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Abstract—Semantic communication is an increasingly popular
framework for wireless image transmission due to its high
communication efficiency. With the aid of the joint-source-and-
channel (JSC) encoder implemented by neural network, seman-
tic communication directly maps original images into symbol
sequences containing semantic information. Compared with the
traditional separate source and channel coding design used in bit-
level communication systems, semantic communication systems
are known to be more efficient and accurate especially in the
low signal-to-the-noise ratio (SNR) regime. This thus prompts
a critical while yet to be tackled issue of security in semantic
communication: it makes the eavesdropper much easier to crack
the semantic information as it can be retrieved even in a highly
noisy channel. In this letter, we develop a semantic commu-
nication framework that accounts for both semantic meaning
decoding efficiency and its risk of privacy leakage. To this
end, targeting wireless image transmission, we propose an JSC
autoencoder featuring residual structure for efficient semantic
meaning extraction and transmission, and the training of which is
guided by a well-designed loss function that can flexibly regulate
the efficiency-privacy trade-off. Extensive experimental results
are provided to show the effectiveness and robustness of the
proposed scheme.

I. INTRODUCTION

The wide success of artificial intelligence (Al) in every
perspectives of our society has also driven the rapid ad-
vancement in wireless communications [1]. Recently, as a
consequence of the fusion of Al and communication, a novel
paradigm, called semantic communication, has received great
attention. Building on the deep learning based end-to-end
communication system [2], semantic communication further
introduces efficient semantic encoder network, so that the
essential semantic information instead of the raw data can
be extracted, encoded and delivered to the receiver, which is
believed to be a more efficient and effective way to convey
information in the next generation wireless networks [3].

In particular, semantic communication has shown promising
gain in image transmission task. In classic bit-level communi-
cation, the images are first compressed into binary sequences
by source coding algorithms (e.g., JPEG, JPEG2000, BPG),
followed by channel coding schemes (e.g., Turbo, LDPC) that
add certain redundancy to combat against the random channel
perturbation, and after that the codewords are modulated into
symbol sequences for reliable transmission. Such a separate
source and channel coding scheme is hard to guarantee the
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optimality of the whole system in terms of rate-distortion
trade-off. Prompted by this, authors in [4] first proposed a
Jjoint-source-and-channel-coding (JSCC) method for wireless
image transmission, where the images were directly mapped
into complex-valued symbols through a well-trained neural
network. To further improve the quality of reconstructed
image, the feedback and multi-layer bandwidth-agile design
were subsequently proposed in [5], [6]. In addition, since
semantic communication aims to deliver semantic meaning
instead of perfectly reconstructing the original source at the
receiver. For image transmission tasks, the commonly-used
pixel similarity (e.g., PSNR [4]) is no longer appropriate to
describe the goodness of semantic communication. Given this,
some new reconstruction performance metric customized for
semantic communication were proposed in [7], [8], where
semantic communication exhibits remarkably higher efficiency
and accuracy than the bit-level communication, especially in
the low signal-to-the-noise ratio (SNR) regime.

Like every coin has two sides, accompanying the good
performance in the low SNR regime is the higher risk of
privacy leakage, as it implies that the eavesdroppers can crack
the semantic information more easier even through a highly
noisy channel. This thus prompts a critical issue regarding
secure semantic communications. To design security-aware
semantic communication systems, one needs to balance the
trade-off between the transmission efficiency at the destination
user (Bob), and the information leakage to the eavesdropper
(Eve). In classic bit-level communication systems, the secure
channel capacity, rather than channel capacity, serves as the
main performance metric of interest to ensure security. The
theoretical analysis of secure capacity was presented in [9],
[10] targeting bit-level. Building on it, the secrecy capacity
region can be derived, and secure transmission can be achieved
by proper transmission power control and specific channel
coding designs [11]-[13]. Nevertheless, in semantic commu-
nication, the “black-box” nature of JSCC block implemented
by neural networks makes the derivation of secure channel
untractable if not impossible. Therefore, the existing secure
communication schemes building for bit-level communication
systems cannot be directly applied to semantic communication
systems, leaving the secure semantic communication remains
a largely uncharted area.

As discussed above, there are two basic objectives in secure
semantic communication systems, namely, the one concerns
efficiency, i.e., the semantic recovery quality at Bob; and
the other concerns privacy, i.e., the semantic leakage to Eve.
This gives rise to a fundamental trade-off between efficiency
and privacy. In this letter, we develope a secure semantic



communication framework that accounts for both objectives
above. Firstly, we propose an efficient joint-source-channel
(JSC) autoencoder featuring the cascading of residual block
with convolution layer for efficient semantic meaning extrac-
tion and transmission, and the training of which is guided
by a well-designed loss function that can flexibly balance
the efficiency-privacy trade-off. Extensive experiments are
conducted to show that the proposed JSCC scheme can signif-
icantly outperform the traditional separate source and channel
coding scheme in the low SNR regime, in the meanwhile,
prevent privacy leakage at the semantic level, thus achieving
the desired efficient and secure semantic communication.

II. SYSTEM MODEL

In this section, we present the downlink semantic communi-
cation system for image transmission, and put forth the privacy
issue caused by Eve.

A. Semantic Transmitter

I
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Fig. 1. Tllustration of the semantic communication system for image
transmission

As shown in Fig 1, the base station (BS) to confidentially
transmit the image s to the legitimate user (Bob), in the
presence of a passive eavesdropper (Eve). Different from
the conventional separate source coding (e.g., JPEG, BPG)
and channel coding (e.g., Turbo, LDPC code) design, the
compression and anti-jamming are implemented by the joint-
source-and-channel (JSC) encoder composed of deep neural
networks (DNNs). The encoding process is given as follows:

x = f(s;0), (1
where 6 and x € RM*' denote the trainable parameters in JSC
encoder and the latent semantic representation of the image
source s, respectively.

Considering the transmit power limitation, we have the
following power constraint on the transmitted signal, i.e.,
wE{z?} <p.

B. Wireless Transmission

We consider the additive white Gaussian noise (AWGN)
channel. The received signal of Bob through the legitimate
AWGN channel is given by

Yo =X+ 1y, 2
where n, ~ N (0,071), of is the average noise power.
Similarly, Eve can receive the information through the

wiretap channel as follows:

Ye =X+n, (3)

where n. ~ N (0,021), o2 is the average noise power. Gen-
erally, as in [10], [11], we assume that the wiretap channel
between BS and EV(; is worse than the channel between BS
and Bob, i.e., P = Z—% > 1.

C. Semantic Receiver

In the receiver side, both Bob and Eve can try to decode
the image as follows:

S =9(y0s),  S.=9(y;0.). “
We note that both JSC encoder and decoder can only be
deployed after sufficient training, while the unbearable com-
munication overhead will be introduced as a cost. Moreover,
there is a strong demand for serving multiple users in semantic
communication system. Given these, sharing the JSC decoder
publicly should be a proper solution for alleviating the training
burden, i.e., ®. = @, as users in the cell can collaborate to
improve the JSC decoder through federated learning. However,
the shared JSC decoder raises critical privacy issue that it
makes Eve easy to crack the semantic information as it can be
retrieved even in a quite noisy channel. We shall tackle such
issues in the subsequent section.

III. PROPOSED METHOD

In this section, we first propose a JSC autoencoder featuring
the cascading of residual block with convolution layer to
extract the semantic information efficiently. Given the potential
privacy leakage, we then propose a data-driven scheme that
balances the efficiency-privacy trade-off.

A. JSC Autoencoder Design
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Fig. 2.

Network architecture of the JSC autoencoder

The network architecture of JSC autoencoder is shown in
Fig. 2. As in [14], the residual blocks are added to improve
the model performance and training stability. In the encoder
part, we adopt the method of alternately cascading the residual
block with convolution layer, and downsampling the input
image three times through residual block. In addition, all the
intermediate results are normalized by generalized normal-
ization transformations (GDN) [15], which is widely used in
image compression. The network structure of the decoder is
similar to the encoder, while the sub-pixel convolution layer
[16] is adopted to reconstruct the image. Compared with the
transposition convolution layer, it can improve the resolution



of the obtained image through learning, thus improving the
reconstruction performance.

Note that, unlike in traditional communication systems
where perfect recovery of x from y, is pursued, we train
the autoencoders in an end-to-end way, as such, the image
compression and channel adaption can be achieved by using
the following loss function,

1< .
L= E ;d(snsi)7 (5)
where B denotes the batch size, d(s;,s;) = ||s; —s:|° is

the mean squared-error (MSE) distortion between the recon-
structed image and the raw image.

B. Privacy-aware Design

decoding failure

(a) Original image (b) BPG-Turbo-64QAM (c) JSCC with (5)

Fig. 3. The reconstructed image produced by Eve (SNRgy e = 0dB)

As reported in [3], [4], one of the advantages of semantic
communication is that the satisfactory performance can be
achieved even in the low SNR regime. As shown in Fig.
3!, with the poor wiretap channel, Eve from the conventional
image transmission system cannot decode anything, while with
the powerful JSC decoder, the Eve from the semantic com-
munication system can still crack the semantic information.
It shows that the semantic communication system does have
higher risk of privacy leakage than bit-level communication.

To address this issue, similar to secure channel capacity,
an intuitive way is to take the reconstruction quality of Eve
into account of the training objective. The loss function with
privacy aware is given by

L= 5D lded) A d S ©

where ) is the weighting factor, d'(-) characterizes the privacy
leakage to Eve.

Then, the main challenge is to give a proper design of d'(-).
There are two principles for it. Firstly, d’(-) does not have to
be the same form with d, as privacy information may have
various definitions. Secondly, there exists a trade-off between
the reconstruction quality of Bob and privacy leakage to Eve.
We should minimize the reconstruction distortion of Bob while
protecting privacy to a certain degree. Considering these, we
propose the following criterion of privacy leakage,

’ ~ _ —d (0,’5\611') d(O,’S\eJ) > €
4 (8:,8..0) = { 0 otherwise. )

where ¢ is the predefined indicator of privacy protection, 0
denotes the all black image with a same shape of s.

IThe detailed settings are given in Section IV.

Remark 1. Generally, the degree of privacy leakage can be
characterized by the mutual information I(s;;S. ;) = H(S.;) —
H(s..|s:). However, I(s;;S.;) is not tractable. We instead
minimize H(S.;), the upper bound of I(s;;s.;). It can be
achieved by forcing the image decoded by Eve to converge
to the constant one, i.e., the all-black image. In addition, d’ (-)
serves as a penalty function for the training objective, for
which we set a threshold, and if the privacy leakage exceeds e,
d’ (+) will corrects the training direction for privacy protection.

Combining (6) with (7), the novel loss function with privacy
aware is presented, referred to as secure mean squared-error
(SecureMSE).

IV. SIMULATION RESULTS

In this section, we conduct a set of experiments evaluat-
ing the performance of the proposed scheme, including the
reconstruction quality at Bob and the privacy leakage to Eve.
The A2WGN system in Section II-B is first considered, where
P = %5 is set to 15dB. In addition, a more practical multiple-
input-fingle-output (MISO) system is also considered, where
precoding techniques can be exploited to relax the noise power
requirement in AWGN system. Specifically, x is normalized
to Mpx/ ||x||> to satisfy the average power constraints, with
p = 1. In all the presented figures, we denote SNR as the
transmission signal-to-noise ratio at Bob side.

Dataset: We use the Linnaeus 5 dataset for training and
testing.” The images have dimension 128 x 128 x 3. The whole
image dataset is composed of 5 classes, including berry, bird,
dog, flower, and other. There are 1200 training images, 400
testing images per class.

Performance Metric: To measure the performance of the
proposed scheme and the baseline schemes, we use the struc-
tural similarity index measure (SSIM) as the performance
metrics, which is given below.

~ _ (peps 4 c1) (200 + ¢2)

BMES = ettty O

where p., o2, o2 are the mean and variance of s, and

the covariance between s and §, respectively. ¢, and ¢, are
constants for numeric stability.

Training Setting: We adopt the Adam optimizer, with the
learning rate of 0.0001. the pretrained model is first obtained
by using the ImageNet dataset with the loss function of MSE
and the assumption of ideal transmission (i.e., the receiver
can obtain x without noise.). Then the final model is obtained
through training under specific channel and loss setting. All the
number of filters in residual blocks and convolution layers are
128. The experiments are implemented by PyTorch and Python
3.8 on a Linux server with 2 NVIDIA RTX 3090 GPUs.

A. Reconstruction Evaluation

In this subsection, we compare the reconstruction quality
of the proposed schemes, the JSCC scheme in [4], and
the conventional schemes with separate source and channel
coding. For the conventional schemes, two source coding
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Fig. 4. Performance comparison among different transmission schemes

schemes including JPEG2000 and BPG are considered. To
ensure fairness, the same number of transmitted symbols are
guaranteed. The results are presented in Fig. 4. It can be seen
that for the two traditional schemes, the reconstruction quality
is bad when the channel quality is poor (i.e., SNR < 5dB).
This is because the traditional scheme needs to represent the
original picture as bit sequences. The poor channel leads to
high bit error rate. For the compression and decompression
schemes of BPG and JPEG2000 standards, the accumulation
of bit errors will cause decoding failure. As for the JSC coding
scheme, it transmits the most important semantic information
in the form of symbols. Although there exist symbol errors,
only semantic offset occurs. It has a relatively satisfactory
performance under low SNR regime and maintains similar
performance with traditional schemes under high SNR regime.
Moreover, the alternating residual and convolutional structure
outperforms the full convolution structure, which verifies the
effectiveness of the proposed scheme.

B. Security Evaluation
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Fig. 5. Performance comparison of Bob and Eve in AWGN system
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Fig. 6. Performance comparison of Bob and Eve in MISO system

1) AWGN System: Under the AWGN system, the recon-
struction performance of the model based on the two training
objectives (e.g., MSE in (5), SecureMSE in (6)) is shown
in Fig. 5. It is found that the MSE scheme achieves the
best reconstruction perforamance at Bob side. However, with
the increase of SNR, especially when SNR > 10dB, the re-
construction performance of Eve improves a lot as well.
We present some examples of reconstructed images when
SNR = 10dB, it can be seen that baseline models without
privacy awareness can also roughly reconstruct the approxi-
mate image, thus verifying the existence of privacy leakage in
the current semantic communication system. For the proposed
SecureMSE scheme, the reconstruction quality of Eve does not
improve a lot as the SNR grows due to the privacy awareness
embedded in the well-designed loss function. From Fig. 7, it
can be seen that Eve with SecureMSE model can no longer
obtain any privacy information. In addition, comparing the
reconstruction effect of Bob under two objectives, SecureMSE
only causes a slight performance loss, which is negligible for
human’s perception. The validity of the proposed algorithm is
thus verified.

2) MISO System: For a typical MISO system, y, and y.
are respectively given by

yo = (hy'v)®@x+mn,, y.=(hv)®x+n,, 9)
where h, € CV*' and h, € C"*' denote the channel between

BS and Bob, BS and Eve, respectively. The maximum ratio

transmission (MRT) precoding scheme is adopted, that is, v =
h

W. Then, y, and y. can be rewritten as
bllg
Yo = X + 1Ny, Ye = QX + 1, (10)
H
where a, = ﬁ In the following experiment, we has N = 8,
bila
2

and P =Z5 = 1.

The perfbormance comparison between the proposed scheme
and the baseline one under MISO system is shown in Fig.
6. In the low SNR regime (i.e., —5dB < SNR < 5dB), the
reconstruction performance of SecureMSE in Bob decreases

to a certain extent. This is because in the MISO system, as
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Examples of reconstructed images produced by Bob and Eve targeting different objective in AWGN system (SNR = 10dB)

(a) Original image (b) MSE Bob

Fig. 8.

shown in (10), the main difference between Bob and Eve is the
fading coefficient. With the high noise level, the JSC decoder
can not distinguish Bob and Eve from the heterogeneity
of channel, thus makes it more difficult to maximize the
reconstruction quality at Bob while suppressing the privacy
leakage to Eve. As the SNR increases (i.e., SNR >= 10dB), it
can be seen that both the reconstruction performance of Bob
and the privacy preservation against Eve improve a lot. In
addition, the example reconstruction image with SNR = 10dB
is shown in Fig. 8. It can be seen that the model based on
the conventional MSE loss still suffer from the problem of
privacy leakage, while the model trained with the proposed
SecureMSE loss once again prevents privacy leakage, thus
verifying the robustness of the proposed algorithm in dealing

with various scenarios.
V. CONCLUSION

In this letter, we study the semantic communication sys-
tem for wireless image transmission, and an efficient JSC
framework is developed. In addition, we discuss the privacy
issue in the current semantic communication system and reveal
the potential privacy leakage. Prompted by this, we proposed
a data-driven privacy protection scheme called SecureMSE
featuring a well designed loss function with privacy awareness.
Experimental results verify the effectiveness and robustness of
the proposed scheme.
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