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Secure Transmission Design with Strong Channel Correlation for Passive/Active RIS
Communications

Jun Sun, Junjie Li, Wanming Hao, Xiaomin Mu, Zheng Chu, and Pei Xiao

Abstract—Physical layer security (PLS) is a promising tech-
nique to improve the security of wireless communications. How-
ever, when the legitimate user’s and eavesdropper’s channels are
strongly correlated, directly applying PLS might no longer be a
valid approach. In this paper, by introducing the reconfigurable
intelligent surface (RIS), we study how to design access point (AP)
and RIS beamforming and deploy RIS to improve the security
under strong channel correlation. Furthermore, by taking into
consideration the “multiplicative fading” effect, we formulate
the secrecy rate (SR) maximization problem in the passive
and active RIS cases. Next, we propose a semidefinite program
(SDR)-based alternative optimization (AO) algorithm for each
case, respectively. However, the computational complexity of
the SDR approach is prohibitive for the large-size RIS. To
tackle this issue, we respectively develop the low-complexity
minorization maximization-based and primal-dual subgradient-
based AO algorithms for two cases. Finally, we analyze the
effect of the RIS deployment on the SR, and simulations results
demonstrate the effectiveness of the proposed schemes.

Index Terms—Reconfigurable intelligent surface, physical layer
security, channel correlation.

I. INTRODUCTION

With the rapid development of the fifth-generation (5G)
mobile communications, academia and industry are looking
for more cutting-edge technologies to meet the needs of B5G
and 6G applications, including ultra-high speed rate, energy
efficiency, security and ultra-low delay [1]. Because of the
broadcast characteristics of wireless communication, it is vul-
nerable to information leakage and attack [2]. Compared with
traditional encryption security scheme, physical layer security
(PLS) has attracted increasing attention due to its ability to
safeguard wireless transmissions without incurring additional
computational complexity and communication overhead [3].
Applying PLS, the quality of signals received by illegal
users can be effectively reduced by optimizing access point
(AP) beamforming (BF). However, when the legitimate user’s
channel has strong correlation with the eavesdropper’s (Eve’s)
as shown in Fig. 1(a), the achievable secrecy rate (SR) is very
limited by conventional PLS techniques.

Recently, reconfigurable intelligent surface (RIS) has at-
tracted great attention as a promising technology for future
wireless communications. Specifically, RIS consists of a large
number of low-cost passive reflecting elements, and each
element can independently adjust the amplitude and phase
of the incoming signals [4], which effectively overcomes the
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Fig. 1. Basic secure communication model under strong channel correlation:
(a) without RIS, (b) with RIS.

blockage effect and improves the system capacity. However,
due to the effect of the “multiplicative fading” of the cas-
caded RIS channel, the improved performance is limited,
especially when there exists direct link between users and AP.
To circumvent this problem, [5] propose a new active RIS
structure, and each reflecting element or multiple elements
is equipped with a power amplifier, which can effectively
improve the SR. In comparison, the hardware overhead of
active relay is higher than that of active RIS. For example, the
relay needs digital-to-analog and analog-to-digital converters,
mixers, power amplifiers and so on [6], and full duplex
relay also need to consider the self-interference problem,
which requires the large overhead. Whereas, the active RIS
only needs the simple power amplification and diodes, and
the overhead is small. Meanwhile, Active RIS outperforms
relay in terms of performance and overhead under the same
condition [7]. In addition, RIS can also improve the overall
security of the system by providing additional communication
links by bypassing Eves [8]. There have been several works
considering the RIS-aided secure communications [9] [10], but
they do not study the effect of the RIS deployment and active
RIS on the SR, especially when the legitimate user and Eve
have strongly correlated channels.

Against this background, in this paper, we study the joint
AP and passive/active RIS BF design problem under the strong
channel correlation among legitimate user and Eve. Firstly,
we formulate the SR maximization problem both the passive
and active RIS cases, respectively. For the passive RIS case,
we first propose an alternative optimization (AO) algorithm
based on the semidefinite relaxation program (SDR) technique.
To avoid the high computational complexity and rank-one
constraint caused by SDR, we propose a low-complexity
minorization maximization (MM)-based AO algorithm. For the
active RIS case, we also propose a similar SDR-based AO
algorithm, and then develop a primal-dual subgradient (PDS)-
based AO algorithm that avoids applying the SDR approach
to solve RIS BF, which can effective reduce the complexity
for a large-size RIS. Meanwhile, we analyze the effect of the
RIS deployment on the SR in simulations.
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II. SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Fig. 1(b), we consider a downlink RIS secure
communication scenario. We assume that the AP is consisted
of an Mt-antenna uniform linear array to serve a single-
antenna legitimate user in presence of a single-antenna Eve,
and the RIS is an Nt-element uniform planar array. The
channel links from AP to RIS, from AP to legitimate user,
from AP to Eve, from RIS to legitimate user, and from RIS
to Eve are denoted as \bfG AR \in \BbbC Nt\times Mt , \bfh AU \in \BbbC Mt\times 1,
\bfh AE \in \BbbC Mt\times 1, \bff RU \in \BbbC Nt\times 1, and \bff RE \in \BbbC Nt\times 1, respec-
tively. The classic S-V mmWave channel model is applied
[11], i.e., \bfh Aj =

\sqrt{} 
Mt/LAj

\sum LAj

l=1 \alpha 
(l)
Aj\bfa (\varphi 

(l)
Aj), j \in \{ U,E\} ,

where LAj denotes the number of paths from AP to receiver
j, \bfa (\varphi 

(l)
Aj) = 1\surd 

Mt
e - jkd \mathrm{s}\mathrm{i}\mathrm{n}(\varphi 

(l)
Aj)[0,...,Mt - 1]T , \varphi (l)

Aj represents

the azimuth angle for the transmitter of the l-th path, \alpha (l)
Aj

represents the channel gain of the l-th path, k = 2\pi /\lambda ,
d and \lambda represent antenna spacing and wavelength. Other
channels have the similar expressions. Since the power of
the line-of-sight (LoS) path of the mmWave channel is the
main component [11], \bfh AU and \bfh AE are strong correlation
when the legitimate user and the Eve have the same azimuth
angle of the AP (i.e., \varphi AU = \varphi AE) , and their correlation can

be approximated as
\sqrt{} 
(aLoS

Aj )
2
/(
\sum LAj

l=1 (a
(l)
Aj)

2
), where aLoS

Aj

denotes the gain of the LoS path.
For the passive RIS, the signals received by the user and

Eve can be expressed

yj =
\bigl( 
\bfh H
Aj + \bff HAj\bfTheta \bfG AR

\bigr) 
\bfx + nj , j \in \{ U,E\} , (1)

where \bfx = \bfw s is the precoding symbol transmitted by the AP,
\bfw \in \BbbC Mt\times 1 denotes the precoding vector, s is the confidential
information satisfying \BbbE 

\Bigl\{ 
| s| 2
\Bigr\} 

= 1, nU \sim \scrC \scrN 
\bigl( 
0, \sigma 2

U

\bigr) 
and

nE \sim \scrC \scrN 
\bigl( 
0, \sigma 2

E

\bigr) 
are the white Gaussian noise with zero

mean and variance \sigma 2
U and \sigma 2

E at the user and Eve, respec-
tively. \bfTheta = diag (\bfittheta ) symbolizes the reflection coefficient
matrix of the RIS. Here, we define \bfittheta = [\theta 1, . . . , \theta Nt

]
T and

\theta n = \eta ne
j\vargamma n , where \eta n and \vargamma n represent the amplitude and

phase shift of the n-th element, respectively. To maximize the
reflection efficiency, we set the reflection amplitude \eta n = 1.

For the active RIS, the signals received by user and Eve are
represented as [12]

\^yj=
\bigl( 
\bfh H
Aj+\bff HAj\bfTheta \bfG AR

\bigr) 
\bfx +\bff HAj\bfTheta \bfn R+nj , j \in \{ U,E\} , (2)

where \bfn R \sim \scrC \scrN 
\bigl( 
\bfzero , \sigma 2

R\bfI 
\bigr) 

represents the thermal noise gener-
ated by RIS. Each element of active RIS is equipped with an
amplifier, and thus the reflection amplitude \eta n \geq 1.

For the passive RIS, the SR maximization problem can be
formulated as follows.

\scrP 0 : \mathrm{m}\mathrm{a}\mathrm{x}
\bfw ,\bfTheta 

\Bigl[ 
\mathrm{l}\mathrm{o}\mathrm{g}2

\Bigl( 
1+
\bigm| \bigm| \bigl( \bfh H

AU+\bff HAU\bfTheta \bfG AR

\bigr) 
\bfw 
\bigm| \bigm| 2/\sigma 2

U

\Bigr) 
 - \mathrm{l}\mathrm{o}\mathrm{g}2

\Bigl( 
1+
\bigm| \bigm| \bigl( \bfh H

AE+\bff HAE\bfTheta \bfG AR

\bigr) 
\bfw 
\bigm| \bigm| 2/\sigma 2

E

\Bigr) \Bigr] +
(3a)

\mathrm{s}.\mathrm{t}. \| \bfw \| 2 \leq P\mathrm{m}\mathrm{a}\mathrm{x}, | \bfittheta n| = 1,\forall n, (3b)

where P\mathrm{m}\mathrm{a}\mathrm{x} symbolizes the maximum transmit power of AP.
For the active RIS, the SR maximization problem can be

formulated as follows.

\scrP 1 : \mathrm{m}\mathrm{a}\mathrm{x}
\bfw ,\bfTheta 

\Biggl[ 
\mathrm{l}\mathrm{o}\mathrm{g}2

\Biggl( 
1 +

\bigm| \bigm| \bigl( \bfh H
AU + \bff HAU\bfTheta \bfG AR

\bigr) 
\bfw 
\bigm| \bigm| 2\bigm\| \bigm\| \bff HAU\bfTheta \bfn R

\bigm\| \bigm\| 2 + \sigma 2
U

\Biggr) 

 - \mathrm{l}\mathrm{o}\mathrm{g}2

\Biggl( 
1 +

\bigm| \bigm| \bigl( \bfh H
AE + \bff HAE\bfTheta \bfG AR

\bigr) 
\bfw 
\bigm| \bigm| 2\bigm\| \bigm\| \bff HAE\bfTheta \bfn R

\bigm\| \bigm\| 2 + \sigma 2
E

\Biggr) \Biggr] +
(4a)

\mathrm{s}.\mathrm{t}. \| \bfw \| 2 + \| \bfTheta \bfG AR\bfw \| 2 + \sigma 2
R\| \bfTheta \| 2 \leq \^P\mathrm{m}\mathrm{a}\mathrm{x}, (4b)

| \theta n| \leq \eta n,\forall n, (4c)

where \^P\mathrm{m}\mathrm{a}\mathrm{x} symbolizes the maximum sum transmit power
constraint at AP and RIS,1 and the amplification factor of RIS
element satisfies \eta n > 1. \scrP 0 and \scrP 1 are all non-convex op-
timization problems, which are difficult to be directly solved.
Next, we propose effective algorithms to deal with them.

III. JOINT OPTIMIZATION SCHEME FOR THE PASSIVE RIS

In this section, we first propose an AO algorithm based on
SDR to solve \scrP 0, and then develop a low-complexity PDS
technique to solve passive RIS BF.

A. Fix \bfTheta and Solve \bfw 

Let’s define

\bfH U =
\bigl( 
\bfh H
AU+\bff HAU\bfTheta \bfG AR

\bigr) H\bigl( 
\bfh H
AU+\bff HAU\bfTheta \bfG AR

\bigr) \big/ 
\sigma 2
U ,

\bfH E=
\bigl( 
\bfh H
AE+\bff HAE\bfTheta \bfG AR

\bigr) H\bigl( 
\bfh H
AE+\bff HAE\bfTheta \bfG AR

\bigr) \big/ 
\sigma 2
E .

(5)

Fixed \bfTheta , and thus \scrP 0 can be recast to

\scrP 2 : \mathrm{m}\mathrm{a}\mathrm{x}
\bfw 

\bfw H\bfH U\bfw + 1

\bfw H\bfH E\bfw + 1
, \mathrm{s}.\mathrm{t}. \bfw H\bfw \leq P\mathrm{m}\mathrm{a}\mathrm{x}. (6a)

According to [13], the optimal solution \bfw \mathrm{o} can be obtained as

\bfw \mathrm{o}=
\sqrt{} 
P\mathrm{m}\mathrm{a}\mathrm{x}\bfv \mathrm{m}\mathrm{a}\mathrm{x}

\Biggl[ \biggl( 
\bfH E+

\bfI Mt

P\mathrm{m}\mathrm{a}\mathrm{x}

\biggr)  - 1\biggl( 
\bfH U+

\bfI Mt

P\mathrm{m}\mathrm{a}\mathrm{x}

\biggr) \Biggr] 
, (7)

where \bfv \mathrm{m}\mathrm{a}\mathrm{x} [\cdot ] denotes the normalized eigenvector correspond-
ing to the largest eigenvalue of its matrix.

B. Fix \bfw and Solve \bfTheta 

Upon obtaining \bfw , \scrP 0 can be formulated as

\scrP 3 : \mathrm{m}\mathrm{a}\mathrm{x}
\bfu 

\mathrm{l}\mathrm{n}
\bigl( 
1 + \bfu H\bfX U\bfu 

\bigr) 
 - \mathrm{l}\mathrm{n}

\bigl( 
1 + \bfu H\bfX E\bfu 

\bigr) 
(8a)

\mathrm{s}.\mathrm{t}. | un| = 1,\forall n, uNt+1 = 1, (8b)

where for j \in \{ U,E\} , \bfF j= \mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}
\bigl( 
\bff HAj

\bigr) 
\bfG AR,

\bfX j = 1
\sigma 2
j

\biggl[ 
\bfF j\bfW \bfF H

j \bfF j\bfW \bfh Aj

\bfh H
Aj\bfW \bfF H

j \bfh H
Aj\bfW \bfh Aj

\biggr] 
, \bfu =

\Bigl[ 
\bfittheta T , 1

\Bigr] T
=

[u1, . . . , uNt+1]
T , \bfW = \bfw \bfw H . For convenience, we ignore

[\cdot ]+ and adopt \mathrm{l}\mathrm{n}(\cdot ) form.2

Obviously, we can denote variable \bfU = \bfu \bfu H and solve \scrP 3

with the SDR method [14]. However, this method needs to
call the semidefinite program (SDP). Furthermore, it is found

1In fact, the transmit power of AP and RIS can be controlled by a common
controller. Under the sum transmit power constraint, the transmit power of
AP and RIS can be flexibly allocated according to the practical scenario.

2[\cdot ]+ denotes \mathrm{m}\mathrm{a}\mathrm{x} \{ \cdot , 0\} , and thus [\cdot ]+ can be ignored because the SR
should be non-negative.
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that the optimal \bfU \mathrm{o} usually does not satisfy the rank-one con-
straint, and Gaussian randomization technique is required to
construct the rank-one solution, but the required computational
complexity becomes unaffordable for a large-size RIS.

To reduce the computational complexity for solving \scrP 3, we
propose an MM algorithm. Specifically, given \{ \alpha t, \beta t\} , refer
to the inequality:

\mathrm{l}\mathrm{n}
\Bigl( 
1 + | \alpha | 2/\beta 

\Bigr) 
\geq \mathrm{l}\mathrm{n}

\Bigl( 
1 +

\bigm| \bigm| \alpha t
\bigm| \bigm| 2/\beta t

\Bigr) 
 - 
\bigm| \bigm| \alpha t
\bigm| \bigm| 2/\beta t

+
2\Re \{ \alpha t\alpha \} 

\beta t
 - 

| \alpha t| 2
\Bigl( 
\beta + | \alpha | 2

\Bigr) 
\beta t
\Bigl( 
\beta t + | \alpha t| 2

\Bigr) , (9a)

\mathrm{l}\mathrm{n}

\biggl( 
1 +

\alpha 

\beta 

\biggr) 
\leq \mathrm{l}\mathrm{n}

\biggl( 
1 +

\alpha t

\beta t

\biggr) 
+

\beta t

\alpha t + \beta t

\biggl( 
\alpha 

\beta 
 - \alpha t

\beta t

\biggr) 
. (9b)

Then, the lower bound of the user’s rate can be expressed as

\mathrm{l}\mathrm{n}
\bigl( 
1 + \bfu H\bfX U\bfu 

\bigr) 
\geq \mathrm{l}\mathrm{n}

\bigl( 
1 + \^\bfu H\bfX U\^\bfu 

\bigr) 
 - \^\bfu H\bfX U\^\bfu 

+ 2\Re 
\bigl\{ 
\^\bfu H\bfX U\bfu 

\bigr\} 
 - 

\^\bfu H\bfX U\^\bfu 
\bigl( 
1 + \bfu H\bfX U\bfu 

\bigr) 
1 + \^\bfu H\bfX U\^\bfu 

,
(10)

where \^\bfu is the solution of the last iteration \bfu . Similarly, we
give the lower bound of  - \mathrm{l}\mathrm{n}

\bigl( 
1 + \bfu H\bfX E\bfu 

\bigr) 
as follows

 - \mathrm{l}\mathrm{n}
\bigl( 
1+\bfu H\bfX E\bfu 

\bigr) 
\geq  - \mathrm{l}\mathrm{n}

\bigl( 
1+\^\bfu H\bfX E\^\bfu 

\bigr) 
 - \bfu H\bfX E\bfu  - \^\bfu H\bfX E\^\bfu 

\^\bfu H\bfX E\^\bfu +1
.

(11)

Omitting the constant term, we transform \scrP 3 into

\scrP 4 : \mathrm{m}\mathrm{i}\mathrm{n}
\bfu 

\bfu H\bfA \bfu  - 2\Re 
\bigl\{ 
\bfu H\bfB 

\bigr\} 
(12a)

\mathrm{s}.\mathrm{t}. | un| = 1,\forall n, uNt+1 = 1, (12b)

where \bfA =
(\^\bfu H\bfX U\^\bfu )\bfX U

1+\^\bfu H\bfX U\^\bfu 
+ \bfX E

\^\bfu H\bfX E\^\bfu +1
, \bfB = \bfX U\^\bfu . According

to the second-order Taylor expansion, the upper bound of the
objective function of \scrP 4 can be expressed as

\bfu H\bfA \bfu  - 2\Re 
\bigl\{ 
\bfu H\bfB 

\bigr\} 
\leq \bfu H \=\bfA \bfu +2\Re 

\bigl\{ 
\bfu H
\bigl( 
\bfA  - \=\bfA 

\bigr) 
\^\bfu 
\bigr\} 

+\^\bfu H
\bigl( 
\=\bfA  - \bfA 

\bigr) 
\^\bfu  - 2\Re 

\bigl\{ 
\bfu H\bfB 

\bigr\} 
=2 (Nt+1)\lambda \mathrm{m}\mathrm{a}\mathrm{x} (\bfA ) - 2\Re 

\bigl\{ 
\bfu H\bfitdelta 

\bigr\} 
 - \^\bfu H\bfA \^\bfu ,

(13)

where \=\bfA = \lambda \mathrm{m}\mathrm{a}\mathrm{x} (\bfA ) \bfI Nt+1, \bfitdelta =
\bigl( 
\=\bfA  - \bfA 

\bigr) 
\^\bfu + \bfB . Thus,

ignoring the constant term, \scrP 4 can be further transformed as

\scrP 5 : \mathrm{m}\mathrm{a}\mathrm{x}
\bfu 

\Re 
\bigl\{ 
\bfu H\bfitdelta 

\bigr\} 
\mathrm{s}.\mathrm{t}. (12\mathrm{b}) . (14)

Obviously, by defining \bfitdelta = [\delta 1, . . . , \delta 1]
T , the maximum value

can be obtained when the phase of \delta n and un are equal for any
n. Thus, the closed-form optimal solution of \scrP 5 is given by

\bfu =
\Bigl[ 
ej \mathrm{a}\mathrm{r}\mathrm{g}(\delta 1), . . . , ej \mathrm{a}\mathrm{r}\mathrm{g}(\delta Nt), 1

\Bigr] T
. (15)

Then, \^\bfu = \bfu is updated until the inner loop objective function
converges. \bfw and \bfu are updated in the outer loop until \scrP 0

converges to a locally optimal solution.

IV. JOINT OPTIMIZATION SCHEME FOR THE ACTIVE RIS
In this section, we first propose an AO algorithm based on

SDR to solve \scrP 1, and then develop a low-complexity PDS
technique to solve active RIS BF.

A. Fix \bfTheta and Solve \bfw 

We first fix \bfTheta , and then \scrP 1 can be transformed as

\scrP 6 : \mathrm{m}\mathrm{a}\mathrm{x}
\bfW 

\mathrm{l}\mathrm{n}
\Bigl( 
1 + \mathrm{T}\mathrm{r}

\Bigl( 
\~\bfH U\bfW 

\Bigr) \Bigr) 
 - \mathrm{l}\mathrm{n}

\Bigl( 
1 + \mathrm{T}\mathrm{r}

\Bigl( 
\~\bfH E\bfW 

\Bigr) \Bigr) 
\mathrm{s}.\mathrm{t}. \mathrm{T}\mathrm{r}

\bigl( 
\bfW +\bfG H

AR\bfTheta 
H\bfTheta \bfG AR\bfW 

\bigr) 
\leq P\mathrm{I}, (16a)

\mathrm{R}\mathrm{a}\mathrm{n}\mathrm{k} (\bfW ) = 1,\bfW \succeq 0, (16b)

where \bfW = \bfw \bfw H , \~\bfH j = \bfH j

\Big/ \Bigl( 
\sigma 2
R

\big/ 
\sigma 2
j

\bigm\| \bigm\| \bff HAj\bfTheta 
\bigm\| \bigm\| 2 + 1

\Bigr) 
for

j \in \{ U,E\} , and P\mathrm{I} = \^P\mathrm{m}\mathrm{a}\mathrm{x}  - \sigma 2
R\| \bfTheta \| 2. It is obvious that \scrP 6

is a non-convex optimization problem due to the non-convex
objective function and rank-one constraint. To solve it, we first
give the lower bound of the objective function based on the
first-order Taylor expansion as follows

ln(1 + Tr(\~\bfH U\bfW )) - ln(1 + Tr(\~\bfH E\bfW )) \geqslant 

ln(1 + Tr(\~\bfH U\bfW )) - ln(1 + Tr(\~\bfH E
\^\bfW ))

 - Tr(\~\bfH E(\bfW  - \^\bfW ))/(1 + Tr(\~\bfH E
\^\bfW )) = \Gamma (\bfW , \^\bfW ),

(17)

where \^\bfW is a fixed feasible point. Next, by dropping the rank-
one constraint, \scrP 6 can be transformed the SDR problem

\scrP 7 : \mathrm{m}\mathrm{a}\mathrm{x}
\bfW 

\Gamma (\bfW , \^\bfW ) s.t. \bfW \succeq 0, (16a) . (18)

Therefore, \scrP 7 can be solved by the standard convex optimiza-
tion technique. Finally, when \bfW does not satisfy the rank-one
constraint, a feasible rank-one solution \bfW \ast can be constructed
by the Gaussian randomization method.

B. Fix \bfw and Solve \bfTheta 

After obtain \bfW , \scrP 1 can be transformed as

\scrP 8 : \mathrm{m}\mathrm{a}\mathrm{x}
\bfittheta 

 \frown 

Z  - 
 \smile 

Z (19a)

s.t.
\bigm\| \bigm\| \bigm\| \bfittheta Hdiag (\bfG AR\bfw )

\bigm\| \bigm\| \bigm\| 2 + \sigma 2
R\| \bfittheta \| 

2 \leqslant P\mathrm{I}\mathrm{I}, (4c) , (19b)

where
 \frown 

\mathrm{Z} and
 \smile 

\mathrm{Z} are (20), \bfu =
\Bigl[ 
\bfittheta T , 1

\Bigr] T
, P\mathrm{I}\mathrm{I} = \^P\mathrm{m}\mathrm{a}\mathrm{x} - Tr (\bfW ).

For convenience, let’s define

\^\bfX j =
1

\sigma 2
j

\biggl[ 
\bfF j\bfW \bfF H

j + \^\bfF Rj \bfF j\bfW \bfh Aj

\bfh H
Aj\bfW \bfF H

j \sigma 2
j + \bfh H

Aj\bfW \bfh Aj

\biggr] 
,

j \in \{ U,E\} ,

\bfH P =
\biggl[ 

diag (\bfG AR\bfw ) diag(\bfG AR\bfw )
H
+ \sigma 2

R\bfI \bfzero 
\bfzero 0

\biggr] 
,

\^\bfF Rj = \sigma 2
Rdiag

\bigl( 
\bff HRj

\bigr) 
diag

\bigl( 
\bff HRj

\bigr) H
, j \in \{ U,E\} ,

\bfV j =
1

\sigma 2
j

\biggl[ 
\^\bfF Rj \bfzero 
\bfzero \sigma 2

j

\biggr] 
, j \in \{ U,E\} .

(21)

 \frown 

\mathrm{Z} = \mathrm{l}\mathrm{n}

\biggl( 
\bfu H\bfX U\bfu +

\bigm\| \bigm\| \bigm\| \bfittheta H\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}
\bigl( 
\bff HRU

\bigr) \bigm\| \bigm\| \bigm\| 2\sigma 2
R

\big/ 
\sigma 2
U + 1

\biggr) 
+ \mathrm{l}\mathrm{n}

\biggl( \bigm\| \bigm\| \bigm\| \bfittheta H\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}
\bigl( 
\bff HRE

\bigr) \bigm\| \bigm\| \bigm\| 2\sigma 2
R

\big/ 
\sigma 2
E + 1

\biggr) 
,

 \smile 

\mathrm{Z} = \mathrm{l}\mathrm{n}

\biggl( 
\bfu H\bfX E\bfu +

\bigm\| \bigm\| \bigm\| \bfittheta H\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}
\bigl( 
\bff HRE

\bigr) \bigm\| \bigm\| \bigm\| 2\sigma 2
R

\big/ 
\sigma 2
E + 1

\biggr) 
+ \mathrm{l}\mathrm{n}

\biggl( \bigm\| \bigm\| \bigm\| \bfittheta H\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}
\bigl( 
\bff HRU

\bigr) \bigm\| \bigm\| \bigm\| 2\sigma 2
R

\big/ 
\sigma 2
U + 1

\biggr) 
.

(20)
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 \frown 

\mathrm{Z} \geq \mathrm{l}\mathrm{n}
\Bigl( 
1 + | \^\alpha | 2

\Bigr) 
 - | \^\alpha | 2 + 2\Re \{ \^\alpha \=\alpha \}  - 

| \^\alpha | 2
\Bigl( 
1 + | \=\alpha | 2

\Bigr) 
1 + | \^\alpha | 2

+ \mathrm{l}\mathrm{n}
\Bigl( 
1 + | \^\beta | 

2
\Bigr) 
 - | \^\beta | 2 + 2\Re 

\Bigl\{ 
\^\beta \=\beta 
\Bigr\} 
 - 

| \^\beta | 
2
\Bigl( 
1 + | \=\beta | 2

\Bigr) 
1 + | \^\beta | 

2 ,

 - 
 \smile 

\mathrm{Z} \geq  - \mathrm{l}\mathrm{n} (1 + \^z) - z  - \^z

\^z + 1
 - \mathrm{l}\mathrm{n} (1 + \^\chi ) - \chi  - \^\chi 

\^\chi + 1
, | \^\alpha | 2 = \^\bfu H\bfD U\^\bfu , | \=\alpha | 2 = \bfu H\bfD U\bfu ,\bigm| \bigm| \bigm| \^\beta \bigm| \bigm| \bigm| 2 = \^\bfu H \^\bfD E\^\bfu ,

\bigm| \bigm| \=\beta \bigm| \bigm| 2 = \bfu H \^\bfD E\bfu , \^z = \^\bfu H\bfD E\^\bfu , z = \bfu H\bfD E\bfu , \^\chi = \^\bfu H \^\bfD U\^\bfu , \chi = \bfu H \^\bfD U\bfu ,

\bfD j =
1

\sigma 2
j

\biggl[ 
\bfF j\bfW \bfF H

j + \^\bfF Rj \bfF j\bfW \bfh Aj

\bfh H
Aj\bfW \bfF H

j \bfh H
Aj\bfW \bfh Aj

\biggr] 
, \^\bfD j =

1

\sigma 2
j

\biggl[ 
\^\bfF Rj \bfzero 
\bfzero 0

\biggr] 
, j \in \{ U,E\} .

(25)

Next, \scrP 8 can be reformulated as
\^\scrP 8 : \mathrm{m}\mathrm{a}\mathrm{x}

\bfU 
ZS  - ZX (22a)

s.t. Tr (\bfH P\bfU ) \leqslant P\mathrm{I}\mathrm{I},
\bigm| \bigm| \bfU [n,n]

\bigm| \bigm| \leqslant \beta 2
n,\forall n, (22b)

\bfU [Nt+1,Nt+1] = 1, \mathrm{R}\mathrm{a}\mathrm{n}\mathrm{k} (\bfU ) = 1,\bfU \succeq 0, (22c)

where ZS = \mathrm{l}\mathrm{n}(\mathrm{T}\mathrm{r}(\^\bfX U\bfU )) + \mathrm{l}\mathrm{n}(\mathrm{T}\mathrm{r}(\bfV E\bfU )), ZX =
\mathrm{l}\mathrm{n}(\mathrm{T}\mathrm{r}(\^\bfX E\bfU ))+ \mathrm{l}\mathrm{n}(\mathrm{T}\mathrm{r}(\bfV U\bfU )). Next, the lower bound of the
objective function can be approximated as

ZS  - ZX \geq ZS  - \mathrm{l}\mathrm{n}(\mathrm{T}\mathrm{r}(\^\bfX E
\^\bfU )) - \mathrm{l}\mathrm{n}(\mathrm{T}\mathrm{r}(\bfV U

\^\bfU ))

 - \mathrm{T}\mathrm{r}(\^\bfX E(\bfU  - \^\bfU ))

\mathrm{T}\mathrm{r}(\^\bfX E
\^\bfU )

 - \mathrm{T}\mathrm{r}(\bfV U (\bfU  - \^\bfU ))

\mathrm{T}\mathrm{r}(\bfV U
\^\bfU )

= Z(\bfU , \^\bfU ),
(23)

where \^\bfU is a fixed feasible point. Finally, we omit the rank-
one constraint and \^\scrP 8 can be rewritten as

\scrP 9 : \mathrm{m}\mathrm{a}\mathrm{x}
\bfU 

Z
\Bigl( 
\bfU , \^\bfU 

\Bigr) 
\mathrm{s}.\mathrm{t}. (22\mathrm{b}) , (22\mathrm{c}) , (22\mathrm{d}) . (24)

It is obvious that \scrP 9 is a convex SDR problem, which can
be solved via the standard convex optimization technique.
Similarly, we can obtain a rank-one solution by the Gaussian
randomization method when it does not satisfy the rank one.

Here, \bfw and \bfu are updated until \scrP 1 converges to a lo-
cally optimal solution. However, this method still needs to
call the SDR and construct the desired rank-one solution,
which requires huge computational complexity for a large-
size RIS. To reduce the computational complexity for solving
\scrP 8, we propose a low-complexity PDS algorithm. Specifically,

according to (9) we obtain the lower bound of
 \frown 

Z and
 \smile 

Z as
(25). Omitting the constant term, we transform \scrP 8 as

\scrP 10 : \mathrm{m}\mathrm{i}\mathrm{n}
\bfu 

\bfu H \^\bfA \bfu  - 2\Re 
\Bigl\{ 
\bfu H \^\bfB 

\Bigr\} 
(26a)

\mathrm{s}.\mathrm{t}. \bfu H\bfH P\bfu \leq P\mathrm{I}\mathrm{I}, (26b)
| un| \leq \beta n, n \in \scrN , uN+1 = 1, (26c)

where

\^\bfA =
| \^\alpha | 2\bfD U

1 + | \^\alpha | 2
+

| \^\beta | 
2 \^\bfD E

1 + | \^\beta | 
2 +

\bfD E

\^z + 1
+

\^\bfD U

\^\chi + 1
, (27a)

\^\bfB = \bfD U\^\bfu + \^\bfD E\^\bfu . (27b)

Next, by introducing Lagrange multipliers \zeta \in \BbbR , \bfitpsi \in 
\BbbR (Nt+1)\times 1, \rho 1 > 0 and \rho 2 > 0, the augmented Lagrangian of
(26a) can be expressed as

\Gamma (\bfu , \zeta ,\bfitpsi )=\bfu H\bfA \bfu  - 2\Re 
\bigl\{ 
\bfu H\bfB 

\bigr\} 
+\zeta 
\bigl( 
\bfu H\bfH P\bfu  - PII

\bigr) 
+\bfitpsi T\bfG (\bfu )+

\rho 1
2

\bigm\| \bigm\| \bfu H\bfH P\bfu  - PII
\bigm\| \bigm\| 2+ \rho 2

2
\| \bfG (\bfu )\| 2,

(28)

Fig. 2. Simulation deployment.

where \bfG (\bfu ) is defined as \bfG (\bfu ) =
\bigl[ 
G+

1 (\bfu ) , ..., G+
Nt+1 (\bfu )

\bigr] T
with Gn (\bfu ) = \bfu H\bfE n\bfu  - \beta n, n \in \scrN , GNt+1 (\bfu ) = 0, and
\bfE n \triangleq \bfe n\bfe 

H
n . Then, the iterative formula for \^\bfu , \^\bfitpsi and \^\zeta can

be expressed as\left[   \bfu \bfitpsi 
\zeta 

\right]   =

\left[   \^\bfu \^\bfitpsi 
\^\zeta 

\right]    - \^\nu 

\left[   \nabla \bfu \Gamma | \bfu =\^\bfu 

 - \nabla \bfitpsi \Gamma | \bfitpsi = \^\bfitpsi 

 - \nabla \zeta \Gamma | \zeta =\^\zeta 

\right]   , (29)

where \^\nu > 0 denotes the effective iteration step size, \nabla \bfu \Gamma ,
\nabla \bfitpsi and \nabla \zeta are the iteration directions denoted by

\nabla \bfu \Gamma = \bfA \bfu  - \bfB +
\Bigl( 
\zeta + \rho 1

\bigl[ 
\bfu H\bfH P\bfu  - PII

\bigr] +\Bigr) 
\Upsilon (\bfu )

+
\sum Nt+1

n=1

\Bigl( 
\psi n + \rho 2[Gn (\bfu )]

+
\Bigr) 
\mathrm{T}n (\bfu ),

\nabla \bfitpsi \Gamma = \bfG (\bfu ) ,\nabla \zeta \Gamma = \bfu H\bfH P\bfu  - PII.

(30)

Note that the auxiliary functions \Upsilon (\bfu ) \in \BbbC (Nt+1)\times 1 and
\mathrm{T}n (\bfu ) \in \BbbC (Nt+1)\times 1 are defined as

\Upsilon (\bfu ) =

\Biggl\{ 
\bfH P\bfu ,\bfu 

H\bfH P\bfu  - PII > 0

\bfzero ,\bfu H\bfH P\bfu  - PII \leqslant 0
, (31a)

\mathrm{T}n (\bfu ) =

\Biggl\{ 
\bfE n\bfu ,\bfu 

H\bfE n\bfu  - \beta n > 0

\bfzero ,\bfu H\bfE n\bfu  - \beta n \leqslant 0
, n \in \scrN , (31b)

where \mathrm{T}Nt+1 (\bfu ) = \bfzero . By simultaneously updating \bfu , \bfitpsi and \zeta 
until (28) converges, an optimal solution \bfu opt can be obtained,
which avoid the high complexity SDR approach.

Next, we analyze the computational complexity of the pro-
posed methods. For the passive RIS, the computational com-
plexity of the SDR method is \scrO (Io(M

3
t +(Nt + 1)

3.5
)), while

that of the MM method is \scrO (Io(M
3
t + Ii(Nt + 1)

2
)), where

Io and Ii represent the number of iterations of outer loop and
inner loop, respectively. For the active RIS, the computational
complexity of the SDR method is \scrO (I \prime o(M

3
t + (Nt + 1)

3.5
)),

while that of the PDS method is \scrO (I \prime o(M
3
t + I \prime i(Nt + 1)

2
)),

where I \prime o and I \prime i represent the number of iterations of outer
loop and inner loop, respectively.
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Fig. 3. (a) SR versus the number of iterations. (b) SR versus the x-axis coordinate of RIS. (c) SR versus transmit power P\mathrm{m}\mathrm{a}\mathrm{x}.

V. SIMULATION RESULTS

In this section, simulation are conducted to evaluate the
performance of the proposed schemes. We assume that the
user and Eve own the strong channel correlation for the AP,
and then we change the RIS location to study the SR as
shown in Fig. 2, namely the RIS location is moved from
(0, 5, 8) m to (50, 5, 8) m. It is assumed that the three-
dimensional coordinates of AP, user, Eve and RIS are (0, 0, 12)
m, (40, 0, 1.5) m, (35, 0, 1.5) m and (x, 5, 8) m, respectively,
where x \in [0, 50]. Let LAj = 4, \alpha LoS

Aj \sim \scrC \scrN (0, \beta 2
Aj) and

\alpha NLoS
Aj \sim \scrC \scrN (0, 10 - 1\beta 2

Aj) denote the path gain for LoS and
non-line-of-sight (NLoS) [11], respectively, where \beta Aj [\mathrm{d}\mathrm{B}] =
PL (d0)  - 10\kappa Aj \mathrm{l}\mathrm{o}\mathrm{g}10 (d

\ast /d0). Here PL (d0) =  - 30 dBm
is the path loss of the reference distance d0 = 1 m, and
the channel link loss exponents are \kappa Aj = 3.5, \kappa Rj = 2.8
and \kappa AR = 2.2, respectively [12]. We set Mt = 8, Nt = 20,
P\mathrm{m}\mathrm{a}\mathrm{x}= \^P\mathrm{m}\mathrm{a}\mathrm{x}=30 dBm, \sigma 2

U = \sigma 2
E=\sigma 2

R= - 80 dBm, \beta n=10.
Fig. 3(a) shows the convergence behavior of different

schemes, where we set x = 30. It is clear that all schemes
converge quickly, and the SR of “Active RIS with SDR” and
“Active RIS with PDS” schemes are almost the same and
significantly superior to other schemes. Meanwhile, One can
observe that the SR under the sum transmit power constraint
is higher that under the independent power constraint. In
addition, one can observe that the performance of the active
RIS is better than that of the passive RIS as expected. The
effect of the RIS deployment on the SR, as shown in Fig. 3(b)
and Fig. 2. One can observe that when x = 0, namely
RIS is close to AP, SR is the lowest for all schemes. It is
because that the channels among AP/RIS to Eve/user still have
strong correlation, and thus the SR is low. As x increases,
the channel correlation of RIS to Eve and user decreases. In
this case, the RIS can formulate more effective BF to user,
improving the SR. We can observe that the SR is highest
when x = 40 as shown in Fig. 3(b), it is also expected.
Therefore, for the strong channel correlation case, different
from the conventional scheme of the RIS deployment, RIS
should be close to the user rather than the AP. Fig. 3(c) plots
the SR versus maximum transmit power P\mathrm{m}\mathrm{a}\mathrm{x} for different
schemes. Here, we set x = 30. As expected, SR increases
with P\mathrm{m}\mathrm{a}\mathrm{x}. Similarly, our proposed low-complexity MM and
SDP schemes achieve almost the same performance as the
corresponding SDR scheme.

VI. CONCLUSION

In this paper, we investigated how to optimally deploy RIS
and joint design AP’s and RIS’s BF to improve the security
under strong channel correlation. We proposed the effective
beamforming optimization methods under passive and active
RIS, respectively. The simulation results show that RIS can
formulate more efficient BF for the user so as to improve
the SR even when the channel between AP and Eve/ user
have strong correlation. In addition, the active RIS is more
conducive to the system security than the passive RIS.
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