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Abstract

Due to the dynamics of wireless environment and limited bandwidth, wireless federated learning

(FL) is challenged by frequent transmission errors and incomplete aggregation from devices. In order

to overcome these challenges, we propose a Global MOdel REuse strategy (GoMORE) that reuses the

outdated global model to replace the local model parameters once a transmission error occurs. We

analytically prove that the proposed GoMORE is strictly superior over the existing strategy, especially

at low signal-to-noise ratios (SNRs). In addition, based on the derived expression of weight divergence,

we further optimize the number of participating devices in the model aggregation to maximize the FL

performance with limited communication resources. Numerical results verify that the proposed GoMORE

successfully approaches the performance upper bound by an ideal transmission. It also mitigates the

negative impact of non-independent and non-identically distributed (non-IID) data while achieving over

5 dB reduction in energy consumption.

Index Terms

Federated learning (FL), unreliable communication, limited bandwidth, partial aggregation

I. INTRODUCTION

Due to the rapid growth of data traffic in beyond fifth-generation (B5G) networks, federated

learning (FL) is regarded as an important enabling key technique for wireless networks to support
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various data-driven intelligent applications [1], [2]. Specifically, the distributed devices, coordi-

nated by a parameter server (PS), collaboratively train a shared learning model by exploiting

local private data with marginal privacy leaks [3]. Recently, state-of-art works have considered

the specific deployments of FL algorithm over wireless networks [4], [5], where the devices and

the PS communicate through wireless links. However, the communication resource is always

physically limited and the dynamics of wireless environment presents, both of which have become

the most significant bottlenecks limiting the learning performance of wireless FL.

Dynamic wireless channel conditions usually lead to unignorable packet loss due to trans-

mission errors, which hinders the convergence of FL algorithms and deteriorates the learning

performance. In [5], the impact of unreliable communication on the convergence performance

of an FL algorithm was analyzed and communication resource allocation was optimized based

on the derived convergence bounds. In [6], the convergence performance in resource-constrained

cellular wireless networks was analyzed. In addition, the effects of model pruning and packet

error on the convergence were quantified in [7], which was further used to seek a balance

between the communication and learning. To combat with unreliable communication, the user

datagram protocol (UDP) was adopted in [8] with a robust training algorithm, which retains

the same asymptotic convergence rate as that with error-free communications. Moreover, in [9],

outdated local updates of each device was additionally exploited to replace local updates with

transmission errors.

On the other hand, limited spectrum resource places substantial restrictions on the number of

devices that can be simultaneously involved in FL model training of each communication round,

which also harms the learning process. Existing works tried to devise device scheduling strategies

at the PS to purse better learning performance, such as the importance-based sampling [10] and

channel conditions-based scheduling [11]. However, it is worth pointing out that there is a trade-

off between the two challenges mentioned above. For a given bandwidth, more participating

devices results in less bandwidth occupied by each device, which in turn brings more transmission

errors, and vice versa. To the best of our knowledge, few efforts have been endeavored to achieve

a balance between higher probability of successful transmission and more participating devices

under the practical constraints of limited communication resource.

In this paper, we characterize the coupled impacts of unreliable communication and limited

bandwidth for wireless FL by deriving theoretical bounds of the weight divergence. A Global

MOdel REuse strategy, namely GoMORE, is proposed to combat the transmission errors. We
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prove in theory that the GoMORE always outperforms the existing direct discarding strategy.

Moreover, based on the derived analytical results, we further optimize the number of participating

devices, which balances between transmission errors and the number of participating devices.

Numerical experiments are conducted to verify the superiority of GoMORE especially in the

case with low signal-to-noise ratios (SNRs) and non-independent and non-identically distributed

(non-IID) local data sets.

The rest of this paper is organized as follows. Section II formulates the system model and

elaborates on the proposed strategy. In Section III, we derive the analytical performance of

the proposed strategy and optimize the number of participating devices. Simulation results and

concluding remarks are given in Sections IV and V, respectively.

II. SYSTEM MODEL

We consider a typical wireless FL system, where K distributed devices communicate with a PS

via wireless channels. By exploiting the non-IID local data sets {Dk}Kk=1 owned by the devices

and through wireless communications between the devices and PS, we aim to cooperatively train

the global model parameters via FL. The FL is modelled as optimizing the global parameters,

w, to minimize the loss function

F (w) =
K∑
k=1

Dk∑K
i=1 Di

Fk(w,Dk), (1)

where Dk is the size of the k-th local data set Dk and Fk(·) is the local loss function at device

k. Without loss of generality, we assume that the size of all local data sets are the same, i.e.,

D1 = · · · = DK = D. A typical local loss function at device k is defined as

Fk(w,Dk) =
1

D

∑
x∈Dk

L(w,x), (2)

where x is data selected from Dk and L(w,x) is the loss function for data sample x. Note that,

the data of different devices are usually non-IID distributed in practice, which is different from

the centralized learning paradigms and brings additional challenges.

A. Federated Learning Model

Next, we introduce the typical FL algorithm under ideal transmission. Specifically, the m-th

round of the FL algorithm is composed of the following three steps.
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1) Broadcasting: The PS broadcasts the latest global parameters wm to all devices.

2) Local computation: Each device receives the global parameter wm and initializes its local

model as wm. Then, each device k runs T local training epochs before obtaining an updated

model. At the t-th epoch for 1 ≤ t ≤ T , it follows:

wk
mT+t = wk

mT+t−1 − ηm∇Fk

(
wk

mT+t−1, ξ
k
mT+t−1

)
, (3)

where the subscript mT + t represents the cumulative number of local epochs, the superscript k

corresponds to the k-th device, ηm is the learning rate chosen at the m-th round, and ξkmT+t−1

is the batch of samples with size b. According to the definition, we have wk
mT = wm.

3) Uplink transmission and aggregation: All the devices transmit their updated local models,

wk
(m+1)T , to the PS. Upon receiving all the local models, PS updates the global model as

wm+1 =
1

K

K∑
k=1

wk
(m+1)T . (4)

Note that the above steps iterate until the FL algorithm converges to a common global model

[5].

B. Unreliable Transmission Model

Given that the bandwidth available for FL is always limited, only a subset of N devices can

participate in model training per round. We assume that the PS uniformly selects N devices

without replacement [10] and the set of the selected devices at the m-th round is denoted by

Sm. Then, in the above steps, only the selected devices participate in model aggregation.

Moreover, over wireless channels, transmission errors occurs during the uplink local FL

parameter report. For the downlink transmission, we assume that the broadcast of global model

parameters is error-free due to much higher transmit power at the PS [5]. Specifically, we denote

the channel gain between the PS and device k by h0hk(m)d
−α

2
k , where h0 is the channel gain at

the reference distance, hk(m) ∼ CN (0, 1) represents the small-scale fading in the m-th round,

dk is the distance between PS and device k, and α is the path-loss exponent. Then, the SNR in

the m-th round follows

γk =
P |h0hk(m)|2d−α

k

BkN0

, ∀k, (5)
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where P is the transmit power, Bk is the bandwidth allocated to device k, and N0 is the noise

power density. Without loss of generality, we assume that all the selected devices share the

bandwidth equally, i.e., Bk = B
N

. Then, the local updates are transmitted at the fixed rate
B
N
log(1 + θ), where θ is a chosen constant1. A reception is assumed error-free if the SNR

exceeds θ, and otherwise error occurs [6]. Explicitly, the probability of error-free transmission

can be evaluated as [12]

pk = exp

(
− BN0θ

2NP |h0|2d−α
k

)
, ∀k. (6)

Typically in most existing FL systems [5], the PS relies on a cyclic redundancy check (CRC)

mechanism to check the detected data and directly discards the local updates with errors while

not asking for retransmission, referred to as the direct discarding strategy (DDS). Specifically,

the aggregation step at the m-th round in (4) is rewritten for the wireless FL as

w̃m+1 =
∑
k∈Sm

1

Npk
w̃k

(m+1)T , (7)

where w̃k
m+1 denotes the received local model and it is a discrete random variable taking the

value of wk
m+1 with probability pk and the value of 0 with probability 1 − pk. In addition,

w̃m+1 denotes the updated global model based on DDS. It is obvious that this averaging step

is unbiased, i.e., E [w̃m+1] = wm+1. However, the learning performance of the FL algorithm

based on DDS is not guaranteed especially for the non-IID case. This is because the absence of

updates from some devices may bias the global model towards the remaining devices, leading to

excessively large gap with respect to the optimal direction. As shown in Fig. 1, due to absence

of w1
(m+1)T , the global model gets far from the global minimum.

C. Global Model Reuse (GoMORE) Strategy

To address the challenge brought by DDS, we propose a novel global model reuse strategy,

where the global model updated at the previous communication round is reused as an alternative

of the erroneously received local models. Concretely, in the proposed GoMORE, if the trans-

mission is error-free, the model parameters are used in the aggregation as usual, and conversely,

1To avoid the impacts of stragglers and accelerate model training, the local updates are transmitted at a fixed rate, like in [6],
rather than a dynamic rate based on the SNR levels.
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Fig. 1. An example reflecting the impact of unreliable communications.

if the transmitted model parameters have transmission errors, the outdated global model is used

to replace the erroneous one. Hence, the aggregation step in m-th round becomes

ŵm+1 =
1

N

∑
k∈Sm

ŵk
(m+1)T , (8)

where ŵk
(m+1)T is defined by

ŵk
(m+1)T ≜

 wk
(m+1)T , error-free w.p. pk,

wm, erroneous w.p. 1− pk.
(9)

In GoMORE, even though there is packet loss, the alternative global model is able to help

maintain the original direction as much as possible without excessive bias, as depicted in Fig. 1.

III. PERFORMANCE ANALYSIS AND OPTIMIZATION

In this section, we analyze the performance of the proposed GoMORE and compare it with

DDS. Based on the theoretical results, we further optimize the number of participating devices

under limited resource constraints and a stringent delay requirement to improve the performance

of GoMORE.

A. Performance Analysis and Comparison

To capture the impacts of both unreliable transmission and limited bandwidth, we utilize the

expected weight divergence with respect to ŵm+1 and wm+1, i.e., ζ1 = E
[
∥ŵm+1 −wm+1∥2

]
,

as the performance metric, which effectively evaluates the accuracy loss caused by non-IID

data [13]. More intuitively, weight divergence is understood as the second-order moments of the

estimation error for the ideal model parameters. For performance comparison, we analyze the

metric of ζ2 = E
[
∥w̃m+1 −wm+1∥2

]
for DDS. To facilitate the performance analysis, we need

the following assumptions, which has been widely used in literature, e.g., [14].
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Assumption 1: The stochastic gradients on random data samples are uniformly bounded by a

finite constant γ2, i.e., Eξ

[
∥∇Fk(w, ξ)∥2

]
≤ γ2.

Assumption 2: The expected squared norm of the model parameters are uniformly bounded

by a finite constant G2, i.e., E
[
∥w∥2

]
≤ G2.

Under these general assumptions, we characterize the weight divergence, ζ1 and ζ2 by the

following bounds in Lemma 1 and Lemma 2, respectively.

Lemma 1: An upper bound of ζ1 is expressed as

ζ1 ≤
K∑
k=1

η2mT
2γ2

K

(
K −N

N(K − 1)
p2k − pk + 1

)
≜ ζ̄1. (10)

Proof: Please refer to Appendix A. □

Lemma 2: An upper bound of ζ2 is expressed as

ζ2 ≤
K∑
k=1

(
η2mT

2γ2(K −N)

KN(K − 1)
+

1− pk
Kpk

G2

)
≜ ζ̄2. (11)

Proof: Please refer to Appendix B. □

Based on Lemma 1 and Lemma 2, we have the following theorem to compare the DDS and

the proposed GoMORE.

Theorem 1: With sufficiently small learning rate, i.e., ηm ≤ G
Tγ

, the global model obtained

via GoMORE is strictly superior to that obtained via DDS in terms of weight divergence.

Proof: According to (10), (11) and ηm ≤ G
Tγ

, we have

ζ̄2 − ζ̄1 ≥
K∑
k=1

η2mT
2γ2

K

(
(K −N)(1− p2k)

N(K − 1)
+

(1− pk)
2

pk

)
> 0. (12)

It is obvious that ζ̄1 < ζ̄2 and we complete the proof. □

Remark 1: It is worth noting that (12) decreases monotonically as pk increases and eventually

converges to 0. This indicates that the proposed GoMORE has more significant performance

advantages over the DDS at low SNR regions and enjoys the same asymptotical upper bound at

high SNRs.
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Algorithm 1 The GoMORE strategy for wireless FL
1: Optimize N according to (13).
2: Repeat
3: PS broadcasts wm to the randomly selected N devices.
4: Each selected device conducts local computing and transmits wk

(m+1)T to PS.
5: The PS performs model aggregation according to (8).
6: End until convergence.

B. Optimization of Device Activation

Next, we focus on the optimization of the number of participating devices. Let d denote

the data size of the model parameters w (in bit). To meet the upload time delay requirement,

τ , the communication rate should be set as d/τ . According to (6), pk is evaluated as pk =

exp
(
−λk

2ρN−1
N

)
, where λk ≜ BN0

2P |h0|2d−α
k

and ρ ≜ d
Bτ

. Then, it is obvious that the upper bound

ζ̄1 is not a monotonic function with respect to N . Therefore, with the constraint of limited

bandwidth and a delay requirement, there should exist an optimal number of participating devices.

By removing constant terms in (10), we formulate the optimization problem as

minimize
N

K∑
k=1

(
K −N

(K − 1)N
e−2λk

2ρN−1
N − e−λk

2ρN−1
N

)
subject to 1 ≤ N ≤ K. (13)

Given that N is a discrete variable, an exhaustive search is useful to find the optimal N by

minimizing the upper bound ζ̄1 with computational complexity of O(N). In practice, the number

of the devices, N , is not large and hence an exhaustive search works. It is worth noting that the

effects of the learning parameters and the number of participating devices are decoupled and

hence the optimized N applies for various learning parameter settings. We also note that the

optimization of N is based on the statistics of the wireless channels and hence is applicable for

long-term settings.

To summarize, we conclude the proposed GoMORE strategy in Algorithm 1.

IV. SIMULATION RESULTS

In this section, simulation results are provided to verify the effectiveness of the proposed

GoMORE. The popular MNIST data set is exploited to train a multi-layer perceptron (MLP) and

the label distribution varies over devices to capture the non-IID characteristic. Unless otherwise

specified, the parameters are set as: the number of all devices, K = 20, the number of local
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epochs, T = 10, the batch size b = 50, the learning rate ηm = 0.001, the total bandwidth, B = 1

MHz, the noise power spectral density, N0 = −174 dBm/Hz, the channel gain at reference

distance, h0 = −30 dBm, and the path loss exponent, α = 2.2.

In Fig. 2 and Fig. 3, we compare the proposed GoMORE with DDS under different parameter

settings. Consistent with our theoretical analysis, GoMORE outperforms DDS for all the tested

setups and approaches the performance of ideal transmission with a more than 5 dB reduction

in energy consumption. Moreover, compared with the IID data sets, the learning performance

is more sensitive to the transmission errors under the non-IID data. Hence, the proposed Go-

MORE plays a more critical role for the non-IID cases, which avoids excessive bias brought by

unexpected errors.

Fig. 4 depicts the test accuracy changes with the number of participating devices. It is observed

that, with the increase of N , the test accuracy improves first and then decreases. This is because

the learning performance is limited first by the number of participating devices and then by

unreliable transmission, which unveils the balance between the two factors. In addition, we

prefer to activate fewer devices to improve the probability of successful transmission, which is

more effective than blindly activating more devices. This is because under limited bandwidth,

activating more devices comes with more transmission errors, resulting in even less local models

actually exploited for the FL training per round.

V. CONCLUSION

In this paper, we proposed a novel GoMORE strategy for wireless FL with unreliable com-

munications and limited bandwidth. Analytical results revealed that GoMORE always achieves

better performance than DDS and there exists an optimal number of participating devices per

round, which can be effectively found via exhaustive search. Numerical results confirmed the

validity of GoMORE and number optimization.
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APPENDIX A

PROOF OF LEMMA 1

To begin with, we first define the expectations of ŵk
(m+1)T and ŵm+1 over wireless channels

and device selection as

w̄k
(m+1)T ≜ E

[
ŵk

(m+1)T

]
= pkw

k
(m+1)T + (1− pk)wm,

w̄m+1 ≜ E [ŵm+1] =
K∑
k=1

1

K
w̄k

(m+1)T , (14)

respectively. Then, we can express

ζ1 = E
[
∥ŵm+1 − w̄m+1 + w̄m+1 −wm+1∥2

]
(a)
= E

[
∥ŵm+1 − w̄m+1∥2

]︸ ︷︷ ︸
A1

+Eξ

[
∥w̄m+1 −wm+1∥2

]︸ ︷︷ ︸
A2

, (15)

where (a) is due to the fact that ŵ is unbiased, i.e., E [ŵm+1 − w̄m+1] = 0. Next, we first rewrite

A1 as

A1 = E

∥∥∥∥∥ 1

N

K∑
k=1

Ik
(
ŵk

(m+1)T − w̄m+1

)∥∥∥∥∥
2


= E

[∥∥∥∥∥ 1

N

K∑
k=1

Ik
(
ŵk

(m+1)T − w̄k
(m+1)T

)
+

1

N

K∑
k=1

Ik
(
w̄k

(m+1)T − w̄m+1

)∥∥∥∥∥
2


(a)
=

1

N2
E

∥∥∥∥∥
K∑
k=1

Ik
(
ŵk

(m+1)T − w̄k
(m+1)T

)∥∥∥∥∥
2


︸ ︷︷ ︸
B1

+
1

N2
Eξ

∥∥∥∥∥
K∑
k=1

Ik
(
w̄k

(m+1)T − w̄m+1

)∥∥∥∥∥
2


︸ ︷︷ ︸
B2

, (16)
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where Ik = 1 if k ∈ Sm and Ik = 0 if k /∈ Sm. The equality in (a) follows from E
[
ŵk

(m+1)T

]
=

w̄k
(m+1)T . Exploiting the Jensen’s Inequality, B1 is bounded by

B1 ≤ N

K∑
k=1

E
[∥∥Ik (ŵk

(m+1)T − w̄k
(m+1)T

)∥∥2]
= N

K∑
k=1

Pr(Ik = 1)E
[∥∥ŵk

(m+1)T − w̄k
(m+1)T

∥∥2]
=

N2

K

K∑
k=1

E
[∥∥ŵk

(m+1)T − w̄k
(m+1)T

∥∥2]
(a)
=

N2

K

K∑
k=1

(
pkEξ

[∥∥wk
(m+1)T − w̄k

(m+1)T

∥∥2]
+(1− pk)Eξ

[∥∥wm − w̄k
(m+1)T

∥∥2])
=

N2

K

K∑
k=1

pk(1− pk)Eξ

∥∥∥∥∥ηm
T−1∑
t=0

∇Fk(w
k
mT+t, ξ

k
mT+t)

∥∥∥∥∥
2


(b)
≤ N2

K

K∑
k=1

pk(1− pk)η
2
mT

2γ2, (17)

where Pr(Ik = 1) = N
K

, (a) comes from the definition in (9), and (b) exploits the Jensen’s

Inequality and Assumption 1. Next, we take similar steps as [15, Appendix B.4] to bound B2.

It follows

B2

(a)

≤ N(K −N)

K(K − 1)

K∑
k=1

Eξ

[∥∥w̄k
(m+1)T − w̄m+1

∥∥2]
(b)
=

N(K −N)

K(K − 1)

K∑
k=1

p2kEξ

∥∥∥∥∥wk
(m+1)T − 1

K

K∑
i=1

wi
(m+1)T

∥∥∥∥∥
2


(c)

≤ N(K −N)

K(K − 1)

K∑
k=1

p2kEξ

[∥∥wk
(m+1)T −wm

∥∥2]
≤ N(K −N)

K(K − 1)

K∑
k=1

p2kη
2
mT

2γ2, (18)

where (a) comes from the following equalities: Pr{i, j ∈ Sm, i ̸= j} = N(N−1)
K(K−1)

, and

∑
i Eξ

[∥∥∥w̄i
(m+1)T − w̄m+1

∥∥∥2]+∑i ̸=j Eξ

[(
w̄i

(m+1)T − w̄m+1

)T (
w̄j

(m+1)T − w̄m+1

)]
= 0, (b)

exploits the definition in (14), and the inequality in (c) results from 1
K

∑K
k=1

(
wk

(m+1)T −wm

)
=
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1
K

∑K
i=1w

i
(m+1)T −wm and E

[
∥x− E{x}∥2

]
≤ E

[
∥x∥2

]
. Then, for A2, we have

A2 =
1

K2
Eξ

∥∥∥∥∥
K∑
k=1

(
w̄k

(m+1)T −wk
(m+1)T

)∥∥∥∥∥
2


≤
K∑
k=1

(1− pk)
2

K
Eξ

[∥∥wk
(m+1)T −wm

∥∥2]
≤

K∑
k=1

(1− pk)
2

K
η2mT

2γ2. (19)

Combining the derived bounds in (17)-(19), we obtain the desired result in (10).

APPENDIX B

PROOF OF LEMMA 2

The derivations are analogous to the steps in Appendix A. To be brief, we first have

ζ2 ≤
1

N2
E

∥∥∥∥∥
K∑
k=1

Ik
(

1

pk
w̃k

(m+1)T −wk
(m+1)T

)∥∥∥∥∥
2


︸ ︷︷ ︸
C1

+
1

N2
Eξ

∥∥∥∥∥
K∑
k=1

Ik

(
wk

(m+1)T − 1

K

K∑
i=1

wi
(m+1)T

)∥∥∥∥∥
2


︸ ︷︷ ︸
C2

. (20)

Then, by applying the Jensen’s Inequality, the definition of w̃k
(m+1)T , and Assumption 2, C1 is

bounded as

C1 ≤
N2

K

K∑
k=1

1− pk
pk

E
[∥∥wk

(m+1)T

∥∥2] ≤ N2

K

K∑
k=1

1− pk
pk

G2. (21)

Moreover, it is easy to find that C2 has been bounded in (18). Combining all these derived

bounds, we complete the proof.
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