHr ΘG = hHd + φTD, where D = diag(hHr )G ∈
CN×M denotes the cascaded BS-RIS-UE channel.

First, we consider the uplink channel estimation process. Let
x denote the normalized pilot signal, satisfying E

{
|x|2
}

= 1,
and pu denotes the average power of pilot signal. Assume
the system having T training time slots (TSs)and define T =
{1, 2, ..., T}. Thus, the BS received signal at t-th TS yt ∈
CM×1 is written as

yt = ht
√
pux+ nu,t =

(
hd + DHφ∗t

)√
pux+ nu,t, (1)

where ∀t ∈ T , nu,t ∈ CM×1 and φt denote the additive white
Gaussian noise (AWGN) at the BS with the average noise
power of σ2

u , satisfying nu ∼ CN (0, σ2
u IM ) and the RIS RC

vector at the t-th TS.
Next, we consider the downlink communications. The total

power at the BS is denoted by pd, and z represents the signal
transmitted from the BS. Thus, the signal received at the UE
is denoted as

rt = hHt
√
pdwz + nd,t =

(
hHd + φTt D

)√
pdwz + nd,t, (2)

where t ∈ [T +1, L], L denote coherent time slot, w ∈ CM×1

denotes the transmit beamforming vector, satisfying ‖w‖2 =
1, and nd,t ∼ CN (0, σ2

d ) denotes the AWGN at the UE with
the average noise power of σ2

d at the t-th TS.

B. Channel Model

Before going on further, we elaborate on the Rician channel
model adopted in this letter. Specifically, the direct channel hd
is generated by

hd =
√
βd/ (Kd + 1)

(√
Kdh

LoS
d + hNLoS

d

)
, (3)

RIS Controller

BS UE

G

RIS

Fig. 1. An RIS-assisted downlink MISO system.

where hLoS
d and hNLoS

d represent the line-of-sight (LoS) and
non-LoS (NLoS) components of hd, respectively. The NLoS
component of hd is modeled by complex Gaussian distribu-
tion, i.e., hNLoS

d ∼ CN (0, IM ); βd and Kd denote the path
loss and Rician factor of the direct channel hd, respectively.
Similarly, G and hr are generated by a similar way as (3).
Furthermore, we consider a uniform linear array (ULA) of
M antennas at the BS. Let aBS ∈ CM×1 denote the steering
vector of the BS, and the m-th entry of the aBS is denoted as
ej2π(m−1)dBS sinφ/λ, ∀m ∈M, where dBS denotes the antenna
spacing of the BS, λ denotes the wavelength of the signal, and
φ ∈ [−π/2, π/2) denotes the angle of departure (AoD) or the
angle of arrival (AoA).

Furthermore, we model the RIS as a uniform planar array
(UPA). Let aR(α, γ) ∈ CN×1 denote the steering vector of the
RIS. Specifically, the n-th entry of aR is denoted as
ej2πdR sin γ[bn−1

Nx
c sinα+((n−1)−bn−1

Nx
cNx) cosα]/λ, ∀n ∈ N ,

where dR denotes the element spacing of the RIS, and Nx
denotes the number of reflecting elements deployed at each
row [12]. Moreover, α ∈ [0, π) and γ ∈ [−π/2, π/2) denote
the azimuth and elevation AoA/AoD, respectively. As a result,
the LoS components of the G, hr, and hd can be denoted as
aBS(φA

d ), aR(αA
g , γ

A
g )aBS(φD

g )H , and aR(αA
r , γ

A
r ), respectively,

where φA
d and φD

g denote the AoA from the UE to the BS
and the AoD from the BS to the RIS, respectively; αA

g and
γA

g denote the azimuth and elevation AoA from the BS to the
RIS, respectively; αA

r and γA
r denote the azimuth and elevation

AoA from the UE to the RIS, respectively.

III. THE PROPOSED CODEBOOK-BASED DESIGN

In this section, we first present the protocol of RIS-assisted
system based on codebooks in Section III-A, then we elaborate
on the steps of our environment-aware codebook design in
Section III-B. Finally, we analyze the advantages of the
proposed scheme in Section III-C.

A. The Proposed Protocol

1) Environment-Aware Codebook Generation: The code-
book scheme could significantly reduce the implementation
complexity and backhaul consumption [12]. In this letter, we
first design an environment-aware codebook consisting of a
set of RCs according to the statistical CSI, based on which
we pursue a suboptimal solution. Thus the BS only needs to
feedback the optimal index to the RIS through the control link.
The detailed design of the environment-aware codebook will
be elaborated in Section III-B.
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2) Composite Channel Estimation: In sharp contrast to the
existing channel estimation schemes that estimate the direct
and cascaded channels separately, we directly estimate the
superimposed end-to-end channel spanning from the UE to
the BS for each given RIS RC in the pre-designed codebook,
which requires T training slots. Specifically, the composite
channel is denoted as ht = hd + DHφ∗t at the t-th training
TS. By applying the least square (LS) [2] and minimum mean
square error (MMSE) [5] technique, we could estimate the
composite channel as

ĥt,LS = x∗yt/
√
pu, ∀t ∈ T , (4)

ĥt,MMSE = Rh

(
RH
h + σ2

u IM/pu
)−1

ĥt,LS, ∀t ∈ T , (5)

where Rh = E
{
hhH

}
denotes channel correlation matrix

of h. Note that the proposed composite channel estimation
scheme has significant advantages over the scheme of [3] in
terms of implementation complexity.

3) Downlink Transmit Beamforming: According to the
channel estimation in (4), (5) and by applying the channel
reciprocity in TDD mode [15], at the t-th training TS, t ∈ T .
The active transmit beamforming vector ŵt can be obtained
by applying the maximum ratio transmission criterion [11] as
ŵt = ĥt /||ĥt|| = x∗yt/||yt||. Therefore, at the t-th training
TS, the achievable downlink rate can be expressed as

Rt = log2

(
1 +

pd

σ2
d

∣∣∣ĥHt ŵt

∣∣∣2) = log2

(
1 +

pd‖yt‖2

σ2
dpu

)
.

(6)
4) Reflection Optimization: We repeat performing channel

estimation and active transmit beamforming for each RC in
the codebook. After obtaining all objective function values, the
optimal RC index can be obtained by selecting the best one
maximizing the achievable rate from the designed codebook.
The optimal index searching process can be formulated as

t̂ = arg
t∈T

maxRt. (7)

After obtaining the optimal index t̂, the BS can determine the
transmit beamforming vector wt̂, and the RIS controller can
configure the optimal RCs. Thus the codebook scheme obtains
a suboptimal solution within a salable overhead.

B. Environment-Aware Codebook Design

Existing codebook solutions including the random codebook
[11] and the sum Euclidean distance maximizing codebook
[2] are non-adaptive, which generally results in worse per-
formance in a limited training overhead. To solve this issue,
we propose an adaptive codebook scheme by employing the
statistical CSI relying on the LoS components of the channels.
In order to reduce the implementation complexity, we first
select a reference antenna at the BS, and generate multiple
virtual channels according to (3), where the LoS and NLoS
components of the virtual channels are generated by the
steering vectors calculated by location information of the UE
and a Gaussian distribution. Assume that we have chosen the
m-th BS antenna as the reference and generate T sets of virtual
channels. Upon aligning all reflected channels with the direct

channel for each virtual channel, the optimal phase shift of
the n-th element at the t-th training TS is given by

ψn,t =∠
(√

Krh
LoS
r,n + h̃NLoS

r,n,t

)
− ∠

(√
Kdh

LoS
d,m + h̃NLoS

d,m,t

)
− ∠

(√
Kgg

LoS
n,m + g̃NLoS

n,m,t

)
, ∀n ∈ N , ∀t ∈ T , (8)

where hLoS
d,m, hLoS

r,n , and gLoS
n,m are the LoS components of the

m-th entry of hLoS, the n-th entry of hLoS
r , and the (n,m)-

th entry of GLoS, respectively, at the t-th TS. h̃NLoS
d,m,t, h̃

NLoS
r,n,t ,

and g̃NLoS
n,m,t represent the NLoS components of corresponding

virtual channels which we generated off-line. The continuous
RC of the n-th reflecting element at the t-th training TS can
be denoted by ϕ′n,t = ejψn,t . Next, we consider discrete phase
shift ϕ̂n,t by minimizing the quantization error, which can be
denoted as

ϕ̂n,t = arg
ϕs∈E

min
∣∣ϕ′n,t − ϕs∣∣, ∀n ∈ N . (9)

Furthermore, the RC vector of the t-th training TS is denoted
as φt = [ϕ̂1,t, ϕ̂2,t, ..., ϕ̂N,t]

T . Moreover, considering the fact
that the generated φt may conflict with previous ones, we
generate a new one until T diverse RC vectors are obtained.

C. The Advantages of the Proposed Scheme

Next, we elaborate on several benefits of the proposed
scheme. First, the proposed scheme’s overhead is independent
of N . Hence, the proposed scheme provides a beneficial trade-
off between the system performance and training overhead.
In addition, the proposed codebook-based scheme only needs
feedback the optimal index of dlog2T e bits instead of existing
counterparts requiring Na bits to configure the RIS. Moreover,
compared to the existing codebook designs [2], [11], the
proposed scheme utilizes the statistical CSI and achieves
substantial performance gain under the same overhead.

Moreover, the complexity of channel estimation and reflec-
tion joint optimization of the AO algorithm are 2M (N + 1)
and Niter(2

aN + 4MN + 4M) in terms of the real-valued
multiplications [11], where Niter denotes the number of iter-
ations for implementing the AO algorithm, 2aN , 4MN , and
4M denote the complexity for optimizing reflection matrix Θ,
calculating hH , and active beamforming w at each iteration.
By contrast, the complexity of channel estimation and the
reflection optimization of the proposed scheme are 4MT and
(6M + 8)T , respectively, where 4M , 6M + 3, and 5 denote
the complexity of estimating a composite channel, optimizing
active beamforming, and calculating the achievable rate for
each RC, respectively. The complexity comparison will be
demonstrated in Section V.

IV. THEORETICAL ANALYSIS

In this section, we analyze the scaling law of the average
received power at the UE of the environment-aware codebook
scheme. For simplicity, we assume M = 1. Besides, the
direct channel is blocked and the obtained CSI is accurate. We
consider the Rician channel model for hr and g. Specifically,
hr is generated following (3), where

∣∣hLoS
r,n

∣∣ = 1 and hNLoS
r,n ∼

CN (0, 1). The modeling of g is similar, and the Rician factor
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of the g is set to Kg →∞. Moreover, the channels associated
with different elements are i.i.d.. Rician fading with average
power βr and βg for hr,n and gn, respectively, where hr,n
and gn denote the n-th entry of hr and g. Based on the above
assumptions, we obtain the Proposition 1.

Proposition 1: Assume hr,n following the Rician channel
modeling with Rician factor of Kr, n ∈ N . For N >> 1, the
signal power received at the UE is given by

pr < pdβrβg

N2K2
1︸ ︷︷ ︸

(i)

+NK2
2 (log T + C)︸ ︷︷ ︸

(ii)

+N2K1K2
√
π︸ ︷︷ ︸

(iii)

 ,

(10)
where K1 =

√
Kr/ (1 +Kr), K2 =

√
1/ (1 +Kr), and C ≈

0.5772 is the Euler-Mascheroni constant.
Proof: By applying the above conditions, the signal power

received at the UE is denoted by pr = pdE
{

max
t∈T

∣∣φTt d
∣∣2},

which can be further expressed as

pdE
{

max
t∈T

∣∣φTt d
∣∣2}

= pdβrβgE

max
t∈T

∣∣∣∣∣
N∑
n=1

φ̂n,t(K1h
LoS
r,n +K2h

NLoS
r,n )∗gn

∣∣∣∣∣
2


= pdβrβgE

max
t∈T


∣∣∣∣∣
N∑
n=1

φ̂n,tK1(hLoS
r,n )∗gn

∣∣∣∣∣
2

+

∣∣∣∣∣
N∑
n=1

φ̂n,tK2(hNLoS
r,n )∗gn

∣∣∣∣∣
2

+ 2Re

{
N∑
n=1

(
φ̂n,tK1(hLoS

r,n )∗gn

)∗
×

N∑
n=1

(
φ̂n,tK2(hNLoS

r,n )∗gn

)}}}
, (11)

where d denotes the cascaded BS-RIS-UE channel of g and
hr, while φ̂n,t is obtained in Section III-B. Since obtaining
a closed solution for (11) is non-trivial, we next derive a
theoretical upper bound by scaling three entries in (11). First,
by invoking the Lindeberg-Lévy central limit theorem [11],

we have
N∑
n=1

φ̂n,tK1(hLoS
r,n )∗gn ∼ CN (0, NK2

1 ) as N → ∞.

Furthermore, we assume that the dominant LoS components
of reflected channels are aligned in the first entry of (11),
then we obtain (i) of (10) by applying (31) in [1]. Second,
we assume that the NLoS components of reflected channels
to be dominant and adopt multiple sets of random RCs to
optimize the NLoS components of channels in the second
entry of (11), thus we obtain (ii) of (10) according to
(13) in [11]. Finally, we consider both the LoS and NLoS
components of reflected channels in the third entry of (11).
Due to the fact that

∣∣hNLoS
r,n

∣∣ follows Rayleigh distribution
with mean value of

√
π/2, we have an upper bound of

2
N∑
n=1

(
K1
∣∣hLoS

r,n

∣∣ |gn|) N∑
n=1

(
K2
∣∣hNLoS

r,n

∣∣ |gn|), based on which

we can readily obtain (iii) of (10). �
It is noted that the performance of the proposed scheme is

highly dependent on the channel structure. Specifically, when
K1 → 1, i.e., the reflected channel is equivalent to the virtual

LoS channel, we have pr → pdβrβgN
2K2

1 , which characterizes
the quadratic power scaling law versus the number of RIS
elements [1]. When considering the Rayleigh channel for
hr, i.e., K2 → 1, we have pr → pdβrβgNK

2
2 (log T + C),

which is consistent with the conclusion of [12]. Furthermore,
when T = 1, we have pr = pdβrβgNK

2
2C. Moreover, when

considering the maximum overhead of Tmax = 2aN , we have
pr → apdβrβgN

2K2
2 .

V. SIMULATION RESULTS

In this section, we provide simulation results to verify
the performance of our proposed scheme. We consider a 3D
Cartesian coordinate system, where the antenna array at the
BS is modeled by a ULA and deployed on the y-axis with
antenna spacing of dBS = λ/2. The UE is located on the x-
axis. In addition, we assume that the RIS is deployed as a
UPA on the x − z plane with 10 × 10 array structure and
element spacing of dR = λ/8. Moreover, if not specified,
we consider 1 bit phase quantization, i.e., E = {ej0, ejπ},
which is common in the practical design [11]. The coordinates
of the BS, RIS, and UE are (0, 0, hBS), (dBU, dRU, hR), and
(dBU, 0, 0), respectively, where the distance from the BS and
RIS to UE are dBU = 100 m and dRU = 6 m on x − y
plane, respectively, the height of both the BS and RIS are
hBS = hR = 5 m. Thus, The path loss of each channel is
modeled as β = C0(d/d0)−α, where C0 = −20 dB denotes
the path loss at the reference distance of d0 = 1 m, d denotes
the distance of the link. Moreover, the path loss factor of G,
hr, and hd are set to αg = 2.4, αr = 2.5, and αd = 3.5,
respectively. In addition, the Rician factors of the G, hr, and
hd are set to Kg = 4 dB, Kr = 3 dB, and Kd = −3 dB,
respectively. Moreover, we consider the transmit power at the
BS is pd = 40 dBm, the average noise power at the BS and the
UE are σ2

u = −110 dBm and σ2
d = −90 dBm, respectively.

Moreover, all results are obtained by averaging over 1,000
independent experiments.

As shown in Fig. 2(a), we evaluate the achievable rate versus
different training overhead, where we consider six benchmark
schemes, including the AO algorithm [1], random phase shift
(RPS) scheme [11], random codebook (Rand.) scheme [11],
plain MISO without RIS [1], and statistical CSI (SCSI)-based
scheme [5] without selecting a reference antenna with T = 1.
Note that the achievable rate of the proposed scheme, AO,
and the SCSI scheme can be improved as the number of
quantization bits b increases, while the random codebook
scheme hardly attain any performance gain [11]. Moreover,
the proposed scheme has a moderate rate loss compared to
the AO algorithm under the perfect CSI, which, however, can
be gradually improved with the increase of T . In addition, the
system’s achievable rate of the proposed scheme benefiting
from the statistical CSI outperforms the random codebook and
DFT scheme at T = 1. Fig. 2(b) compares the achievable rate
of different schemes and channel estimation techniques under
imperfect CSI. It is worth noting that the rate of the proposed
scheme even outperforms the AO scheme in the presence of
channel estimation errors. However, the AO algorithm still
requires 101 training TSs to attain such inaccurate CSI. As a



5

0 10 20 30 40 50 60 70 80 90 100

Training overhead, T (symbols)

17

18

19

20

21

22
A

c
h

ie
v
a

b
le

 r
a

te
, 

R
 (

b
p

s
/H

z
)

1 bit

3-bits

AO

RPS

Rand.

No RIS

Pro

SCSI

DFT

(a) Under perfect CSI.

0 10 20 30 40 50 60 70 80 90 100

Training overhead, T (symbols)

16

16.5

17

17.5

18

18.5

19

19.5

20

20.5

A
c
h

ie
v
a

b
le

 r
a

te
, 

R
 (

b
p

s
/H

z
)

LS-Pro

MMSE-Pro

AO

Rand.

SCSI

DFT

(b) Under imperfect CSI. (pu = 0
dB).
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the proposed scheme and the AO algorithm (M = 8, Niter = 4).
result, our scheme is more competitive in the face of imperfect
CSI.

As shown in Fig. 3(a), we consider Kg = Kd → ∞ and
analyse the influence of Kr on the achievable rate. Observe
from Fig. 3(a) that the achievable rate of the proposed, DFT,
and SCSI schemes gradually increase with the value of Kr.
The proposed and SCSI schemes almost achieve the same
achievable rate with the AO algorithm under perfect CSI at
Kr = 30 dB. Moreover, the proposed scheme relying on
an environment-aware codebook significantly outperforms the
random codebook, RPS, and DFT schemes. Fig. 3(b) considers
the imperfect CSI by taking pu = −20 dBm. Again, the
proposed scheme outperforms the AO algorithm in the face
of severe channel estimation errors. As shown in Fig. 3,
the achievable rate of the proposed scheme improves as Kr
increases, while the other benchmark schemes are not sensitive
to Kr. In a nutshell, our scheme utilizes the statistical CSI to
attain better performance.

Fig. 4(a) verifies our analytical results in Section IV, where
we set Kr = −30 dB, 3 dB, and 30 dB, respectively. Note
that the theoretical results serve a tight upper bound of the
simulation results under all setups. Finally, Fig. 4(b) compares
the complexity of the AO algorithm and the proposed scheme.
In sharp contrast to the AO algorithm, the complexity of the
proposed scheme is independent of the number of reflecting
elements N . In addition, with the increase of T , the complexity
of the proposed scheme will increase, which, however, is still
less than the AO algorithm.

VI. CONCLUSIONS

In this letter, we proposed an environment-aware codebook
scheme by exploiting the statistical CSI for the RIS-assisted
MISO system. We perform reflection optimization for each RC
in the pre-designed codebook and obtain the best RC by max-
imizing the objective function. Furthermore, we analyzed the
theoretical achievable rate of the proposed scheme. Moreover,
simulation results demonstrated that our proposed scheme at-
tained performance benefit under imperfect CSI, albeit its low
implementation complexity and training overhead. Note that
the proposed scheme can be readily extended to multiple-input
multiple-output and multi-user MISO scenarios by exploiting
statistical CSI-based joint optimization methods.

REFERENCES

[1] Q. Wu and R. Zhang, “Intelligent reflecting surface enhanced wireless
network via joint active and passive beamforming,” IEEE Trans. Wireless
Commun., vol. 18, no. 11, pp. 5394–5409, Nov. 2019.

[2] J. An, C. Xu, L. Wang, Y. Liu, L. Gan, and L. Hanzo, “Joint training
of the superimposed direct and reflected links in reconfigurable intel-
ligent surface assisted multiuser communications,” IEEE Trans. Green
Commun. Netw., vol. 6, no. 2, pp. 739–754, Jun. 2022.

[3] C. You, B. Zheng, and R. Zhang, “Channel estimation and passive
beamforming for intelligent reflecting surface: Discrete phase shift and
progressive refinement,” IEEE J. Sel. Areas Commun., vol. 38, no. 11,
pp. 2604–2620, Nov. 2020.

[4] C. Huang, A. Zappone, G. C. Alexandropoulos, M. Debbah, and
C. Yuen, “Reconfigurable intelligent surfaces for energy efficiency in
wireless communication,” IEEE Trans. Wireless Commun., vol. 18, no. 8,
pp. 4157–4170, Aug. 2019.

[5] H. Guo and V. K. Lau, “Uplink cascaded channel estimation for
intelligent reflecting surface assisted multiuser MISO systems,” IEEE
Trans. Signal Process., vol. 70, pp. 3964–3977, Jul. 2022.

[6] S. Zhang, S. Zhang, F. Gao, J. Ma, and O. A. Dobre, “Deep learning
optimized sparse antenna activation for reconfigurable intelligent surface
assisted communication,” IEEE Trans. Commun., vol. 69, no. 10, pp.
6691–6705, Jul. 2021.

[7] W. Xie, J. Xiao, P. Zhu, C. Yu, and L. Yang, “Deep compressed sensing-
based cascaded channel estimation for RIS-aided communication sys-
tems,” IEEE Wireless Commun. Lett., vol. 11, no. 4, pp. 846–850, Apr.
2022.

[8] H. Li, W. Cai, Y. Liu, M. Li, Q. Liu, and Q. Wu, “Intelligent reflecting
surface enhanced wideband MIMO-OFDM communications: From prac-
tical model to reflection optimization,” IEEE Trans. Commun., vol. 69,
no. 7, pp. 4807–4820, Jul. 2021.

[9] Y. Han, W. Tang, S. Jin, C.-K. Wen, and X. Ma, “Large intelli-
gent surface-assisted wireless communication exploiting statistical CSI,”
IEEE Trans. Veh. Technol., vol. 68, no. 8, pp. 8238–8242, Aug. 2019.

[10] W. Yan, G. Sun, W. Hao, Z. Zhu, Z. Chu, and P. Xiao, “Machine
learning-based beamforming design for millimeter wave IRS commu-
nications with discrete phase shifters,” IEEE Wireless Commun. Lett.,
vol. 11, no. 12, pp. 2467–2471, Mar. 2022.

[11] J. An and L. Gan, “The low-complexity design and optimal training
overhead for IRS-assisted MISO systems,” IEEE Wireless Commun.
Lett., vol. 10, no. 8, pp. 1820–1824, Aug. 2021.

[12] J. An et al., “Low-complexity channel estimation and passive beamform-
ing for RIS-assisted MIMO systems relying on discrete phase shifts,”
IEEE Trans. Commun., vol. 70, no. 2, pp. 1245–1260, Feb. 2022.

[13] W. Chen, C.-K. Wen, X. Li, and S. Jin, “Adaptive bit partitioning for
reconfigurable intelligent surface assisted FDD systems with limited
feedback,” IEEE Trans. Wireless Commun., vol. 21, no. 4, pp. 2488–
2505, Apr. 2022.

[14] J. Kim, S. Hosseinalipour, A. C. Marcum, T. Kim, D. J. Love, and C. G.
Brinton, “Learning-based adaptive IRS control with limited feedback
codebooks,” IEEE Trans. Wireless Commun., vol. 21, no. 11, pp. 9566–
9581, Jun. 2022.

[15] W. Tang, X. Chen, M. Z. Chen, J. Y. Dai, Y. Han, S. Jin, Q. Cheng, G. Y.
Li, and T. J. Cui, “On channel reciprocity in reconfigurable intelligent
surface assisted wireless networks,” IEEE Wireless Commun., vol. 28,
no. 6, pp. 94–101, Dec. 2021.


	I Introduction
	II System and Channel Models
	II-A System Model
	II-B Channel Model

	III The Proposed Codebook-Based Design
	III-A The Proposed Protocol
	III-A1 Environment-Aware Codebook Generation
	III-A2 Composite Channel Estimation
	III-A3 Downlink Transmit Beamforming
	III-A4 Reflection Optimization

	III-B Environment-Aware Codebook Design
	III-C The Advantages of the Proposed Scheme

	IV Theoretical Analysis
	V Simulation Results
	VI Conclusions
	References

